A Novel Nonsense Variant in GRM1 Causes Autosomal Recessive Spinocerebellar Ataxia 13 in a Consanguineous Pakistani Family
Abstract
:1. Introduction
2. Methods and Results
2.1. Case Report
2.2. Molecular Diagnosis
3. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiang, P.I.; Liao, T.W.; Chen, C.M. A Novel SETX Mutation in a Taiwanese Patient with Autosomal Recessive Cerebellar Ataxia Detected by Targeted Next-Generation Sequencing, and a Literature Review. Brain Sci. 2022, 12, 173. [Google Scholar] [CrossRef] [PubMed]
- Arias, M. Keys to overcoming the challenge of diagnosing autosomal recessive spinocerebellar ataxia. Neurologia 2019, 34, 248–258. [Google Scholar] [CrossRef] [PubMed]
- Guergueltcheva, V.; Azmanov, D.N.; Angelicheva, D.; Smith, K.R.; Chamova, T.; Florez, L.; Bynevelt, M.; Nguyen, T.; Cherninkova, S.; Bojinova, V. Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am. J. Hum. Genet. 2012, 91, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Cabet, S.; Putoux, A.; Carneiro, M.; Labalme, A.; Sanlaville, D.; Guibaud, L.; Lesca, G. A novel truncating variant p.(Arg297*) in the GRM1 gene causing autosomal-recessive cerebellar ataxia with juvenile-onset. Eur. J. Med. Genet. 2019, 62, 103726. [Google Scholar] [CrossRef]
- Davarniya, B.; Hu, H.; Kahrizi, K.; Musante, L.; Fattahi, Z.; Hosseini, M.; Maqsoud, F.; Farajollahi, R.; Wienker, T.F.; Ropers, H.H. The role of a novel TRMT1 gene mutation and rare GRM1 gene defect in intellectual disability in two Azeri families. PLoS ONE 2015, 10, e0129631. [Google Scholar] [CrossRef]
- Kano, M.; Hashimoto, K.; Tabata, T. Type-1 metabotropic glutamate receptor in cerebellar Purkinje cells: A key molecule responsible for long-term depression, endocannabinoid signalling and synapse elimination. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 2173–2186. [Google Scholar] [CrossRef]
- Nicoletti, F.; Bockaert, J.; Collingridge, G.L.; Conn, P.J.; Ferraguti, F.; Schoepp, D.D.; Wroblewski, J.T.; Pin, J.P. Metabotropic glutamate receptors: From the workbench to the bedside. Neuropharmacology 2011, 60, 1017–1041. [Google Scholar] [CrossRef]
- Desai, M.A.; Burnett, J.P.; Mayne, N.G.; Schoepp, D.D. Cloning and expression of a human metabotropic glutamate receptor 1 alpha: Enhanced coupling on co-transfection with a glutamate transporter. Mol. Pharmacol. 1995, 48, 648–657. [Google Scholar]
- Enz, R. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins. Front. Mol. Neurosci. 2012, 5, 52. [Google Scholar] [CrossRef]
- Wu, H.; Wang, C.; Gregory, K.J.; Han, G.W.; Cho, H.P.; Xia, Y.; Niswender, C.M.; Katritch, V.; Meiler, J.; Cherezov, V.; et al. Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 2014, 344, 58–64. [Google Scholar] [CrossRef]
- Alba, A.; Kano, M.; Chen, C.; Stanton, M.E.; Fox, G.D.; Herrup, K.; Zwingman, T.A.; Tonegawa, S. Deficient cerebellar long-term depression and impaired motor learning in mGluR1 mutant mice. Cell 1994, 79, 377–388. [Google Scholar] [CrossRef]
- Synofzik, M.; Nemeth, A.H. Recessive ataxias. Handb. Clin. Neurol. 2018, 155, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Schmitz-Hübsch, T.; Du Montcel, S.T.; Baliko, L.; Berciano, J.; Boesch, S.; Depondt, C.; Giunti, P.; Globas, C.; Infante, J.; Kang, J.-S. Scale for the assessment and rating of ataxia: Development of a new clinical scale. Neurology 2006, 66, 1717–1720. [Google Scholar] [CrossRef]
- Sambrook, J.; Russell, D.W. Purification of nucleic acids by extraction with phenol:chloroform. Cold Spring Harb. Protoc. 2006, 2006, pdb-prot4455. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef]
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; Del Angel, G.; Rivas, M.A.; Hanna, M. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variations from next-generation sequencing data. Nucl. Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef]
- Vigeland, M.D.; Gjøtterud, K.S.; Selmer, K.K. FILTUS: A desktop GUI for fast and efficient detection of disease-causing variants, including a novel autozygosity detector. Bioinformatics 2016, 32, 1592–1594. [Google Scholar] [CrossRef]
- Kircher, M.; Witten, D.M.; Jain, P.; O’roak, B.J.; Cooper, G.M.; Shendure, J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef] [PubMed]
- Fan, W. Group I metabotropic glutamate receptors modulate late phase long-term potentiation in hippocampal CA1 pyramidal neurons: Comparison of apical and basal dendrites. Neurosci. Lett. 2013, 553, 132–137. [Google Scholar] [CrossRef] [PubMed]
- Watson, L.M.; Bamber, E.; Schnekenberg, R.P.; Williams, J.; Bettencourt, C.; Lickiss, J.; Jayawant, S.; Fawcett, K.; Clokie, S.; Wallis, Y. Dominant mutations in GRM1 cause spinocerebellar ataxia type 44. Am. J. Hum. Genet. 2017, 101, 451–458. [Google Scholar] [CrossRef]
- Wiel, L.; Baakman, C.; Gilissen, D.; Veltman, J.A.; Vriend, G.; Gilissen, C. MetaDome: Pathogenicity analysis of genetic variants through aggregation of homologous human protein domains. Hum. Mutat. 2019, 40, 1030–1038. [Google Scholar] [CrossRef]
- Zhang, J.; Qu, L.; Wu, L.; Tang, X.; Luo, F.; Xu, W.; Xu, Y.; Liu, Z.J.; Hua, T. Structural insights into the activation initiation of full-length mGlu1. Protein Cell 2021, 12, 662–667. [Google Scholar] [CrossRef]
- Kammermeier, P.J. Surface clustering of metabotropic glutamate receptor 1 induced by long Homer proteins. BMC Neurosci. 2006, 7, 1. [Google Scholar] [CrossRef]
- Smith, C.L.; Blake, J.A.; Kadin, J.A.; Richardson, J.E.; Bult, C.J.; Mouse Genome Database Group. Mouse Genome Database (MGD)-2018: Knowledgebase for the laboratory mouse. Nucleic Acids Res. 2018, 46, D836–D842. [Google Scholar] [CrossRef]
- Ferraguti, F.; Crepaldi, L.; Nicoletti, F. Metabotropic glutamate 1 receptor: Current concepts and perspectives. Pharmacol. Rev. 2008, 60, 536–581. [Google Scholar] [CrossRef]
- Gil-Sanz, C.; Delgado-Garcia, J.M.; Fairen, A.; Gruart, A. Involvement of the mGluR1 receptor in hippocampal synaptic plasticity and associative learning in behaving mice. Cereb. Cortex 2008, 18, 1653–1663. [Google Scholar] [CrossRef]
- Rossi, P.I.; Musante, I.; Summa, M.; Pittaluga, A.; Emionite, L.; Ikehata, M.; Rastaldi, M.P.; Ravazzolo, R.; Puliti, A. Compensatory molecular and functional mechanisms in nervous system of the Grm1(crv4) mouse lacking the mGlu1 receptor: A model for motor coordination deficits. Cereb. Cortex 2013, 23, 2179–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, P.I.; Vaccari, C.M.; Terracciano, A.; Doria-Lamba, L.; Facchinetti, S.; Priolo, M.; Ayuso, C.; De Jorge, L.; Gimelli, S.; Santorelli, F.M.; et al. The metabotropic glutamate receptor 1, GRM1: Evaluation as a candidate gene for inherited forms of cerebellar ataxia. J. Neurol. 2010, 257, 598–602. [Google Scholar] [CrossRef] [PubMed]
- Bossi, S.; Musante, I.; Bonfiglio, T.; Bonifacino, T.; Emionite, L.; Cerminara, M.; Cervetto, C.; Marcoli, M.; Bonanno, G.; Ravazzolo, R. Genetic inactivation of mGlu5 receptor improves motor coordination in the Grm1crv4 mouse model of SCAR13 ataxia. Neurobiol. Dis. 2018, 109, 44–53. [Google Scholar] [CrossRef] [PubMed]
Patients | ||||
---|---|---|---|---|
IV:1 | IV:2 | IV:3 | IV:4 | |
Gender | Male | |||
Age (years) | 29 | 22 | 20 | 17 |
Developmental Milestone | ||||
Sitting (years) | 4.5 | 4.5 | 4.5 | 4.5 |
Crawling (years) | 5.5 | 5.5 | 5.5 | 5.5 |
Standing | - | - | - | - |
Walking | - | - | - | - |
Single work | - | - | - | - |
Self-care | - | - | - | - |
Cerebellar Ataxia (SARA scores) a | ||||
Gait (0–8) | 8 | 8 | 8 | 8 |
Stance (0–6) | 6 | 6 | 6 | 6 |
Sitting (0–4) | 0 | 0 | 0 | 0 |
Speech distrubance (0–6) | 6 | 6 | 6 | 6 |
Finger chase (L + R)/2 (0–4) | 2 | 3 | 4 | 2 |
Nose-finger test (L + R)/2 (0–4) | 2 | 3 | 4 | 2 |
Fast alternating hand movements (L + R)/2 (0–4) | 2 | 3 | 4 | 2 |
Heel-shin slide (L + R)/2 (0–4) | 3 | 3 | 4 | 3 |
Total SARA score (0–40) | 29/40 | 32/40 | 36/40 | 29/40 |
Neurological Signs | ||||
Ataxia | Quadrupedal | Quadrupedal | Quadrupedal | Quadrupedal |
Dysarthria | + | + | + | + |
Babinski sign | + | + | + | + |
Hyperreflexia | + | + | + | + |
Dysmetria | + | + | + | + |
Intellectual disability | Severe | Severe | Severe | Severe |
Aggressive behavior | + | + | + | + |
Clinical progression | - | - | - | - |
Seizures | - | - | - | - |
Hypotonia | - | - | - | - |
Brain abnormalities (MRI) | ND | ND | ND | ND |
Ophthalmological Abnormalities | ||||
Eye ptosis | + | + | + | + |
Strabismus | + | + | + | + |
Skeletal Abnormalities | ||||
Spine curvature deformity | - | Scoliosis | - | - |
Facial dysmorphism | - | - | - | - |
Pes planus | + | + | + | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousaf, H.; Fatima, A.; Ali, Z.; Baig, S.M.; Toft, M.; Iqbal, Z. A Novel Nonsense Variant in GRM1 Causes Autosomal Recessive Spinocerebellar Ataxia 13 in a Consanguineous Pakistani Family. Genes 2022, 13, 1667. https://doi.org/10.3390/genes13091667
Yousaf H, Fatima A, Ali Z, Baig SM, Toft M, Iqbal Z. A Novel Nonsense Variant in GRM1 Causes Autosomal Recessive Spinocerebellar Ataxia 13 in a Consanguineous Pakistani Family. Genes. 2022; 13(9):1667. https://doi.org/10.3390/genes13091667
Chicago/Turabian StyleYousaf, Hammad, Ambrin Fatima, Zafar Ali, Shahid M. Baig, Mathias Toft, and Zafar Iqbal. 2022. "A Novel Nonsense Variant in GRM1 Causes Autosomal Recessive Spinocerebellar Ataxia 13 in a Consanguineous Pakistani Family" Genes 13, no. 9: 1667. https://doi.org/10.3390/genes13091667
APA StyleYousaf, H., Fatima, A., Ali, Z., Baig, S. M., Toft, M., & Iqbal, Z. (2022). A Novel Nonsense Variant in GRM1 Causes Autosomal Recessive Spinocerebellar Ataxia 13 in a Consanguineous Pakistani Family. Genes, 13(9), 1667. https://doi.org/10.3390/genes13091667