Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Clearance
2.2. Experimental Approach and Sample Collection
2.3. Determining Blood Glucose Levels
2.4. Gene Expression Analysis via RT-qPCR
2.5. Colorimetric Caspase-3 Assay
2.6. Statistical Analysis
3. Results
3.1. Blood Glucose Levels
3.2. Gene Expression Analysis
3.3. Caspase-3 Assay Analysis
4. Discussion
4.1. Effect of Exogenous Glucose on Blood Glucose Level
4.2. Effect of Ambient Temperature and Glucose Supplementation on Apoptosis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Gene | Accession Number | Forward Primer (5′–3′) | Reverse Primer (5′–3′) |
---|---|---|---|
PERK | XM_420868.6 | AGG ATT CTG GCT GTG GTA ATG | CCT TGG TGG AGA AAC AGA TAG G |
GCN2 | XM_004941720.3 | GAA TAT CCA GTC GCT GTT CCT AAT A | GGA GTC CAC CTT TCC TTA TCT TC |
EIF2α | NM_001031323.2 | GCC TCC GAT TCC ACC TAT TT | GCC AGT GTA GTG CCA TAT CTT |
ATF4 | NM_204880.2 | TTG ATG CCC TGT TAG GTA TGG | CCT GGG TGG TAG GGT TAA ATA G |
CHOP | XM_015273173.2 | TGC TTA GCA GAA TGG GAT GG | GCC ACG CTG ACA CAT GTA ATA |
FOXO3a | XM_001234495.7 | AGT GCA GAA TGA GGG AAC AGG GAA | TGA GAT CCA GGG CTG TCA CCA TTT |
MAFbx | NM_001039309 | GAC AAT GAA CTC AGG GAC ATT TAA C | CGC CAC CTC TAC TGC TTT ATT |
B-actin | NM_205518.2 | AGA CAT CAG GGT GTG ATG GTT GGT | TCC CAG TTG GTG ACA ATA CCG TGT |
References
- Lara, L.J.; Rostagno, M.H. Impact of heat stress on poultry production. Animals 2013, 3, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef]
- Gao, P.-C.; Wang, A.-Q.; Chen, X.-W.; Cui, H.; Li, Y.; Fan, R.-F. Selenium alleviates endoplasmic reticulum calcium depletion-induced endoplasmic reticulum stress and apoptosis in chicken myocardium after mercuric chloride exposure. Environ. Sci. Pollut. Res. 2023, 30, 51531–51541. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-M.; Liu, L.-P.; Yin, B.; Liu, Y.-Y.; Dong, W.-W.; Gong, S.; Zhang, J.; Tan, J.-H. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult. Sci. 2020, 99, 6084–6093. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Dietary taurine supplementation ameliorates muscle loss in chronic heat stressed broilers via suppressing the PERK signaling and reversing endoplasmic reticulum-stress-induced apoptosis. J. Sci. Food Agric. 2021, 101, 2125–2134. [Google Scholar] [CrossRef] [PubMed]
- Leprivier, G.; Rotblat, B. How does mTOR sense glucose starvation? AMPK is the usual suspect. Cell Death Discov. 2020, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.P.; Clark, O.; Ferrarone, J.R.; Campos, C.; Lalani, A.S.; Chodera, J.D.; Intlekofer, A.M.; Elemento, O.; Mellinghoff, I.K. GCN2 kinase activation by ATP-competitive kinase inhibitors. Nat. Chem. Biol. 2022, 18, 207–215. [Google Scholar] [CrossRef]
- Hussain, I. Role of the mTOR/AMPK Pathways in Metabolic and Inflammatory Hepatic Dysfunction. Ph.D. Thesis, Friedrich-Schiller-Universität, Jena, Germany, 2022. [Google Scholar]
- Emami, N.K.; Jung, U.; Voy, B.; Dridi, S. Radical response: Effects of heat stress-induced oxidative stress on lipid metabolism in the avian liver. Antioxidants 2020, 10, 35. [Google Scholar] [CrossRef]
- Susztak, K.; Raff, A.C.; Schiffer, M.; Böttinger, E.P. Glucose-Induced Reactive Oxygen Species Cause Apoptosis of Podocytes and Podocyte Depletion at the Onset of Diabetic Nephropathy. Diabetes 2006, 55, 225–233. [Google Scholar] [CrossRef]
- Sun, Q.; Dai, E.; Chen, M.; Zhang, J.; Mu, J.A.; Liu, L.; Geng, T.; Gong, D.; Zhang, Y.; Zhao, M. Glucose-induced enhanced antioxidant activity inhibits apoptosis in gees fatty liver. J. Anim. Sci. 2023, 101, skad059. [Google Scholar] [CrossRef]
- Xu, X.H.; Li, G.L.; Wang, B.A.; Qin, Y.; Bai, S.R.; Rong, J.; Deng, T.; Li, Q. Diallyl trisulfide protects against oxygen-glucose deprivation-induced apoptosis by scavenging free radicals via the PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in B35 neural cells. Brain Res. 2015, 1614, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-Y.; Wen, S.-Y.; Shibu, M.A.; Yang, Y.-C.; Peng, H.; Wang, B.; Wei, Y.-M.; Chang, H.-Y.; Lee, C.-Y.; Huang, C.-Y. Diallyl trisulfide protects against high glucose-induced cardiac apoptosis by stimulating the production of cystathionine γ-lyase-derived hydrogen sulfide. Int. J. Cardiol. 2015, 195, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yan, Z.; Cai, J.; Wang, D.; Yang, Y.; Ding, Y.; Shao, X.; Hao, X.; Luo, E.; Guo, X.E. Glucose-and glutamine-dependent bioenergetics sensitize bone mechano-response after unloading by modulating osteocyte calcium dynamics. J. Clin. Investig. 2023, 133, e164508. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.P.; Shao, S.J.; Guo, H.D. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy. Life Sci. 2020, 248, 117459. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Ma, J.; Gao, X.; Tian, P.; Li, W.; Zhang, L. High glucose-induced oxidative stress and apoptosis in cardiac microvascular endothelial cells are regulated by FOXO3a. PLoS ONE 2013, 8, e79739. [Google Scholar] [CrossRef]
- Cobb500. Cobb Broiler Management Guide; Cobb-Vantress: Siloam Springs, AR, USA, 2018. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2021, 25, 402–408. [Google Scholar] [CrossRef]
- SAS Institute Inc. SAS/IML® Studio 15.1 for SAS/STAT® Users; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Beckford, R.C.; Ellestad, L.E.; Proszkowiec-Weglarz, M.; Farley, L.; Brady, K.; Angel, R.; Liu, H.-C.; Porter, T.E. Effects of heat stress on performance, blood chemistry, and hypothalamic and pituitary mRNA expression in broiler chickens. Poult. Sci. 2020, 99, 6317–6325. [Google Scholar] [CrossRef]
- Chaudhry, R.; Varacallo, M. Biochemistry, glycolysis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2018. [Google Scholar]
- Al-Yousif, N.; Rawal, S.; Jurczak, M.; Mahmud, H.; Shah, F.A. Endogenous glucose production in critical illness. Nutr. Clin. Pract. 2021, 36, 344–359. [Google Scholar] [CrossRef]
- Malone, J.J.; Hulton, A.T.; MacLaren, D.P. Exogenous carbohydrate and regulation of muscle carbohydrate utilization during exercise. Eur. J. Appl. Physiol. 2021, 121, 1255–1269. [Google Scholar] [CrossRef]
- Tirone, T.A.; Brunicardi, F.C. Overview of glucose regulation. World J. Surg. 2001, 25, 461. [Google Scholar] [CrossRef]
- Norton, L.; Shannon, C.; Gastaldelli, A.; DeFronzo, R.A. Insulin: The master regulator of glucose metabolism. Metabolism 2022, 129, 155142. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.N.; King, B.; Josselsohn, R.H.; Violante, S.; Macera, V.L.; Vardhana, S.A.; Cross, J.R.; Thompson, C.B. Translation in amino-acid-poor environments is limited by tRNAGln charging. Elife 2020, 9, e62307. [Google Scholar] [CrossRef] [PubMed]
- Romero, A.M.; Ramos-Alonso, L.; Alepuz, P.; Puig, S.; Martínez-Pastor, M.T. Global translational repression induced by iron deficiency in yeast depends on the GCN2/EIF2α pathway. Sci. Rep. 2020, 10, 233. [Google Scholar] [CrossRef]
- Zhao, C.; Guo, H.; Hou, Y.; Lei, T.; Wei, D.; Zhao, Y. Multiple Roles of the Stress Sensor GCN2 in Immune Cells. Int. J. Mol. Sci. 2023, 24, 4285. [Google Scholar] [CrossRef] [PubMed]
- Bröer, S. Amino acid transporters as modulators of glucose homeostasis. Trends Endocrinol. Metab. 2022, 33, 120–135. [Google Scholar] [CrossRef]
- Paulusma, C.C.; Lamers, W.; Broer, S.; van de Graaf, S.F. Amino acid metabolism, transport and signaling in the liver revisited. Biochem. Pharmacol. 2022, 201, 115074. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Zhang, L.; Li, J.; Xing, T.; Jiang, Y.; Gao, F. Heat stress alters muscle protein and amino acid metabolism and accelerates liver gluconeogenesis for energy supply in broilers. Poult Sci. 2021, 100, 215–223. [Google Scholar] [CrossRef]
- Chen, X.; Cubillos-Ruiz, J.R. Endoplasmic reticulum stress signals in the tumor and its microenvironment. Nat. Rev. Cancer 2021, 21, 71–88. [Google Scholar] [CrossRef]
- Seremelis, I.; Danezis, G.P.; Pappas, A.C.; Zoidis, E.; Fegeros, K. Avian stress-related transcriptome and selenotranscriptome: Role during exposure to heavy metals and heat stress. Antioxidants 2019, 8, 216. [Google Scholar] [CrossRef]
- Ma, B.; Xing, T.; Li, J.; Zhang, L.; Jiang, Y.; Gao, F. Chronic heat stress causes liver damage via endoplasmic reticulum stress-induced apoptosis in broilers. Poult. Sci. 2022, 101, 102063. [Google Scholar] [CrossRef]
- Caruso Bavisotto, C.; Alberti, G.; Vitale, A.M.; Paladino, L.; Campanella, C.; Rappa, F.; Gorska, M.; Conway de Macario, E.; Cappello, F.; Macario, A.J. Hsp60 post-translational modifications: Functional and pathological consequences. Front. Mol. Biosci. 2020, 7, 95. [Google Scholar] [CrossRef]
- Hamanaka, R.B.; Bennett, B.S.; Cullinan, S.B.; Diehl, J.A. PERK and GCN2 contribute to EIF2α phosphorylation and cell cycle arrest after activation of the unfolded protein response pathway. Mol. Biol. Cell 2005, 16, 5493–5501. [Google Scholar] [CrossRef] [PubMed]
- Dang Do, A.N.; Kimball, S.R.; Cavener, D.R.; Jefferson, L.S. EIF2α kinases GCN2 and PERK modulate transcription and translation of distinct sets of mRNAs in mouse liver. Physiol. Genom. 2009, 38, 328–341. [Google Scholar] [CrossRef] [PubMed]
- Wortel, I.M.; van der Meer, L.T.; Kilberg, M.S.; van Leeuwen, F.N. Surviving stress: Modulation of ATF4-mediated stress responses in normal and malignant cells. Trends Endocrinol. Metab. 2017, 28, 794–806. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.P.; Klocke, B.J.; Ballestas, M.E.; Roth, K.A. CHOP potentially co-operate with FOXO3a in neuronal cells to regulate PUMA and BIM expression in response to ER stress. PLoS ONE 2012, 7, e39586. [Google Scholar] [CrossRef] [PubMed]
- Sandri, M.; Sandri, C.; Gilbert, A.; Skurk, C.; Calabria, E.; Picard, A.; Walsh, K.; Schiaffino, S.; Lecker, S.H.; Goldberg, A.L. Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 2004, 117, 399–412. [Google Scholar] [CrossRef]
- Zuo, J.; Xu, M.; Abdullahi, Y.A.; Ma, L.; Zhang, Z.; Feng, D. Constant heat stress reduces skeletal muscle protein deposition in broilers. J. Sci. Food Agric. 2015, 95, 429–436. [Google Scholar] [CrossRef]
- Eskandari, E.; Eaves, C.J. Paradoxical roles of caspase-3 in regulating cell survival, proliferation, and tumorigenesis. J. Cell Biol. 2022, 221, e202201159. [Google Scholar] [CrossRef]
- Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414, 813–820. [Google Scholar] [CrossRef]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef]
- Gogvadze, V.; Orrenius, S.; Zhivotovsky, B. Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim. Et Biophys. Acta (BBA)-Bioenerg. 2006, 1757, 639–647. [Google Scholar] [CrossRef] [PubMed]
- Smart, E.J.; Li, X.A. Hyperglycemia: Cell death in a cave. Biochim. Et Biophys. Acta (BBA)-Mol. Basis Dis. 2007, 1772, 524–526. [Google Scholar] [CrossRef] [PubMed]
- Ariyo, O.W.; Kwakye, J.; Sovi, S.; Aryal, B.; Ghareeb, A.F.A.; Hartono, E.; Milfort, M.C.; Fuller, A.L.; Rekaya, R.; Aggrey, S.E. Glucose Supplementation Improves Performance and Alters Glucose Transporters’ Expression in P. major of Heat-stressed Chickens. Animals 2023, 13, 2911. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwakye, J.; Ariyo, O.W.; Ghareeb, A.F.A.; Hartono, E.; Sovi, S.; Aryal, B.; Milfort, M.C.; Fuller, A.L.; Rekaya, R.; Aggrey, S.E. Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment. Genes 2023, 14, 1922. https://doi.org/10.3390/genes14101922
Kwakye J, Ariyo OW, Ghareeb AFA, Hartono E, Sovi S, Aryal B, Milfort MC, Fuller AL, Rekaya R, Aggrey SE. Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment. Genes. 2023; 14(10):1922. https://doi.org/10.3390/genes14101922
Chicago/Turabian StyleKwakye, Josephine, Oluwatomide W. Ariyo, Ahmed F. A. Ghareeb, Evan Hartono, Selorm Sovi, Bikash Aryal, Marie C. Milfort, Alberta L. Fuller, Romdhane Rekaya, and Samuel E. Aggrey. 2023. "Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment" Genes 14, no. 10: 1922. https://doi.org/10.3390/genes14101922
APA StyleKwakye, J., Ariyo, O. W., Ghareeb, A. F. A., Hartono, E., Sovi, S., Aryal, B., Milfort, M. C., Fuller, A. L., Rekaya, R., & Aggrey, S. E. (2023). Effect of Glucose Supplementation on Apoptosis in the Pectoralis major of Chickens Raised under Thermoneutral or Heat Stress Environment. Genes, 14(10), 1922. https://doi.org/10.3390/genes14101922