Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Genes Included in the NGS Panels
2.3. Next Generation Panel Sequencing
2.4. Bio-Informatic Analyses
2.5. Variant Interpretation
2.6. Complementary Analyses
2.7. Statistical Methods
3. Results
3.1. Demographics of the Cohort
3.2. Diagnostic Rate and Cross-Cohort Spectrum of Pathogenic Genomic Variations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Calle, E.E.; Kaaks, R. Overweight, Obesity and Cancer: Epidemiological Evidence and Proposed Mechanisms. Nat. Rev. Cancer 2004, 4, 579–591. [Google Scholar] [CrossRef]
- Mahabir, S.; Leitzmann, M.F.; Pietinen, P.; Albanes, D.; Virtamo, J.; Taylor, P.R. Physical Activity and Renal Cell Cancer Risk in a Cohort of Male Smokers. Int. J. Cancer 2004, 108, 600–605. [Google Scholar] [CrossRef]
- Hunt, J.D.; van der Hel, O.L.; McMillan, G.P.; Boffetta, P.; Brennan, P. Renal Cell Carcinoma in Relation to Cigarette Smoking: Meta-Analysis of 24 Studies. Int. J. Cancer 2005, 114, 101–108. [Google Scholar] [CrossRef]
- Scott, C.S.; Chiu, W.A. Trichloroethylene Cancer Epidemiology: A Consideration of Select Issues. Environ. Health Perspect. 2006, 114, 1471–1478. [Google Scholar] [CrossRef]
- Chow, W.-H.; Devesa, S.S. Contemporary Epidemiology of Renal Cell Cancer. Cancer J. 2008, 14, 288–301. [Google Scholar] [CrossRef]
- Moore, S.C.; Chow, W.-H.; Schatzkin, A.; Adams, K.F.; Park, Y.; Ballard-Barbash, R.; Hollenbeck, A.; Leitzmann, M.F. Physical Activity during Adulthood and Adolescence in Relation to Renal Cell Cancer. Am. J. Epidemiol. 2008, 168, 149–157. [Google Scholar] [CrossRef]
- Renehan, A.G.; Tyson, M.; Egger, M.; Heller, R.F.; Zwahlen, M. Body-Mass Index and Incidence of Cancer: A Systematic Review and Meta-Analysis of Prospective Observational Studies. Lancet 2008, 371, 569–578. [Google Scholar] [CrossRef]
- Weikert, S.; Boeing, H.; Pischon, T.; Weikert, C.; Olsen, A.; Tjonneland, A.; Overvad, K.; Becker, N.; Linseisen, J.; Trichopoulou, A.; et al. Blood Pressure and Risk of Renal Cell Carcinoma in the European Prospective Investigation into Cancer and Nutrition. Am. J. Epidemiol. 2008, 167, 438–446. [Google Scholar] [CrossRef]
- Lee, J.E.; Männistö, S.; Spiegelman, D.; Hunter, D.J.; Bernstein, L.; van den Brandt, P.A.; Buring, J.E.; Cho, E.; English, D.R.; Flood, A.; et al. Intakes of Fruit, Vegetables, and Carotenoids and Renal Cell Cancer Risk: A Pooled Analysis of 13 Prospective Studies. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1730–1739. [Google Scholar] [CrossRef]
- Chow, W.-H.; Dong, L.M.; Devesa, S.S. Epidemiology and Risk Factors for Kidney Cancer. Nat. Rev. Urol. 2010, 7, 245–257. [Google Scholar] [CrossRef]
- Maher, E.R. Hereditary Renal Cell Carcinoma Syndromes: Diagnosis, Surveillance and Management. World J. Urol. 2018, 36, 1891–1898. [Google Scholar] [CrossRef]
- Lebrun, G.; Vasiliu, V.; Bellanné-Chantelot, C.; Bensman, A.; Ulinski, T.; Chrétien, Y.; Grünfeld, J.-P. Cystic Kidney Disease, Chromophobe Renal Cell Carcinoma and TCF2 (HNF1 Beta) Mutations. Nat. Clin. Pract. Nephrol. 2005, 1, 115–119. [Google Scholar] [CrossRef]
- Bertolotto, C.; Lesueur, F.; Giuliano, S.; Strub, T.; de Lichy, M.; Bille, K.; Dessen, P.; d’Hayer, B.; Mohamdi, H.; Remenieras, A.; et al. A SUMOylation-Defective MITF Germline Mutation Predisposes to Melanoma and Renal Carcinoma. Nature 2011, 480, 94–98. [Google Scholar] [CrossRef]
- Varela, I.; Tarpey, P.; Raine, K.; Huang, D.; Ong, C.K.; Stephens, P.; Davies, H.; Jones, D.; Lin, M.-L.; Teague, J.; et al. Exome Sequencing Identifies Frequent Mutation of the SWI/SNF Complex Gene PBRM1 in Renal Carcinoma. Nature 2011, 469, 539–542. [Google Scholar] [CrossRef]
- Carlo, M.I.; Hakimi, A.A.; Stewart, G.D.; Bratslavsky, G.; Brugarolas, J.; Chen, Y.-B.; Linehan, W.M.; Maher, E.R.; Merino, M.J.; Offit, K.; et al. Familial Kidney Cancer: Implications of New Syndromes and Molecular Insights. Eur. Urol. 2019, 76, 754–764. [Google Scholar] [CrossRef]
- Christensen, M.B.; Wadt, K.; Jensen, U.B.; Lautrup, C.K.; Bojesen, A.; Krogh, L.N.; van Overeem Hansen, T.; Gerdes, A.-M. Exploring the Hereditary Background of Renal Cancer in Denmark. PLoS ONE 2019, 14, e0215725. [Google Scholar] [CrossRef]
- Motzer, R.J.; Jonasch, E.; Boyle, S.; Carlo, M.I.; Manley, B.; Agarwal, N.; Alva, A.; Beckermann, K.; Choueiri, T.K.; Costello, B.A.; et al. NCCN Guidelines Insights: Kidney Cancer, Version 1.2021. J. Natl. Compr. Cancer Netw. 2020, 18, 1160–1170. [Google Scholar] [CrossRef]
- Bensalah, K.; Bigot, P.; Albiges, L.; Bernhard, J.C.; Bodin, T.; Boissier, R.; Correas, J.M.; Gimel, P.; Hetet, J.F.; Long, J.A.; et al. French ccAFU guidelines-update 2020–2022: Management of kidney cancer. Prog. Urol. 2020, 30, S2–S51. [Google Scholar] [CrossRef]
- Feng, H.; Cao, S.; Ouyang, Q.; Li, H.; Li, X.; Chen, K.; Zhang, X.; Huang, Y.; Zhang, X.; Ma, X. Prevalence of Germline Mutations in Cancer Susceptibility Genes in Chinese Patients with Renal Cell Carcinoma. Transl. Androl. Urol. 2023, 12, 308–319. [Google Scholar] [CrossRef]
- Matthijs, G.; Souche, E.; Alders, M.; Corveleyn, A.; Eck, S.; Feenstra, I.; Race, V.; Sistermans, E.; Sturm, M.; Weiss, M.; et al. Guidelines for Diagnostic Next-Generation Sequencing. Eur. J. Hum. Genet. 2016, 24, 2–5. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Sheskin, D.J. Handbook of Parametric and Nonparametric Statistical Procedures, 5th ed.; Chapman and Hall/CRC: New York, NY, USA, 2020; ISBN 978-0-429-18619-6. [Google Scholar]
- Cavaillé, M.; Ponelle-Chachuat, F.; Uhrhammer, N.; Viala, S.; Gay-Bellile, M.; Privat, M.; Bidet, Y.; Bignon, Y.-J. Early Onset Multiple Primary Tumors in Atypical Presentation of Cowden Syndrome Identified by Whole-Exome-Sequencing. Front. Genet. 2018, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- Stolarova, L.; Kleiblova, P.; Janatova, M.; Soukupova, J.; Zemankova, P.; Macurek, L.; Kleibl, Z. CHEK2 Germline Variants in Cancer Predisposition: Stalemate Rather than Checkmate. Cells 2020, 9, 2675. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, C.; Górski, B.; Huzarski, T.; Masojć, B.; Mierzejewski, M.; Debniak, T.; Teodorczyk, U.; Byrski, T.; Gronwald, J.; Matyjasik, J.; et al. CHEK2 Is a Multiorgan Cancer Susceptibility Gene. Am. J. Hum. Genet. 2004, 75, 1131–1135. [Google Scholar] [CrossRef]
- Carlo, M.I.; Mukherjee, S.; Mandelker, D.; Vijai, J.; Kemel, Y.; Zhang, L.; Knezevic, A.; Patil, S.; Ceyhan-Birsoy, O.; Huang, K.-C.; et al. Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients with Advanced Renal Cell Carcinoma. JAMA Oncol. 2018, 4, 1228–1235. [Google Scholar] [CrossRef]
- Zlowocka-Perlowska, E.; Narod, S.A.; Cybulski, C. CHEK2 Alleles Predispose to Renal Cancer in Poland. JAMA Oncol. 2019, 5, 576. [Google Scholar] [CrossRef]
- Bell, H.N.; Kumar-Sinha, C.; Mannan, R.; Zakalik, D.; Zhang, Y.; Mehra, R.; Jagtap, D.; Dhanasekaran, S.M.; Vaishampayan, U. Pathogenic ATM and BAP1 Germline Mutations in a Case of Early-Onset, Familial Sarcomatoid Renal Cancer. Cold Spring Harb. Mol. Case Stud. 2022, 8, a006203. [Google Scholar] [CrossRef]
- Bychkovsky, B.L.; Agaoglu, N.B.; Horton, C.; Zhou, J.; Yussuf, A.; Hemyari, P.; Richardson, M.E.; Young, C.; LaDuca, H.; McGuinness, D.L.; et al. Differences in Cancer Phenotypes Among Frequent CHEK2 Variants and Implications for Clinical Care-Checking CHEK2. JAMA Oncol. 2022, 8, 1598–1606. [Google Scholar] [CrossRef]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Møller, P.; Seppälä, T.T.; Bernstein, I.; Holinski-Feder, E.; Sala, P.; Gareth Evans, D.; Lindblom, A.; Macrae, F.; Blanco, I.; Sijmons, R.H.; et al. Cancer Risk and Survival in Path_MMR Carriers by Gene and Gender up to 75 Years of Age: A Report from the Prospective Lynch Syndrome Database. Gut 2018, 67, 1306–1316. [Google Scholar] [CrossRef]
- Dominguez-Valentin, M.; Sampson, J.R.; Seppälä, T.T.; Ten Broeke, S.W.; Plazzer, J.-P.; Nakken, S.; Engel, C.; Aretz, S.; Jenkins, M.A.; Sunde, L.; et al. Cancer Risks by Gene, Age, and Gender in 6350 Carriers of Pathogenic Mismatch Repair Variants: Findings from the Prospective Lynch Syndrome Database. Genet. Med. 2020, 22, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Aarnio, M.; Säily, M.; Juhola, M.; Gylling, A.; Peltomäki, P.; Järvinen, H.J.; Mecklin, J.-P. Uroepithelial and Kidney Carcinoma in Lynch Syndrome. Fam. Cancer 2012, 11, 395–401. [Google Scholar] [CrossRef] [PubMed]
- Aarnio, M.R.; Sankila, E.; Pukkala, R.; Salovaara, L.A.; Aaltonen, A.; de la Chapelle, P.; Peltomäki, J.P.; Mecklin, J.P.; Järvinen, H.J. Cancer Risk in Mutation Carriers of DNA-Mismatch-Repair Genes. Int. J. Cancer 1999, 81, 214–218. [Google Scholar] [CrossRef]
- Latham, A.; Srinivasan, P.; Kemel, Y.; Shia, J.; Bandlamudi, C.; Mandelker, D.; Middha, S.; Hechtman, J.; Zehir, A.; Dubard-Gault, M.; et al. Microsatellite Instability Is Associated with the Presence of Lynch Syndrome Pan-Cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Nassour, A.-J.; Jain, A.; Hui, N.; Siopis, G.; Symons, J.; Woo, H. Relative Risk of Bladder and Kidney Cancer in Lynch Syndrome: Systematic Review and Meta-Analysis. Cancers 2023, 15, 506. [Google Scholar] [CrossRef]
- Arnold, S.; Buchanan, D.D.; Barker, M.; Jaskowski, L.; Walsh, M.D.; Birney, G.; Woods, M.O.; Hopper, J.L.; Jenkins, M.A.; Brown, M.A.; et al. Classifying MLH1 and MSH2 Variants Using Bioinformatic Prediction, Splicing Assays, Segregation, and Tumor Characteristics. Hum. Mutat. 2009, 30, 757–770. [Google Scholar] [CrossRef]
- Lauper, J.M.; Krause, A.; Vaughan, T.L.; Monnat, R.J. Spectrum and Risk of Neoplasia in Werner Syndrome: A Systematic Review. PLoS ONE 2013, 8, e59709. [Google Scholar] [CrossRef]
- Oshima, J.; Sidorova, J.M.; Monnat, R.J. Werner Syndrome: Clinical Features, Pathogenesis and Potential Therapeutic Interventions. Ageing Res. Rev. 2017, 33, 105–114. [Google Scholar] [CrossRef]
- Li, N.; Lim, B.W.; Thompson, E.R.; McInerny, S.; Zethoven, M.; Cheasley, D.; Rowley, S.M.; Wong-Brown, M.W.; Devereux, L.; Gorringe, K.L.; et al. Investigation of Monogenic Causes of Familial Breast Cancer: Data from the BEACCON Case-Control Study. NPJ Breast Cancer 2021, 7, 76. [Google Scholar] [CrossRef]
- Curia, M.C.; Catalano, T.; Aceto, G.M. MUTYH: Not Just Polyposis. World J. Clin. Oncol. 2020, 11, 428–449. [Google Scholar] [CrossRef]
- Magrin, L.; Fanale, D.; Brando, C.; Corsini, L.R.; Randazzo, U.; Di Piazza, M.; Gurrera, V.; Pedone, E.; Bazan Russo, T.D.; Vieni, S.; et al. MUTYH-Associated Tumor Syndrome: The Other Face of MAP. Oncogene 2022, 41, 2531–2539. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.; Bastarache, L.A.; Tao, R.; Venner, E.; Hebbring, S.; Andujar, J.D.; Bland, S.T.; Crosslin, D.R.; Pratap, S.; Cooley, A.; et al. Association of Pathogenic Variants in Hereditary Cancer Genes with Multiple Diseases. JAMA Oncol. 2022, 8, 835–844. [Google Scholar] [CrossRef] [PubMed]
Indication type | Description | |
Syndromic | Von Hippel/Lindau disease | |
Birt/Hogg/Dubé syndrome | ||
Hereditary leiomyomatosis and renal cell cancer | ||
Tuberous sclerosis complex | ||
Non-syndromic | Clear cell RCC with any of the following criteria: age of diagnosis <50, bilateral or multiple | Group A |
Renal cancer with a histological subtype other than clear cell carcinoma | Group B | |
Family history of kidney cancer: kidney cancer and ≥1 close relative with a kidney cancer | Group C |
BAP1 | BRIP1 | MEN1 | SDHC | |
FH | CASR | MLH1 | SDHD | |
FLCN | CDC73 | MSH2 | SMAD4 | |
MET | CDH1 | MSH6 | SMARCB1 | |
MITF | CDK4 | MUTYH | STK11 | |
PTEN | CDKN1B | NF1 | TMEM127 | |
SDHB | CDKN2A | NF2 | TP53 | |
VHL | CHEK2 | PALB2 | WRN | |
AIP | CTNNA1 | POLD1 | ||
AP2S1 | DICER1 | POLE | ||
APC | EPAS1 | PRKAR1A | ||
ATM | EPCAM | RAD51C | ||
AXIN2 | GNA11 | RAD51D | ||
BMPR1A | LMNA | RET | ||
BRCA1 | MAX | SDHA | ||
BRCA2 | MDH2 | SDHAF2 |
Indication type | Syndrome or Group | Exome | Cancer panel | Kidney panel | VHL oriented | FLCN oriented | SDH and VHL oriented | Total |
Syndromic | VHL | 3 | 3 | |||||
BHD | 3 | 2 | 5 | |||||
HLRCC | 1 | 1 | ||||||
Non-syndromic | Group A | 1 | 26 | 20 | 1 | 48 | ||
Group B | 13 | 5 | 1 | 19 | ||||
Group C | 6 | 1 | 7 | |||||
Total | 1 | 49 | 26 | 3 | 3 | 1 | 83 |
Section | Item | Number | % |
---|---|---|---|
Cohort composition | Subjects | 83 | 100 |
Age | Median at risk diagnosis | 45 | |
Median at testing | 48 | ||
Range at risk diagnosis | 21-73 | ||
Range at testing | 22-88 | ||
Sex | Female | 34 | 41 |
Male | 49 | 59 | |
Medical history of renal cancer | Personal history of renal cancer | 75 | 90.36 |
Clear cell renal cell carcinoma at >50 years and a familial history of renal cancer | 7 | 8.43 | |
Personal tumour histologic subtype | Clear cell | 55 | 66.27 |
Papillary | 5 | 6.024 | |
Tubulo-papillary | 4 | 4.82 | |
Chromophobe | 5 | 6.024 | |
Hybrid oncocytic tumour | 1 | 1.20 | |
Pluritissular renal cancer | 3 | 3.61 | |
Multiple renal cell carcinoma | 2 | 2.41 | |
Syndromes with hereditary risk of renal cancer | 9 | 10.84 | |
BHD | 5 | 6.024 | |
HLRCC | 1 | 1.20 | |
VHL | 3 | 3.61 |
Test purpose | Indication | Group | IA | Testing panel | Variant | |
Annotation | Class | |||||
Syndromic | BHD | / | 1 | FLCN | FLCN(NM_144997.7):c.755dup; [p.(Cys253Valfs*39)] | 5 |
BHD | / | 2 | FLCN | FLCN(NM_144997.7):c.619-1G>A; [p.?] | 5 | |
BHD | / | 3 | Cancer panel | FLCN(NM_144997.7):c.(?_-1)_(249+1_250-1)del; [p.?] | 5 | |
VHL | / | 4 | VHL | VHL(NM_000551.4):c.341-2A>C; [p.?] | 5 | |
Non Syndromic | Clear cell renal cell carcinoma at 28 years | A | 5 | Cancer panel | FH (NM_000143.4): c.1118A>G; [p.(Asn373Ser)] | 5 |
Metachrone (multiple) kidney cancers | A | 6 | WES | PTEN (NM_000314.8): c.1003C>T; [p.(Arg335*)] | 5 | |
MUTYH (NM_001048174.2):c.924+3A>C; [p.?] | 5 | |||||
Clear cell renal cell carcinoma at 43 years | A | 7 | Cancer panel | MUTYH(NM_001048174.2):c.849+3A>C; [p.?] | 5 | |
Association of clear cell renal cell carcinoma to a rectal adenocarcinoma and CML with a familial history of several cancers | A | 8 | Cancer panel | CHEK2(NM_007194.4):c.349A>G; [p.(Arg117Gly)] | 4 | |
Bilateral clear cell renal carcinoma | A | 9 | Cancer panel | WRN(NM_000553.6):c.(96+1_97-1)_(724+1_725-1)del; [p.?] | 5 | |
papillary type I renal cell carcinoma | B | 10 | Cancer panel | CHEK2(NM_007194.4):c.1100del; [p.(Thr367Metfs*15)] | 5 | |
Multiple cancers (papillary type I renal cell carcinoma + lieberkuhnian carcinoma of the caecum) | B | 11 | Cancer panel | MSH2(NM_000251.3):c.942+3A>T; [p.?] | 5 |
Results | Exome | Cancer Panel | Kidney Panel | VHL | FLCN | SDHB/VHL | Overall |
Screened individuals | 1 | 49 | 26 | 3 | 3 | 1 | 83 |
Number of pathogenic variants in RC genes | 1 | 2 | 0 | 1 | 2 | 0 | 6 |
Number of incidental variants | 1 | 5 | Not applicable | 3 | 3 | 0 | 6 |
Renal cancer genes detection rate | 100% | 4% | 0% | 33.3% | 66.7% | 0% | 7.2% |
Incidental variant detection rate | 100% | 10.2% | Not applicable | Not applicable | Not applicable | Not applicable | 7.2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouedraogo, Z.G.; Ceruti, F.; Lepage, M.; Gay-Bellile, M.; Uhrhammer, N.; Ponelle-Chachuat, F.; Bidet, Y.; Privat, M.; Cavaillé, M. Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer. Genes 2023, 14, 1991. https://doi.org/10.3390/genes14111991
Ouedraogo ZG, Ceruti F, Lepage M, Gay-Bellile M, Uhrhammer N, Ponelle-Chachuat F, Bidet Y, Privat M, Cavaillé M. Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer. Genes. 2023; 14(11):1991. https://doi.org/10.3390/genes14111991
Chicago/Turabian StyleOuedraogo, Zangbéwendé Guy, Florian Ceruti, Mathis Lepage, Mathilde Gay-Bellile, Nancy Uhrhammer, Flora Ponelle-Chachuat, Yannick Bidet, Maud Privat, and Mathias Cavaillé. 2023. "Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer" Genes 14, no. 11: 1991. https://doi.org/10.3390/genes14111991
APA StyleOuedraogo, Z. G., Ceruti, F., Lepage, M., Gay-Bellile, M., Uhrhammer, N., Ponelle-Chachuat, F., Bidet, Y., Privat, M., & Cavaillé, M. (2023). Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer. Genes, 14(11), 1991. https://doi.org/10.3390/genes14111991