Genomic Signatures of Positive Selection in Human Populations of the OXT, OXTR, AVP, AVPR1A and AVR1B Gene Variants Related to the Regulation of Psychoemotional Response
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Sample
2.2. DNA Isolation, Preparation of Sequencing Libraries and WGS of Whole Blood Samples
2.3. Population Genetic Analysis
3. Results
3.1. Overall Estimation of Population Differentiation Based on the Analysis of Genes of Oxytocin and Vasopressin Systems
3.2. Population Differentiation with Respect to AVP, AVPR1A, and AVPR1B Genes
3.3. Population Differentiation with Respect to OXT and OXTR Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Voight, B.F.; Kudaravalli, S.; Wen, X.; Pritchard, J.K. A map of recent positive selection in the human genome. PLoS Biol. 2006, 4, e72, Erratum in PLoS Biol. 2006, 4, e154. Erratum in PLoS Biol. 2007, 5, e147. [Google Scholar] [CrossRef]
- Hernandez, M.; Perry, G.H. Scanning the human genome for “signatures” of positive selection: Transformative opportunities and ethical obligations. Evol. Anthropol. 2021, 30, 113–121. [Google Scholar] [CrossRef] [PubMed]
- da Silva Ribeiro, T.; Galván, J.A.; Pool, J.E. SNP-level FST outperforms window statistics for detecting soft sweeps in local adaptation. bioRxiv 2022. [Google Scholar] [CrossRef]
- Thornton, T.F.; Puri, R.K.; Bhagwat, S.; Howard, P. Human adaptation to biodiversity change: An adaptation process approach applied to a case study from southern India. Ambio 2019, 48, 1431–1446. [Google Scholar] [CrossRef]
- Abondio, P.; Cilli, E.; Luiselli, D. Inferring Signatures of Positive Selection in Whole-Genome Sequencing Data: An Overview of Haplotype-Based Methods. Genes 2022, 13, 926. [Google Scholar] [CrossRef]
- Pittman, Q.J. Vasopressin and central control of the cardiovascular system: A 40-year retrospective. J. Neuroendocrinol. 2021, 33, e13011. [Google Scholar] [CrossRef]
- Skuse, D.H.; Gallagher, L. Genetic influences on social cognition. Pediatr. Res. 2011, 69, 85R–91R. [Google Scholar] [CrossRef]
- Wilczyński, K.M.; Zasada, I.; Siwiec, A.; Janas-Kozik, M. Differences in oxytocin and vasopressin levels in individuals suffering from the autism spectrum disorders vs general population—A systematic review. Neuropsychiatr. Dis. Treat. 2019, 15, 2613–2620. [Google Scholar] [CrossRef]
- Kim, H.S.; Sasaki, J.Y. Emotion Regulation: The Interplay of Culture and Genes. Soc. Personal. Psychol. Compass 2012, 6, 865–877. [Google Scholar] [CrossRef]
- Barzman, D.; Geise, C.; Lin, P.I. Review of the genetic basis of emotion dysregulation in children and adolescents. World J. Psychiatry 2015, 5, 112–117. [Google Scholar] [CrossRef]
- Insel, T. Rethinking schizophrenia. Nature 2010, 468, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Jurek, B.; Neumann, I.D. The Oxytocin Receptor: From Intracellular Signaling to Behavior. Physiol. Rev. 2018, 98, 1805–1908. [Google Scholar] [CrossRef]
- Chatterjee, O.; Patil, K.; Sahu, A.; Gopalakrishnan, L.; Mol, P.; Advani, J.; Mukherjee, S.; Christopher, R.; Prasad, T.S. An overview of the oxytocin-oxytocin receptor signaling network. J. Cell Commun. Signal. 2016, 10, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Wasilewski, M.A.; Myers, V.D.; Recchia, F.A.; Feldman, A.M.; Tilley, D.G. Arginine vasopressin receptor signaling and functional outcomes in heart failure. Cell. Signal. 2016, 28, 224–233. [Google Scholar] [CrossRef] [PubMed]
- Staes, N.; Guevara, E.E.; Helsen, P.; Eens, M.; Stevens, J.M. The Pan social brain: An evolutionary history of neurochemical receptor genes and their potential impact on sociocognitive differences. J. Hum. Evol. 2021, 152, 2021. [Google Scholar] [CrossRef]
- Ebstein, R.P.; Israel, S.; Chew, S.H.; Zhong, S.; Knafo, A. Genetics of human social behavior. Neuron 2010, 65, 831–844. [Google Scholar] [CrossRef]
- Aspé-Sánchez, M.; Moreno, M.; Rivera, M.I.; Rossi, A.; Ewer, J. Oxytocin and Vasopressin Receptor Gene Polymorphisms: Role in Social and Psychiatric Traits. Front. Neurosci. 2016, 9, 510. [Google Scholar] [CrossRef]
- Anantasit, N.; Boyd, J.H.; Walley, K.R.; Russell, J.A. Serious adverse events associated with vasopressin and norepinephrine infusion in septic shock. Crit. Care Med. 2014, 42, 1812–1820. [Google Scholar] [CrossRef] [PubMed]
- Kreek, M.J.; Zhou, Y.; Levran, O. Functions of arginine vasopressin and its receptors: Importance of human molecular genetics studies in bidirectional translational research. Biol. Psychiatry 2011, 70, 502–503. [Google Scholar] [CrossRef]
- Keck, M.E.; Kern, N.; Erhardt, A.; Unschuld, P.G.; Ising, M.; Salyakina, D.; Müller, M.B.; Knorr, C.C.; Lieb, R.; Hohoff, C.; et al. Combined effects of exonic polymorphisms in CRHR1 and AVPR1B genes in a case/control study for panic disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2008, 147B, 1196–1204. [Google Scholar] [CrossRef]
- Zai, C.C.; Muir, K.E.; Nowrouzi, B.; Shaikh, S.A.; Choi, E.; Berall, L.; Trépanier, M.O.; Beitchman, J.H.; Kennedy, J.L. Possible genetic association between vasopressin receptor 1B and child aggression. Psychiatry Res. 2012, 200, 784–788. [Google Scholar] [CrossRef] [PubMed]
- Keijser, R.; Åslund, C.; Nilsson, K.W.; Olofsdotter, S. Gene-environment interaction: Oxytocin receptor (OXTR) polymorphisms and parenting style as potential predictors for depressive symptoms. Psychiatry Res. 2021, 303, 114057. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.I.; Zai, C.C.; Abu, Z.; Nowrouzi, B.; Beitchman, J.H. The role of oxytocin and oxytocin receptor gene variants in childhood-onset aggression. Genes Brain Behav. 2012, 11, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.P.; de Luca, V.; Meltzer, H.Y.; Lieberman, J.A.; Kennedy, J.L. Schizophrenia severity and clozapine treatment outcome association with oxytocinergic genes. Int. J. Neuropsychopharmacol. 2010, 13, 793–798. [Google Scholar] [CrossRef]
- The 1000 Genomes Project Consortium. Available online: https://www.ncbi.nlm.nih.gov/projects/faspftp/1000genomes/ (accessed on 20 March 2023).
- Hermisson, J.; Pennings, P.S. Soft sweeps and beyond: Understanding the patterns and probabilities of selection footprints under rapid adaptation. Methods Ecol. Evol. 2017, 8, 700–716. [Google Scholar] [CrossRef]
- Garud, N.R.; Messer, P.W.; Buzbas, E.O.; Petrov, D.A. Recent Selective Sweeps in North American Drosophila melanogaster Show Signatures of Soft Sweeps. PLoS Genet. 2015, 11, e1005004. [Google Scholar] [CrossRef]
- Furman, D.J.; Chen, M.C.; Gotlib, I.H. Variant in oxytocin receptor gene is associated with amygdala volume. Psychoneuroen-docrinology 2011, 36, 891–897. [Google Scholar] [CrossRef]
- Marees, A.T.; de Kluiver, H.; Stringer, S.; Vorspan, F.; Curis, E.; Marie-Claire, C.; Derks, E.M. A tutorial on conducting ge-nome-wide association studies: Quality control and statistical analysis. Int. J. Methods Psychiatr. Res. 2018, 27, e1608. [Google Scholar] [CrossRef]
- PLINK. Available online: http://pngu.mgh.harvard.edu/purcell/plink/ (accessed on 20 April 2023).
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- National Center for Biotechnology Information (NCBI)[Internet]. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 1988. Available online: https://www.ncbi.nlm.nih.gov/ (accessed on 20 April 2023).
- Szpiech, Z. selscan 2.0: Scanning for sweeps in unphased data. bioRxiv 2021. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. 1000 Genomes Project Analysis Group. Var. Call Format VCFtools Bioinform. 2011, 27, 2156–2158. [Google Scholar]
- González-Peñas, J.; de Hoyos, L.; Díaz-Caneja, C.M.; Andreu-Bernabeu, Á.; Stella, C.; Gurriarán, X.; Fañanás, L.; Bobes, J.; González-Pinto, A.; Martorell, L.; et al. Recent natural selection conferred protection against schizophrenia by non-antagonistic pleiotropy. Sci. Rep. 2023, 13, 15500. [Google Scholar] [CrossRef] [PubMed]
- Cagliani, R.; Fumagalli, M.; Pozzoli, U.; Riva, S.; Cereda, M.; Comi, G.P.; Pattini, L.; Bresolin, N.; Sironi, M. A complex selection signature at the human AVPR1B gene. BMC Evol. Biol. 2009, 9, 123. [Google Scholar] [CrossRef] [PubMed]
- Lolait, S.J.; O’Carroll, A.M.; Mahan, L.C.; Felder, C.C.; Button, D.C.; Young, W.S., 3rd; Mezey, E.; Brownstein, M.J. Extrapituitary expression of the rat V1b vasopressin receptor gene. Proc. Natl. Acad. Sci. USA 1995, 92, 6783–6787. [Google Scholar] [CrossRef] [PubMed]
- Oshikawa, S.; Tanoue, A.; Koshimizu, T.A.; Kitagawa, Y.; Tsujimoto, G. Vasopressin stimulates insulin release from islet cells through V1b receptors: A combined pharmacological/knockout approach. Mol. Pharmacol. 2004, 65, 623–629. [Google Scholar] [CrossRef]
- Yibchok-Anun, S.; Cheng, H.; Heine, P.A.; Hsu, W.H. Characterization of receptors mediating AVP- and OT-induced glucagon release from the rat pancreas. Am. J. Physiol. 1999, 277, E56–E62. [Google Scholar] [CrossRef]
- Abate, N.; Chandalia, M. The impact of ethnicity on type 2 diabetes. J. Diabetes Complicat. 2003, 17, 39–58. [Google Scholar] [CrossRef]
- Velasquez-Mieyer, P.A.; Cowan, P.A.; Umpierrez, G.E.; Lustig, R.H.; Cashion, A.K.; Burghen, G.A. Racial differences in gluca-gon-like peptide-1 (GLP-1) concentrations and insulin dynamics during oral glucose tolerance test in obese subjects. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 1359–1364. [Google Scholar] [CrossRef]
- Vaccari, C.; Lolait, S.J.; Ostrowski, N.L. Comparative distribution of vasopressin V1b and oxytocin receptor messenger ribo-nucleic acids in brain. Endocrinology 1998, 139, 5015–5033. [Google Scholar] [CrossRef]
- Enhörning, S.; Leosdottir, M.; Wallström, P.; Gullberg, B.; Berglund, G.; Wirfält, E.; Melander, O. Relation between human vasopressin 1a gene variance, fat intake, and diabetes. Am. J. Clin. Nutr. 2009, 89, 400–406. [Google Scholar] [CrossRef]
- Doliba, N.M.; Roman, J.; Rozo, A.V.; Qin, W.; Liu, C.; Naji, A.; Rickels, M.R.; Atkinson, M.A.; Powers, A.C.; Brissova, M.; et al. 253-LB: Ethnic Differences in Pancreatic Hormone Secretion in Health and T2D. Diabetes 2022, 71 (Suppl. S1), 253-LB. [Google Scholar] [CrossRef]
- Van West, D.; Del-Favero, J.; Deboutte, D.; Van Broeckhoven, C.; Claes, S. Associations between common arginine vasopressin 1b receptor and glucocorticoid receptor gene variants and HPA axis responses to psychosocial stress in a child psychiatric popula-tion. Psychiatry Res. 2010, 179, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Koo, J.W.; Wohleb, E.S. How Stress Shapes Neuroimmune Function: Implications for the Neurobiology of Psychiatric Disorders. Biol. Psychiatry 2021, 90, 74–84. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Bowles, N.P.; Gray, J.D.; Hill, M.N.; Hunter, R.G.; Karatsoreos, I.N.; Nasca, C. Mechanisms of stress in the brain. Nat. Neurosci. 2015, 18, 1353–1363. [Google Scholar] [CrossRef] [PubMed]
- DeSantis, A.S.; Adam, E.K.; Doane, L.D.; Mineka, S.; Zinbarg, R.E.; Craske, M.G. Racial/Ethnic Differences in Cortisol Diurnal Rhythms in a Community Sample of Adolescents. J. Adolesc. Health 2007, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hostinar, C.E.; McQuillan, M.T.; Mirous, H.J.; Grant, K.E.; Adam, E.K. Cortisol responses to a group public speaking task for adolescents: Variations by age, gender, and race. Psychoneuroendocrinology 2014, 50, 155–166. [Google Scholar] [CrossRef]
- Fieder, M.; Huber, S. The Adapting Mind in the Genomic Era. Front. Psychol. 2016, 7, 78. [Google Scholar] [CrossRef]
- Birnbaumer, M. Vasopressin receptors. Trends Endocrinol. Metab. 2000, 11, 406–410. [Google Scholar] [CrossRef]
- Scattoni, M.L.; McFarlane, H.G.; Zhodzishsky, V.; Caldwell, H.K.; Young, W.S.; Ricceri, L.; Crawley, J.N. Reduced ultrasonic vocalizations in vasopressin 1b knockout mice. Behav. Brain Res. 2008, 187, 371–378. [Google Scholar] [CrossRef]
- Griebel, G.; Simiand, J.; Serradeil-Le Gal, C.; Wagnon, J.; Pascal, M.; Scatton, B.; Maffrand, J.P.; Soubrie, P. Anxiolytic- and anti-depressant-like effects of the non-peptide vasopressin V1b receptor antagonist, SSR14 suggest an innovative approach for the treatment of stress-related disorders. Proc. Natl. Acad. Sci. USA 2002, 99, 6370–6375. [Google Scholar] [CrossRef]
- Kucharska, K.; Kulakowska, D.; Starzomska, M.; Rybakowski, F.; Biernacka, K. The improvement in neurocognitive functioning in anorexia nervosa adolescents throughout the integrative model of psychotherapy including cognitive remediation therapy. BMC Psychiatry 2019, 19, 15. [Google Scholar] [CrossRef] [PubMed]
- Maher, B.S.; Vladimirov, V.I.; Latendresse, S.J.; Thiselton, D.L.; McNamee, R.; Kang, M.; Bigdeli, T.B.; Chen, X.; Riley, B.P.; Hettema, J.M.; et al. The AVPR1A gene and substance use disorders: Association, replication, and functional evidence. Biol. Psychiatry 2011, 70, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Vassileva, J.; Conrod, P.J. Impulsivities and addictions: A multidimensional integrative framework informing assessment and interventions for substance use disorders. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019, 374, 20180137. [Google Scholar] [CrossRef] [PubMed]
- Füeg, F.; Santos, S.; Haslinger, C.; Stoiber, B.; Schäffer, L.; Grünblatt, E.; Zimmermann, R.; Simões-Wüst, A.P. Influence of ox-ytocin receptor single nucleotide sequence variants on contractility of human myometrium: An in vitro functional study. BMC Med. Genet. 2019, 20, 178. [Google Scholar] [CrossRef]
- Kim, J.; Stirling, K.J.; Cooper, M.E.; Ascoli, M.; Momany, A.M.; McDonald, E.L.; Ryckman, K.K.; Rhea, L.; Schaa, K.L.; Cosentino, V.; et al. Sequence variants in oxytocin pathway genes and preterm birth: A candidate gene association study. BMC Med. Genet. 2013, 14, 77. [Google Scholar] [CrossRef]
- Reinl, E.L.; Goodwin, Z.A.; Raghuraman, N.; Lee, G.Y.; Jo, E.Y.; Gezahegn, B.M.; Pillai, M.K.; Cahill, A.G.; de Guzman Strong, C.; England, S.K. Novel oxytocin receptor variants in laboring women requiring high doses of oxytocin. Am. J. Obstet. Gynecol. 2017, 217, 214e1–214e214. [Google Scholar] [CrossRef]
- Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ. 2010, 88, 31–38. [Google Scholar] [CrossRef]
- Toepfer, C.N.; Wakimoto, H.; Garfinkel, A.C.; McDonough, B.; Liao, D.; Jiang, J.; Tai, A.C.; Gorham, J.M.; Lunde, I.G.; Lun, M.; et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med. 2019, 11, eaat1199. [Google Scholar] [CrossRef]
- Dobewall, H.; Tark, R.; Aavik, T. Health as a value and its association with health-related quality of life, mental health, physical health, and subjective well-being. Appl. Res. Qual. Life 2018, 13, 859–872. [Google Scholar] [CrossRef]
- Kirwa, K.; Feric, Z.; Manjourides, J.; Alshawabekeh, A.; Vega, C.M.V.; Cordero, J.F.; Meeker, J.D.; Suh, H.H. Preterm birth and PM2.5 in Puerto Rico: Evidence from the PROTECT birth cohort. Environ. Health 2021, 20, 69. [Google Scholar] [CrossRef]
- Kim, J.; Park, A. A systematic review: Candidate gene and environment interaction on alcohol use and misuse among ado-lescents and young adults. Am. J. Addict. 2018, 27, 345–363. [Google Scholar] [CrossRef] [PubMed]
- Wermter, A.K.; Kamp-Becker, I.; Hesse, P.; Schulte-Körne, G.; Strauch, K.; Remschmidt, H. Evidence for the involvement of genetic variation in the oxytocin receptor gene (OXTR) in the etiology of autistic disorders on high-functioning level. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2010, 153B, 629–639. [Google Scholar] [CrossRef] [PubMed]
- Levran, O.; Peles, E.; Randesi, M.; Li, Y.; Rotrosen, J.; Ott, J.; Adelson, M.; Kreek, M.J. Stress-related genes and heroin addiction: A role for a functional FKBP5 haplotype. Psychoneuroendocrinology 2014, 45, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Francis, S.M.; Kim, S.J.; Kistner-Griffin, E.; Guter, S.; Cook, E.H.; Jacob, S. ASD and Genetic Associations with Receptors for Oxytocin and Vasopressin-AVPR1A, AVPR1B, and OXTR. Front. Neurosci. 2016, 10, 516. [Google Scholar] [CrossRef]
- Harrison, A.J.; Gamsiz, E.D.; Berkowitz, I.C.; Nagpal, S.; Jerskey, B.A. Genetic variation in the oxytocin receptor gene is associated with a social phenotype in autism spectrum disorders. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 720–729. [Google Scholar] [CrossRef]
- Grotegut, C.A.; Lewis, L.L.; Manuck, T.A.; Allen, T.K.; James, A.H.; Seco, A.; Deneux-Tharaux, C. The Oxytocin Product Cor-relates with Total Oxytocin Received during Labor: A Research Methods Study. Am. J. Perinatol. 2018, 35, 78–83. [Google Scholar] [CrossRef]
- Schaschl, H.; Huber, S.; Schaefer, K.; Windhager, S.; Wallner, B.; Fieder, M. Signatures of positive selection in the cis-regulatory sequences of the human oxytocin receptor (OXTR) and arginine vasopressin receptor 1a (AVPR1A) genes. BMC Evol. Biol. 2015, 15, 85. [Google Scholar] [CrossRef]
- Ulveling, D.; Le Clerc, S.; Cobat, A.; Labib, T.; Noirel, J.; Laville, V.; Coulonges, C.; Carpentier, W.; Nalpas, B.; Heim, M.H.; et al. A new 3p25 locus is associated with liver fibrosis progression in human immunodeficiency virus/hepatitis C virus-coinfected patients. Hepatology 2016, 64, 1462–1472. [Google Scholar] [CrossRef]
- Kalyoncu, T.; Özbaran, B.; Köse, S.; Onay, H. Variation in the Oxytocin Receptor Gene Is Associated With Social Cognition and ADHD. J. Atten. Disord. 2019, 23, 702–711. [Google Scholar] [CrossRef]
- Hovey, D.; Lindstedt, M.; Zettergren, A.; Jonsson, L.; Johansson, A.; Melke, J.; Kerekes, N.; Anckarsäter, H.; Lichtenstein, P.; Lundström, S.; et al. Antisocial behavior and polymorphisms in the oxytocin receptor gene: Findings in two independent samples. Mol. Psychiatry 2016, 21, 983–988. [Google Scholar] [CrossRef]
- Chen, B.; Vansteenkiste, M.; Beyers, W.; Boone, L.; Deci, E.L.; Van der Kaap-Deeder, J.; Duriez, B.; Lens, W.; Matos, L.; Mouratidis, A.; et al. Basic psychological need satisfaction, need frustration, and need strength across four cultures. Motiv. Emot. 2015, 39, 216–236. [Google Scholar] [CrossRef]
- Johansson, A.; Bergman, H.; Corander, J.; Waldman, I.D.; Karrani, N.; Salo, B.; Jern, P.; Algars, M.; Sandnabba, K.; Santtila, P.; et al. Alcohol and aggressive behavior in men--moderating effects of oxytocin receptor gene (OXTR) polymorphisms. Genes Brain Behav. 2012, 11, 214–221. [Google Scholar] [CrossRef] [PubMed]
GBR | SlEast | FIN | IBS | PUR | BEB | CHB | |
---|---|---|---|---|---|---|---|
AVP | 0.1256 | 0.1323 | 0.1322 | 0.1241 | 0.0953 | 0.0958 | 0.0967 |
AVPR1A | 0.1677 | 0.2072 | 0.1589 | 0.1573 | 0.1807 | 0.0876 | 0.1222 |
AVPR1B | 0.3163 | 0.1677 | 0.1929 | 0.2149 | 0.177 | 0.1951 | 0.3253 |
OXT | 0.0000 | 0.0000 | 0.0000 | 0.0100 | 0.0118 | 0.0000 | 0.0000 |
OXTR | 0.0908 | 0.0858 | 0.1060 | 0.076 | 0.0527 | 0.1107 | 0.1503 |
chr | pos | rs | ACB | SlEast | GBR | FIN | IBS | PUR | BEB | CHB | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nSl | iHS | nSl | iHS | Fst | nSl | iHS | iHH2 | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | |||
chr1 | 206107041 | rs28480002 | ||||||||||||||||||||||||
chr1 | 206107356 | rs28405931 | ||||||||||||||||||||||||
chr1 | 206108125 | rs28570099 | ||||||||||||||||||||||||
chr1 | 206108197 | rs28517473 | ||||||||||||||||||||||||
chr1 | 206108533 | rs28418396 | ||||||||||||||||||||||||
chr1 | 206109902 | rs33935503 | ||||||||||||||||||||||||
chr1 | 206110067 | rs33933482 | ||||||||||||||||||||||||
chr1 | 206110072 | rs33985287 | ||||||||||||||||||||||||
chr1 | 206110128 | rs28415467 | ||||||||||||||||||||||||
chr1 | 206110179 | rs28529127 | ||||||||||||||||||||||||
chr1 | 206110345 | rs28676508 | ||||||||||||||||||||||||
chr1 | 206110373 | rs28632197 | ||||||||||||||||||||||||
chr1 | 206110634 | rs28380027 | ||||||||||||||||||||||||
chr1 | 206110702 | rs28733981 | ||||||||||||||||||||||||
chr1 | 206110783 | rs28607590 | ||||||||||||||||||||||||
chr1 | 206110952 | rs28425623 | ||||||||||||||||||||||||
chr1 | 206111170 | rs28483632 | ||||||||||||||||||||||||
chr1 | 206111431 | rs33971119 | ||||||||||||||||||||||||
chr1 | 206111732 | rs28575468 | ||||||||||||||||||||||||
chr1 | 206112039 | rs28499431 | ||||||||||||||||||||||||
chr1 | 206112053 | rs34792278 | ||||||||||||||||||||||||
chr1 | 206112099 | rs34327164 | ||||||||||||||||||||||||
chr1 | 206112821 | rs33940624 | ||||||||||||||||||||||||
chr1 | 206113095 | rs28477649 | ||||||||||||||||||||||||
chr1 | 206113467 | rs28588803 | ||||||||||||||||||||||||
chr1 | 206114223 | rs3883899 | ||||||||||||||||||||||||
chr1 | 206115006 | rs28452187 |
chr | pos | rs | ACB | SlEast | GBR | FIN | IBS | PUR | BEB | CHB | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nSl | iHS | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | |||
chr12 | 63144342 | rs10047514 | |||||||||||||||||||||||
chr12 | 63144493 | rs11829406 | |||||||||||||||||||||||
chr12 | 63144669 | rs11829452 | |||||||||||||||||||||||
chr12 | 63144678 | rs10747983 | |||||||||||||||||||||||
chr12 | 63144866 | rs10784339 | |||||||||||||||||||||||
chr12 | 63149405 | rs10877968 | |||||||||||||||||||||||
chr12 | 63149775 | rs1565878685 |
gene/chr | pos | rs | ACB | SlEast | GBR | FIN | IBS | PUR | BEB | CHB | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nSl | iHS | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | |||
AVP/chr20 | 3083464 | rs3787482 | |||||||||||||||||||||||
OXT/chr20 | 3071940 | rs111869749 |
chr | pos | rs | ACB | SlEast | GBR | FIN | IBS | PUR | BEB | CHB | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
nSl | iHS | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | nSl | iHS | Fst | |||
chr3 | 8751042 | rs2324728 | |||||||||||||||||||||||
chr3 | 8751160 | rs4493422 | |||||||||||||||||||||||
chr3 | 8751899 | rs237884 | |||||||||||||||||||||||
chr3 | 8752038 | rs6770632 | |||||||||||||||||||||||
chr3 | 8752859 | rs1042778 | |||||||||||||||||||||||
chr3 | 8755409 | rs237888 | |||||||||||||||||||||||
chr3 | 8756495 | rs918316 | |||||||||||||||||||||||
chr3 | 8760793 | rs57329700 | |||||||||||||||||||||||
chr3 | 8761165 | rs11131149 | |||||||||||||||||||||||
chr3 | 8761315 | rs59190448 | |||||||||||||||||||||||
chr3 | 8762109 | rs34992398 | |||||||||||||||||||||||
chr3 | 8762685 | rs53576 | |||||||||||||||||||||||
chr3 | 8763680 | rs35498753 | |||||||||||||||||||||||
chr3 | 8764054 | rs7652281 | |||||||||||||||||||||||
chr3 | 8764628 | rs11711703 | |||||||||||||||||||||||
chr3 | 8764738 | rs73132848 | |||||||||||||||||||||||
chr3 | 8765737 | rs237895 | |||||||||||||||||||||||
chr3 | 8766123 | rs61183828 | |||||||||||||||||||||||
chr3 | 8766375 | rs6767512 | |||||||||||||||||||||||
chr3 | 8766599 | rs237897 | |||||||||||||||||||||||
chr3 | 8766747 | rs34880121 | |||||||||||||||||||||||
chr3 | 8767536 | rs4686302 | |||||||||||||||||||||||
chr3 | 8768322 | rs237911 | |||||||||||||||||||||||
chr3 | 8768722 | rs4564970 | |||||||||||||||||||||||
chr3 | 8768834 | rs35413809 | |||||||||||||||||||||||
chr3 | 8768922 | rs73132856 | |||||||||||||||||||||||
chr3 | 8769210 | rs2301261 | |||||||||||||||||||||||
chr3 | 8769543 | rs2301260 |
SNVs of a Positive Selection (Original Data) | Proved Functional Associations (Literature Data) | |||
---|---|---|---|---|
Gene/rs | Method/Population | Phenotype/Endophenotype | Reference | |
1 | AVPR1A rs10747983 | Fst/ACB & SlEast Fst/ACB & GBR Fst/ACB & IBS Fst/ACB & PUR nSl/GBR | Diabetic status, elevated blood glucose and triglycerides, body mass index (BMI) | Enhörning et al., 2008 [43] |
2 | AVPR1A rs10784339 | Fst (ACB& SlEast) Fst (ACB& GBR) Fst (ACB& IBS) Fst (ACB& PUR) nSl GBR | Heroin addiction, drug abuse. | Levran et al., 2014 [66] |
Drug abuse | Maher et al., 2011 [55] | |||
Diabetic status, elevated blood glucose and triglycerides, BMI | Enhörning et al., 2008 [43] | |||
3 | AVPR1B rs28632197 | iHS—ACB iHH12—GBR nSl—FIN nSl, iHS—IBS | Autism spectrum disorders (ASD) | Francis et al., 2016 [67] |
Panic disorders | Kreek et al., 2011 [19] | |||
Panic disorders | Keck et al., 2008 [20] | |||
4 | AVPR1B rs28418396 | nSl, iHS, iHH12—GBR nSl, iHS—FIN nSl, iHS—IBS nSl, iHS—PUR nSl—BEB, nSl—HAN | Significant side effects of therapeutic doses of vasopressin and norepinephrine | Anantasit et al., 2014 [18] |
5 | AVPR1B rs33933482 | nSl, iHS, iHH12—GBR Fst ACB & GBR nSl, iHS—FIN nSl, iHS—IBS nSl, iHS—PUR Fst ACB & HAN | Psychosocial stress test (public speaking)-evoked plasma cortisol levels | van West et al., 2010 [45] |
6 | AVPR1B rs28676508 | nSl, iHS, iHH12—GBR Fst ACB & GBR nSl, iHS—FIN nSl, iHS—IBS nSl, iHS—PUR Fst ACB & HAN | High child aggression. | Zai et al., 2012 [21] |
7 | OXTR rs237884 | Fst ACB& HAN Fst ACB& BEB nSl BEB | Symptom severity and treatment outcomes in subjects with schizophrenia | Souza et al., 2010 [24] |
ASD | Wermter et al., 2010 [65] | |||
Changes in social functioning in ASD | Harrison et al., 2015 [68] | |||
8 | OXTR rs6770632 | Fst ACB& HAN Fst ACB& BEB nSl BEB | Alcohol abuse in adolescents and young adults | Kim et al., 2018 [64] |
Child aggression | Malik et al., 2012 [23] | |||
Extreme, persistent, and pervasive aggressive behaviors in females and males | Malik et al., 2012 [23] | |||
9 | OXTR rs1042778 | Fst ACB& HAN | High scores of depressive symptoms | Keijser et al., 2021 [22] |
Aggressive behavior in boys | Malik et al., 2012 [23] | |||
10 | OXTR rs237888 | nSl FIN | Increased oxytocin sensitivity of human myometrial cells in vitro | Füeg et al., 2019 [57] |
The value of the effective dose of oxytocin and the outcome of childbirth | Grotegut et al., 2017 [69] | |||
11 | OXTR rs59190448 | Fst ACB& SlEast Fst ACB& GBR Fst ACB& FIN Fst ACB& IBS Fst ACB& BEB Fst ACB& HAN | Positive selection | Schaschl et al., 2015 [70] |
12 | OXTR rs61183828 | iHS/ACB | Liver fibrosis in patients with human immunodeficiency virus/hepatitis C virus coinfection | Ulveling et al., 2016 [71] |
13 | OXTR rs4686302 | iHS/PUR | Increased oxytocin sensitivity of human myometrial cells in vitro | Füeg et al., 2019 [57] |
Deficit in social cognition in individuals with Attention Deficit and Hyperactivity Disorder (ADHD) | Kalyoncu et al., 2019 [72] | |||
Alcohol abuse in adolescents and young adults | Kim et al., 2018 [64] | |||
Preterm birth | Kim et al., 2013 [58] | |||
The need for high doses of oxytocin in parturients | Reinl et al., 2017 [59] | |||
14 | OXTR rs4564970 | iHS/PUR | Antisocial behavior of teenage boys | Hovey et al., 2015 [73] |
High exogenous oxytocin sensitivity | Chen et al., 2015 [74] | |||
Aggressive behavior under alcohol intoxication | Johansson et al., 2012 [75] | |||
Panic disorders | Kreek et al., 2011 [19] | |||
Panic disorders | Keck et al., 2008 [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakoev, S.Y.; Korobeinikova, A.V.; Mishina, A.I.; Kabieva, S.S.; Mitrofanov, S.I.; Ivashechkin, A.A.; Akinshina, A.I.; Snigir, E.A.; Yudin, S.M.; Yudin, V.S.; et al. Genomic Signatures of Positive Selection in Human Populations of the OXT, OXTR, AVP, AVPR1A and AVR1B Gene Variants Related to the Regulation of Psychoemotional Response. Genes 2023, 14, 2053. https://doi.org/10.3390/genes14112053
Bakoev SY, Korobeinikova AV, Mishina AI, Kabieva SS, Mitrofanov SI, Ivashechkin AA, Akinshina AI, Snigir EA, Yudin SM, Yudin VS, et al. Genomic Signatures of Positive Selection in Human Populations of the OXT, OXTR, AVP, AVPR1A and AVR1B Gene Variants Related to the Regulation of Psychoemotional Response. Genes. 2023; 14(11):2053. https://doi.org/10.3390/genes14112053
Chicago/Turabian StyleBakoev, Siroj Yu., Anna V. Korobeinikova, Arina I. Mishina, Shuanat Sh. Kabieva, Sergey I. Mitrofanov, Alexey A. Ivashechkin, Alexsandra I. Akinshina, Ekaterina A. Snigir, Sergey M. Yudin, Vladimir S. Yudin, and et al. 2023. "Genomic Signatures of Positive Selection in Human Populations of the OXT, OXTR, AVP, AVPR1A and AVR1B Gene Variants Related to the Regulation of Psychoemotional Response" Genes 14, no. 11: 2053. https://doi.org/10.3390/genes14112053
APA StyleBakoev, S. Y., Korobeinikova, A. V., Mishina, A. I., Kabieva, S. S., Mitrofanov, S. I., Ivashechkin, A. A., Akinshina, A. I., Snigir, E. A., Yudin, S. M., Yudin, V. S., Getmantseva, L. V., & Anderzhanova, E. A. (2023). Genomic Signatures of Positive Selection in Human Populations of the OXT, OXTR, AVP, AVPR1A and AVR1B Gene Variants Related to the Regulation of Psychoemotional Response. Genes, 14(11), 2053. https://doi.org/10.3390/genes14112053