Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk
Abstract
:1. Introduction
2. Antiplatelet Drugs
2.1. Clopidogrel
2.2. Ticagrelor and Prasugrel
2.3. Acetylsalicylic Acid
3. Lipid-Lowering Drugs
3.1. Statins
3.2. Ezetimibe
3.3. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitors (PCSK9)
3.4. Fibric Acid Derivatives (Fibrates)
4. Anticoagulant Drugs
4.1. Warfarin
4.2. Heparin
4.3. Direct Oral Anticoagulants
4.3.1. Dabigatran
4.3.2. Rivaroxaban
4.3.3. Apixaban
4.3.4. Edoxaban
4.3.5. Betrixaban
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asiimwe, I.G.; Pirmohamed, M. Drug-Drug-Gene Interactions in Cardiovascular Medicine. Pharm. Pers. Med. 2022, 15, 879–911. [Google Scholar] [CrossRef]
- Ferri, N.; Corsini, A.; Bellosta, S. Pharmacology of the New P2Y12 Receptor Inhibitors: Insights on Pharmacokinetic and Pharmacodynamic Properties. Drugs 2013, 73, 1681–1709. [Google Scholar] [CrossRef] [PubMed]
- Falco, L.; Tessitore, V.; Ciccarelli, G.; Malvezzi, M.; D’Andrea, A.; Imbalzano, E.; Golino, P.; Russo, V. Antioxidant Properties of Oral Antithrombotic Therapies in Atherosclerotic Disease and Atrial Fibrillation. Antioxidants 2023, 12, 1185. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.R.; Luzum, J.A.; Sangkuhl, K.; Gammal, R.S.; Sabatine, M.S.; Stein, C.M.; Kisor, D.F.; Limdi, N.A.; Lee, Y.M.; Scott, S.A.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin. Pharmacol. Ther. 2022, 112, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Campo, G.; Parrinello, G.; Ferraresi, P.; Lunghi, B.; Tebaldi, M.; Miccoli, M.; Marchesini, J.; Bernardi, F.; Ferrari, R.; Valgimigli, M. Prospective Evaluation of On-Clopidogrel Platelet Reactivity Over Time in Patients Treated with Percutaneous Coronary Intervention. J. Am. Coll. Cardiol. 2011, 57, 2474–2483. [Google Scholar] [CrossRef]
- Shuldiner, A.R. Association of Cytochrome P450 2C19 Genotype with the Antiplatelet Effect and Clinical Efficacy of Clopidogrel Therapy. JAMA 2009, 302, 849. [Google Scholar] [CrossRef] [PubMed]
- Trenk, D.; Hochholzer, W.; Fromm, M.F.; Chialda, L.-E.; Pahl, A.; Valina, C.M.; Stratz, C.; Schmiebusch, P.; Bestehorn, H.-P.; Büttner, H.J.; et al. Cytochrome P450 2C19 681G>A Polymorphism and High On-Clopidogrel Platelet Reactivity Associated with Adverse 1-Year Clinical Outcome of Elective Percutaneous Coronary Intervention with Drug-Eluting or Bare-Metal Stents. J. Am. Coll. Cardiol. 2008, 51, 1925–1934. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Wells, G.A.; Le May, M.R.; Labinaz, M.; Glover, C.; Froeschl, M.; Dick, A.; Marquis, J.-F.; O’Brien, E.; Goncalves, S.; et al. Point-of-Care Genetic Testing for Personalisation of Antiplatelet Treatment (RAPID GENE): A Prospective, Randomised, Proof-of-Concept Trial. Lancet 2012, 379, 1705–1711. [Google Scholar] [CrossRef]
- Mega, J.L.; Hochholzer, W.; Frelinger, A.L.; Kluk, M.J.; Angiolillo, D.J.; Kereiakes, D.J.; Isserman, S.; Rogers, W.J.; Ruff, C.T.; Contant, C.; et al. Dosing Clopidogrel Based on CYP2C19 Genotype and the Effect on Platelet Reactivity in Patients with Stable Cardiovascular Disease. JAMA 2011, 306, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Mega, J.L.; Simon, T.; Collet, J.-P.; Anderson, J.L.; Antman, E.M.; Bliden, K.; Cannon, C.P.; Danchin, N.; Giusti, B.; Gurbel, P.; et al. Reduced-Function CYP2C19 Genotype and Risk of Adverse Clinical Outcomes Among Patients Treated with Clopidogrel Predominantly for PCI: A Meta-Analysis. JAMA 2010, 304, 1821. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.V.; Perel, P.; Shah, T.; Hingorani, A.D.; Casas, J.P. CYP2C19 Genotype, Clopidogrel Metabolism, Platelet Function, and Cardiovascular Events: A Systematic Review and Meta-Analysis. JAMA 2011, 306, 2704. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, L.; Becker, R.C.; Budaj, A.; Cannon, C.P.; Emanuelsson, H.; Held, C.; Horrow, J.; Husted, S.; James, S.; Katus, H.; et al. Ticagrelor versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2009, 361, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Wiviott, S.D.; Braunwald, E.; McCabe, C.H.; Montalescot, G.; Ruzyllo, W.; Gottlieb, S.; Neumann, F.-J.; Ardissino, D.; De Servi, S.; Murphy, S.A.; et al. Prasugrel versus Clopidogrel in Patients with Acute Coronary Syndromes. N. Engl. J. Med. 2007, 357, 2001–2015. [Google Scholar] [CrossRef] [PubMed]
- Wallentin, L.; James, S.; Storey, R.F.; Armstrong, M.; Barratt, B.J.; Horrow, J.; Husted, S.; Katus, H.; Steg, P.G.; Shah, S.H.; et al. Effect of CYP2C19 and ABCB1 Single Nucleotide Polymorphisms on Outcomes of Treatment with Ticagrelor versus Clopidogrel for Acute Coronary Syndromes: A Genetic Substudy of the PLATO Trial. Lancet 2010, 376, 1320–1328. [Google Scholar] [CrossRef] [PubMed]
- Notarangelo, F.M.; Maglietta, G.; Bevilacqua, P.; Cereda, M.; Merlini, P.A.; Villani, G.Q.; Moruzzi, P.; Patrizi, G.; Malagoli Tagliazucchi, G.; Crocamo, A.; et al. Pharmacogenomic Approach to Selecting Antiplatelet Therapy in Patients with Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2018, 71, 1869–1877. [Google Scholar] [CrossRef]
- Claassens, D.M.F.; Vos, G.J.A.; Bergmeijer, T.O.; Hermanides, R.S.; Van’T Hof, A.W.J.; Van Der Harst, P.; Barbato, E.; Morisco, C.; Tjon Joe Gin, R.M.; Asselbergs, F.W.; et al. A Genotype-Guided Strategy for Oral P2Y 12 Inhibitors in Primary PCI. N. Engl. J. Med. 2019, 381, 1621–1631. [Google Scholar] [CrossRef]
- Pereira, N.L.; Farkouh, M.E.; So, D.; Lennon, R.; Geller, N.; Mathew, V.; Bell, M.; Bae, J.-H.; Jeong, M.H.; Chavez, I.; et al. Effect of Genotype-Guided Oral P2Y12 Inhibitor Selection vs Conventional Clopidogrel Therapy on Ischemic Outcomes After Percutaneous Coronary Intervention: The TAILOR-PCI Randomized Clinical Trial. JAMA 2020, 324, 761. [Google Scholar] [CrossRef]
- Ellis, K.J.; Stouffer, G.A.; McLeod, H.L.; Lee, C.R. Clopidogrel Pharmacogenomics and Risk of Inadequate Platelet Inhibition: US FDA Recommendations. Pharmacogenomics 2009, 10, 1799–1817. [Google Scholar] [CrossRef]
- Sibbing, D.; Koch, W.; Gebhard, D.; Schuster, T.; Braun, S.; Stegherr, J.; Morath, T.; Schömig, A.; Von Beckerath, N.; Kastrati, A. Cytochrome 2C19*17 Allelic Variant, Platelet Aggregation, Bleeding Events, and Stent Thrombosis in Clopidogrel-Treated Patients with Coronary Stent Placement. Circulation 2010, 121, 512–518. [Google Scholar] [CrossRef]
- Rossello, X.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; Hinterbuchner, L.; Jankowska, E.A.; Jüni, P.; Leosdottir, M.; Lorusso, R.; Pedretti, R.F.E.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes: Developed by the task force on the management of acute coronary syndromes of the European Society of Cardiology (ESC). Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar]
- Giacoppo, D.; Matsuda, Y.; Fovino, L.N.; D’Amico, G.; Gargiulo, G.; Byrne, R.A.; Capodanno, D.; Valgimigli, M.; Mehran, R.; Tarantini, G. Short Dual Antiplatelet Therapy Followed by P2Y12 Inhibitor Monotherapy vs. Prolonged Dual Antiplatelet Therapy after Percutaneous Coronary Intervention with Second-Generation Drug-Eluting Stents: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Eur. Heart J. 2021, 42, 308–319. [Google Scholar] [CrossRef]
- Thomas, C.D.; Williams, A.K.; Lee, C.R.; Cavallari, L.H. Pharmacogenetics of P2Y 12 Receptor Inhibitors. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2023, 43, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, X.; Lin, J.; Li, H.; Johnston, S.C.; Lin, Y.; Pan, Y.; Liu, L.; Wang, D.; Wang, C.; et al. Association Between CYP2C19 Loss-of-Function Allele Status and Efficacy of Clopidogrel for Risk Reduction Among Patients with Minor Stroke or Transient Ischemic Attack. JAMA 2016, 316, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Zhao, X.; Liu, L.; Wang, D.; Wang, C.; Wang, C.; Li, H.; Meng, X.; Cui, L.; et al. Clopidogrel with Aspirin in Acute Minor Stroke or Transient Ischemic Attack. N. Engl. J. Med. 2013, 369, 11–19. [Google Scholar] [CrossRef]
- Pan, Y.; Chen, W.; Xu, Y.; Yi, X.; Han, Y.; Yang, Q.; Li, X.; Huang, L.; Johnston, S.C.; Zhao, X.; et al. Genetic Polymorphisms and Clopidogrel Efficacy for Acute Ischemic Stroke or Transient Ischemic Attack: A Systematic Review and Meta-Analysis. Circulation 2017, 135, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Yang, S.; Ly, S.; Yoo, R.H.; Lo-Ciganic, W.-H.; Eadon, M.T.; Schleyer, T.; Whipple, E.; Nguyen, K.A. Clinical Non-Effectiveness of Clopidogrel Use for Peripheral Artery Disease in Patients with CYP2C19 Polymorphisms: A Systematic Review. Eur. J. Clin. Pharmacol. 2022, 78, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Kranendonk, J.; Willems, L.; Vijver-Coppen, R.V.D.; Coenen, M.; Adang, E.; Donders, R.; Zeebregts, C.; Deneer, V.; Reijnen, M.; Kramers, C.; et al. CYP2C19 Genotype-Guided Antithrombotic Treatment versus Conventional Clopidogrel Therapy in Peripheral Arterial Disease: Study Design of a Randomized Controlled Trial (GENPAD). Am. Heart J. 2022, 254, 141–148. [Google Scholar] [CrossRef]
- Varenhorst, C.; Eriksson, N.; Johansson, Å.; Barratt, B.J.; Hagström, E.; Åkerblom, A.; Syvänen, A.-C.; Becker, R.C.; James, S.K.; Katus, H.A.; et al. Effect of Genetic Variations on Ticagrelor Plasma Levels and Clinical Outcomes. Eur. Heart J. 2015, 36, 1901–1912. [Google Scholar] [CrossRef]
- Mega, J.L.; Close, S.L.; Wiviott, S.D.; Shen, L.; Walker, J.R.; Simon, T.; Antman, E.M.; Braunwald, E.; Sabatine, M.S. Genetic Variants in ABCB1 and CYP2C19 and Cardiovascular Outcomes after Treatment with Clopidogrel and Prasugrel in the TRITON-TIMI 38 Trial: A Pharmacogenetic Analysis. Lancet 2010, 376, 1312–1319. [Google Scholar] [CrossRef]
- Mega, J.L.; Close, S.L.; Wiviott, S.D.; Man, M.; Duvvuru, S.; Walker, J.R.; Sundseth, S.S.; Collet, J.-P.; Delaney, J.T.; Hulot, J.-S.; et al. PON1 Q192R Genetic Variant and Response to Clopidogrel and Prasugrel: Pharmacokinetics, Pharmacodynamics, and a Meta-Analysis of Clinical Outcomes. J. Thromb. Thrombolysis 2016, 41, 374–383. [Google Scholar] [CrossRef]
- Sawayama, Y.; Yamamoto, T.; Tomita, Y.; Asada, K.; Yagi, N.; Fukuyama, M.; Miyamoto, A.; Sakai, H.; Ozawa, T.; Isono, T.; et al. Comparison Between Clopidogrel and Prasugrel Associated with CYP2C19 Genotypes in Patients Receiving Percutaneous Coronary Intervention in a Japanese Population. Circ. J. Off. J. Jpn. Circ. Soc. 2020, 84, 1575–1581. [Google Scholar] [CrossRef] [PubMed]
- Vane, J.R.; Botting, R.M. The Mechanism of Action of Aspirin. Thromb. Res. 2003, 110, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Freitas-Silva, M.; Assis, J.; Pinto, R.; Nunes, J.P.; Medeiros, R. The Emergent Phenomenon of Aspirin Resistance: Insights from Genetic Association Studies. Pharmacogenomics 2020, 21, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Goodman, T.; Sharma, P.; Ferro, A. The Genetics of Aspirin Resistance: The Genetics of Aspirin Resistance. Int. J. Clin. Pract. 2007, 61, 826–834. [Google Scholar] [CrossRef] [PubMed]
- Floyd, C.N.; Ferro, A. Mechanisms of Aspirin Resistance. Pharmacol. Ther. 2014, 141, 69–78. [Google Scholar] [CrossRef]
- Grinstein, J.; Cannon, C.P. Aspirin Resistance: Current Status and Role of Tailored Therapy. Clin. Cardiol. 2012, 35, 673–680. [Google Scholar] [CrossRef]
- Kuliczkowski, W.; Witkowski, A.; Polonski, L.; Watala, C.; Filipiak, K.; Budaj, A.; Golanski, J.; Sitkiewicz, D.; Pregowski, J.; Gorski, J.; et al. Interindividual Variability in the Response to Oral Antiplatelet Drugs: A Position Paper of the Working Group on Antiplatelet Drugs Resistance Appointed by the Section of Cardiovascular Interventions of the Polish Cardiac Society, Endorsed by the Working Group on Thrombosis of the European Society of Cardiology. Eur. Heart J. 2008, 30, 426–435. [Google Scholar] [CrossRef]
- Wurtz, M.; Dalby Kristensen, S.; Hvas, A.-M.; Lerkevang Grove, E. Pharmacogenetics of the Antiplatelet Effect of Aspirin. Curr. Pharm. Des. 2012, 18, 5294–5308. [Google Scholar] [CrossRef]
- Yi, X.; Zhou, Q.; Lin, J.; Chi, L.; Han, Z. Platelet Response to Aspirin in Chinese Stroke Patients Is Independent of Genetic Polymorphisms of COX-1 C50T and COX-2 G765C. J. Atheroscler. Thromb. 2013, 20, 65–72. [Google Scholar] [CrossRef]
- Lepäntalo, A.; Mikkelsson, J.; Reséndiz, J.; Viiri, L.; Backman, J.; Kankuri, E.; Karhunen, P.; Lassila, R. Polymorphisms of COX-1 and GP VI Associate with the Antiplatelet Effect of Aspirin in Coronary Artery Disease Patients. Thromb. Haemost. 2006, 95, 253–259. [Google Scholar] [CrossRef]
- Papafili, A.; Hill, M.R.; Brull, D.J.; McAnulty, R.J.; Marshall, R.P.; Humphries, S.E.; Laurent, G.J. Common Promoter Variant in Cyclooxygenase-2 Represses Gene Expression: Evidence of Role in Acute-Phase Inflammatory Response. Arterioscler. Thromb. Vasc. Biol. 2002, 22, 1631–1636. [Google Scholar] [CrossRef]
- Sharma, V.; Kaul, S.; Al-Hazzani, A.; Alshatwi, A.A.; Jyothy, A.; Munshi, A. Association of COX-2 Rs20417 with Aspirin Resistance. J. Thromb. Thrombolysis 2013, 35, 95–99. [Google Scholar] [CrossRef]
- Wang, H.; Sun, X.; Dong, W.; Cai, X.; Zhou, Y.; Zhang, Y.; Jiang, W.; Fang, Q. Association of GPI a and COX-2 Gene Polymorphism with Aspirin Resistance. J. Clin. Lab. Anal. 2018, 32, e22331. [Google Scholar] [CrossRef]
- Szczeklik, A.; Undas, A.; Sanak, M.; Frołow, M.; Węgrzyn, W. Relationship between Bleeding Time, Aspirin and the PlA1/A2 Polymorphism of Platelet Glycoprotein IIIa: Short Report. Br. J. Haematol. 2000, 110, 965–967. [Google Scholar] [CrossRef]
- Goodman, T.; Ferro, A.; Sharma, P. Pharmacogenetics of Aspirin Resistance: A Comprehensive Systematic Review. Br. J. Clin. Pharmacol. 2008, 66, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Abderrazek, F.; Chakroun, T.; Addad, F.; Dridi, Z.; Gerotziafas, G.; Gamra, H.; Hassine, M.; Elalamy, I. The GPIIIa PlA Polymorphism and the Platelet Hyperactivity in Tunisian Patients with Stable Coronary Artery Disease Treated with Aspirin. Thromb. Res. 2010, 125, e265–e268. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.P.; Riaz, M.; Xie, S.; Polekhina, G.; Wolfe, R.; Nelson, M.; Tonkin, A.M.; Reid, C.M.; Murray, A.M.; McNeil, J.J.; et al. Genetic Variation in PEAR1, Cardiovascular Outcomes and Effects of Aspirin in a Healthy Elderly Population. Clin. Pharmacol. Ther. 2020, 108, 1289–1298. [Google Scholar] [CrossRef]
- Herrera-Galeano, J.E.; Becker, D.M.; Wilson, A.F.; Yanek, L.R.; Bray, P.; Vaidya, D.; Faraday, N.; Becker, L.C. A Novel Variant in the Platelet Endothelial Aggregation Receptor-1 Gene Is Associated with Increased Platelet Aggregability. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, H.; Ding, Y.; Zhang, D.; Zhang, X.; Xue, J.; Ma, R.; Hu, L.; Yue, Y. Platelet Endothelial Aggregation Receptor 1 Polymorphism is Associated with Functional Outcome in Small-Artery Occlusion Stroke Patients Treated with Aspirin. Front. Cardiovasc. Med. 2021, 8, 664012. [Google Scholar] [CrossRef]
- Castrichini, M.; Luzum, J.A.; Pereira, N. Pharmacogenetics of Antiplatelet Therapy. Annu. Rev. Pharmacol. Toxicol. 2023, 63, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Zineh, I. HMG-CoA Reductase Inhibitor Pharmacogenomics: Overview and Implications for Practice. Future Cardiol. 2005, 1, 191–206. [Google Scholar] [CrossRef]
- Gelissen, I.C.; McLachlan, A.J. The Pharmacogenomics of Statins. Pharmacol. Res. 2014, 88, 99–106. [Google Scholar] [CrossRef]
- Medina, M.W.; Gao, F.; Ruan, W.; Rotter, J.I.; Krauss, R.M. Alternative Splicing of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Is Associated with Plasma Low-Density Lipoprotein Cholesterol Response to Simvastatin. Circulation 2008, 118, 355–362. [Google Scholar] [CrossRef]
- Iakoubova, O.A.; Tong, C.H.; Rowland, C.M.; Kirchgessner, T.G.; Young, B.A.; Arellano, A.R.; Shiffman, D.; Sabatine, M.S.; Campos, H.; Packard, C.J.; et al. Association of the Trp719Arg Polymorphism in Kinesin-Like Protein 6 with Myocardial Infarction and Coronary Heart Disease in 2 Prospective Trials. J. Am. Coll. Cardiol. 2008, 51, 435–443. [Google Scholar] [CrossRef]
- Iakoubova, O.A.; Sabatine, M.S.; Rowland, C.M.; Tong, C.H.; Catanese, J.J.; Ranade, K.; Simonsen, K.L.; Kirchgessner, T.G.; Cannon, C.P.; Devlin, J.J.; et al. Polymorphism in KIF6 Gene and Benefit From Statins After Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2008, 51, 449–455. [Google Scholar] [CrossRef]
- Hoffmann, M.M.; März, W.; Genser, B.; Drechsler, C.; Wanner, C. Lack of Association between the Trp719Arg Polymorphism in Kinesin-like Protein-6 and Cardiovascular Risk and Efficacy of Atorvastatin among Subjects with Diabetes on Dialysis: The 4D Study. Atherosclerosis 2011, 219, 659–662. [Google Scholar] [CrossRef]
- Assimes, T.L.; Hólm, H.; Kathiresan, S.; Reilly, M.P.; Thorleifsson, G.; Voight, B.F.; Erdmann, J.; Willenborg, C.; Vaidya, D.; Xie, C.; et al. Lack of Association Between the Trp719Arg Polymorphism in Kinesin-Like Protein-6 and Coronary Artery Disease in 19 Case-Control Studies. J. Am. Coll. Cardiol. 2010, 56, 1552–1563. [Google Scholar] [CrossRef] [PubMed]
- Romaine, S.P.R.; Bailey, K.M.; Hall, A.S.; Balmforth, A.J. The Influence of SLCO1B1 (OATP1B1) Gene Polymorphisms on Response to Statin Therapy. Pharm. J. 2010, 10, 1–11. [Google Scholar] [CrossRef] [PubMed]
- SEARCH Collaborative Group. SLCO1B1 Variants and Statin-Induced Myopathy—A Genomewide Study. N. Engl. J. Med. 2008, 359, 789–799. [CrossRef] [PubMed]
- Thompson, J.F.; Man, M.; Johnson, K.J.; Wood, L.S.; Lira, M.E.; Lloyd, D.B.; Banerjee, P.; Milos, P.M.; Myrand, S.P.; Paulauskis, J.; et al. An Association Study of 43 SNPs in 16 Candidate Genes with Atorvastatin Response. Pharm. J. 2005, 5, 352–358. [Google Scholar] [CrossRef]
- Ghatak, A.; Faheem, O.; Thompson, P.D. The Genetics of Statin-Induced Myopathy. Atherosclerosis 2010, 210, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Maggo, S.D.S.; Kennedy, M.A.; Clark, D.W.J. Clinical Implications of Pharmacogenetic Variation on the Effects of Statins. Drug Saf. 2011, 34, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Guo, Y.; Wrighton, S.A.; Cooke, G.E.; Sadee, W. Intronic Polymorphism in CYP3A4 Affects Hepatic Expression and Response to Statin Drugs. Pharm. J. 2011, 11, 274–286. [Google Scholar] [CrossRef] [PubMed]
- Tsamandouras, N.; Dickinson, G.; Guo, Y.; Hall, S.; Rostami-Hodjegan, A.; Galetin, A.; Aarons, L. Identification of the Effect of Multiple Polymorphisms on the Pharmacokinetics of Simvastatin and Simvastatin Acid Using a Population-Modeling Approach. Clin. Pharmacol. Ther. 2014, 96, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-A.; Park, P.-W.; Lee, O.-J.; Kang, D.-K.; Park, J.-Y. Effect of Polymorphic CYP3A5 Genotype on the Single-Dose Simvastatin Pharmacokinetics in Healthy Subjects. J. Clin. Pharmacol. 2007, 47, 87–93. [Google Scholar] [CrossRef]
- Kitzmiller, J.P.; Luzum, J.A.; Baldassarre, D.; Krauss, R.M.; Medina, M.W. CYP3A4*22 and CYP3A5*3 Are Associated with Increased Levels of Plasma Simvastatin Concentrations in the Cholesterol and Pharmacogenetics Study Cohort. Pharmacogenet. Genom. 2014, 24, 486–491. [Google Scholar] [CrossRef]
- Kirchheiner, J. Influence of CYP2C9 Polymorphisms on the Pharmacokinetics and Cholesterol-Lowering Activity of (−)-3s,5r-Fluvastatin and (+)-3r,5s-Fluvastatin in Healthy Volunteers. Clin. Pharmacol. Ther. 2003, 74, 186–194. [Google Scholar] [CrossRef] [PubMed]
- Buzkova, H.; Pechandova, K.; Danzig, V.; Vareka, T.; Perlik, F.; Zak, A.; Slanar, O. Lipid-Lowering Effect of Fluvastatin in Relation to Cytochrome P450 2C9 Variant Alleles Frequently Distributed in the Czech Population. Med. Sci. Monit. 2012, 18, CR512–CR517. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Calvo, M.; Lisnock, J.; Bull, H.G.; Hawes, B.E.; Burnett, D.A.; Braun, M.P.; Crona, J.H.; Davis, H.R.; Dean, D.C.; Detmers, P.A.; et al. The Target of Ezetimibe Is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA 2005, 102, 8132–8137. [Google Scholar] [CrossRef] [PubMed]
- Sudhop, T.; von Bergmann, K. Cholesterol Absorption Inhibitors for the Treatment of Hypercholesterolaemia. Drugs 2002, 62, 2333–2347. [Google Scholar] [CrossRef]
- Oswald, S.; König, J.; Lütjohann, D.; Giessmann, T.; Kroemer, H.K.; Rimmbach, C.; Rosskopf, D.; Fromm, M.F.; Siegmund, W. Disposition of Ezetimibe Is Influenced by Polymorphisms of the Hepatic Uptake Carrier OATP1B1. Pharmacogenet. Genom. 2008, 18, 559–568. [Google Scholar] [CrossRef]
- Schmitz, G.; Schmitz-Mądry, A.; Ugocsai, P. Pharmacogenetics and Pharmacogenomics of Cholesterol-Lowering Therapy. Curr. Opin. Lipidol. 2007, 18, 164–173. [Google Scholar] [CrossRef]
- Oswald, S.; Haenisch, S.; Fricke, C.; Sudhop, T.; Remmler, C.; Giessmann, T.; Jedlitschky, G.; Adam, U.; Dazert, E.; Warzok, R. Intestinal Expression of P-Glycoprotein (ABCB1), Multidrug Resistance Associated Protein 2 (ABCC2), and Uridine Diphosphate–Glucuronosyltransferase 1A1 Predicts the Disposition and Modulates the Effects of the Cholesterol Absorption Inhibitor Ezetimibe in Humans. Clin. Pharmacol. Ther. 2006, 79, 206–217. [Google Scholar] [CrossRef]
- Wang, J.; Williams, C.; Hegele, R. Compound Heterozygosity for Two Non-Synonymous Polymorphisms in NPC1L1 in a Non-Responder to Ezetimibe: NPC1L1 SNPs and Ezetimibe Non-Responsiveness. Clin. Genet. 2004, 67, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Hegele, R.A.; Guy, J.; Ban, M.R.; Wang, J. NPC1L1 Haplotype Is Associated with Inter-Individual Variation in Plasma Low-Density Lipoprotein Response to Ezetimibe. Lipids Health Dis. 2005, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.S.; Karnoub, M.C.; Devlin, D.J.; Arreaza, M.G.; Qiu, P.; Monks, S.A.; Severino, M.E.; Deutsch, P.; Palmisano, J.; Sachs, A.B.; et al. Sequence Variation in NPC1L1 and Association with Improved LDL-Cholesterol Lowering in Response to Ezetimibe Treatment. Genomics 2005, 86, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Tsouka, A.N.; Tellis, C.C.; Tselepis, A.D. Pharmacology of PCSK9 Inhibitors: Current Status and Future Perspectives. Curr. Pharm. Des. 2018, 24, 3622–3633. [Google Scholar] [CrossRef]
- Ferdinand, K.C.; Nasser, S.A. PCSK9 Inhibition: Discovery, Current Evidence, and Potential Effects on LDL-C and Lp(a). Cardiovasc. Drugs Ther. 2015, 29, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Xiao, Y.-Y.; Shao, L.; Ouyang, C.-S.; Hu, Y.; Li, B.; Lei, L.-F.; Wang, H. Proprotein Convertase Subtilisin/Kexin Type 9 Inhibitor Non Responses in an Adult with a History of Coronary Revascularization: A Case Report. World J. Clin. Cases 2022, 10, 6728–6735. [Google Scholar] [CrossRef]
- Susan-Resiga, D.; Girard, E.; Kiss, R.S.; Essalmani, R.; Hamelin, J.; Asselin, M.-C.; Awan, Z.; Butkinaree, C.; Fleury, A.; Soldera, A.; et al. The Proprotein Convertase Subtilisin/Kexin Type 9-Resistant R410S Low Density Lipoprotein Receptor Mutation: A Novel Mechanism Causing Familial Hypercholesterolemia. J. Biol. Chem. 2017, 292, 1573–1590. [Google Scholar] [CrossRef]
- Goodman, L.S.; Gilman, A. The Pharmacological Basis of Therapeutics; The Macmillan: New York, NY, USA, 1955. [Google Scholar]
- Staels, B.; Dallongeville, J.; Auwerx, J.; Schoonjans, K.; Leitersdorf, E.; Fruchart, J.C. Mechanism of Action of Fibrates on Lipid and Lipoprotein Metabolism. Circulation 1998, 98, 2088–2093. [Google Scholar] [CrossRef]
- Montaigne, D.; Butruille, L.; Staels, B. PPAR Control of Metabolism and Cardiovascular Functions. Nat. Rev. Cardiol. 2021, 18, 809–823. [Google Scholar] [CrossRef]
- Brautbar, A.; Covarrubias, D.; Belmont, J.; Lara-Garduno, F.; Virani, S.S.; Jones, P.H.; Leal, S.M.; Ballantyne, C.M. Variants in the APOA5 Gene Region and the Response to Combination Therapy with Statins and Fenofibric Acid in a Randomized Clinical Trial of Individuals with Mixed Dyslipidemia. Atherosclerosis 2011, 219, 737–742. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Arnett, D.K.; Kelly, R.J.; Ordovas, J.M.; Sun, Y.V.; Hopkins, P.N.; Hixson, J.E.; Straka, R.J.; Peacock, J.M.; Kardia, S.L.R. The Genetic Architecture of Fasting Plasma Triglyceride Response to Fenofibrate Treatment. Eur. J. Hum. Genet. EJHG 2008, 16, 603–613. [Google Scholar] [CrossRef]
- Foucher, C.; Rattier, S.; Flavell, D.M.; Talmud, P.J.; Humphries, S.E.; Kastelein, J.J.P.; Ayyobi, A.; Pimstone, S.; Frohlich, J.; Ansquer, J.-C.; et al. Response to Micronized Fenofibrate Treatment is Associated with the Peroxisome-Proliferator-Activated Receptors α G/C Intron7 Polymorphism in Subjects with Type 2 Diabetes. Pharmacogenetics 2004, 14, 823–829. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Ballantyne, C.; Ma, L.; Virani, S.S.; Keinan, A.; Brautbar, A. Rare LPL Gene Variants Attenuate Triglyceride Reduction and HDL Cholesterol Increase in Response to Fenofibric Acid Therapy in Individuals with Mixed Dyslipidemia. Atherosclerosis 2014, 234, 249–253. [Google Scholar] [CrossRef]
- Irvin, M.R.; Rotroff, D.M.; Aslibekyan, S.; Zhi, D.; Hidalgo, B.; Motsinger-Reif, A.; Marvel, S.; Srinivasasainagendra, V.; Claas, S.A.; Buse, J.B.; et al. A Genome-Wide Study of Lipid Response to Fenofibrate in Caucasians: A Combined Analysis of the GOLDN and ACCORD Studies. Pharmacogenet. Genom. 2016, 26, 324–333. [Google Scholar] [CrossRef]
- Rotroff, D.M.; Pijut, S.S.; Marvel, S.W.; Jack, J.R.; Havener, T.M.; Pujol, A.; Schluter, A.; Graf, G.A.; Ginsberg, H.N.; Shah, H.S.; et al. Genetic Variants in HSD17B3, SMAD3, and IPO11 Impact Circulating Lipids in Response to Fenofibrate in Individuals with Type 2 Diabetes. Clin. Pharmacol. Ther. 2018, 103, 712–721. [Google Scholar] [CrossRef]
- Geng, X.; Irvin, M.R.; Hidalgo, B.; Aslibekyan, S.; Srinivasasainagendra, V.; An, P.; Frazier-Wood, A.C.; Tiwari, H.K.; Dave, T.; Ryan, K.; et al. An Exome-Wide Sequencing Study of Lipid Response to High-Fat Meal and Fenofibrate in Caucasians from the GOLDN Cohort. J. Lipid Res. 2018, 59, 722–729. [Google Scholar] [CrossRef]
- Aslibekyan, S.; Goodarzi, M.O.; Frazier-Wood, A.C.; Yan, X.; Irvin, M.R.; Kim, E.; Tiwari, H.K.; Guo, X.; Straka, R.J.; Taylor, K.D.; et al. Variants Identified in a GWAS Meta-Analysis for Blood Lipids Are Associated with the Lipid Response to Fenofibrate. PLoS ONE 2012, 7, e48663. [Google Scholar] [CrossRef]
- House, J.S.; Motsinger-Reif, A.A. Fibrate Pharmacogenomics: Expanding Past the Genome. Pharmacogenomics 2020, 21, 293–306. [Google Scholar] [CrossRef] [PubMed]
- Hirsh, J.; Fuster, V.; Ansell, J.; Halperin, J.L. American Heart Association/American College of Cardiology Foundation Guide to Warfarin Therapy. Circulation 2003, 107, 1692–1711. [Google Scholar] [CrossRef]
- Redman, A.R. Implications of Cytochrome P450 2C9 Polymorphism on Warfarin Metabolism and Dosing. Pharmacotherapy 2001, 21, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Sunder-Plassmann, R.; Mannhalter, C. Pharmacogenetics Guided Anticoagulation. Clin. Chem. Lab. Med. 2010, 48, S119–S127. [Google Scholar] [CrossRef]
- Duarte, J.D.; Cavallari, L.H. Pharmacogenetics to Guide Cardiovascular Drug Therapy. Nat. Rev. Cardiol. 2021, 18, 649–665. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Loke, C.; Rankin, S.C.; Guo, J.-Y.; Lee, H.S.; Wu, T.S.; Tan, T.; Liu, T.-C.; Lu, W.-L.; Lim, Y.-T.; et al. Novel CYP2C9 Genetic Variants in Asian Subjects and Their Influence on Maintenance Warfarin Dose. Clin. Pharmacol. Ther. 2004, 76, 210–219. [Google Scholar] [CrossRef]
- Rost, S.; Fregin, A.; Ivaskevicius, V.; Conzelmann, E.; Hörtnagel, K.; Pelz, H.-J.; Lappegard, K.; Seifried, E.; Scharrer, I.; Tuddenham, E.G.D.; et al. Mutations in VKORC1 Cause Warfarin Resistance and Multiple Coagulation Factor Deficiency Type 2. Nature 2004, 427, 537–541. [Google Scholar] [CrossRef]
- Pérez-Andreu, V.; Roldán, V.; Antón, A.I.; García-Barberá, N.; Corral, J.; Vicente, V.; González-Conejero, R. Pharmacogenetic Relevance of CYP4F2 V433M Polymorphism on Acenocoumarol Therapy. Blood 2009, 113, 4977–4979. [Google Scholar] [CrossRef]
- Danese, E.; Raimondi, S.; Montagnana, M.; Tagetti, A.; Langaee, T.; Borgiani, P.; Ciccacci, C.; Carcas, A.J.; Borobia, A.M.; Tong, H.Y.; et al. Effect of CYP4F2, VKORC1, and CYP2C9 in Influencing Coumarin Dose: A Single-Patient Data Meta-Analysis in More Than 15,000 Individuals. Clin. Pharmacol. Ther. 2019, 105, 1477–1491. [Google Scholar] [CrossRef]
- Bress, A.; Patel, S.R.; Perera, M.A.; Campbell, R.T.; Kittles, R.A.; Cavallari, L.H. Effect of NQO1 and CYP4F2 Genotypes on Warfarin Dose Requirements in Hispanic–Americans and African–Americans. Pharmacogenomics 2012, 13, 1925–1935. [Google Scholar] [CrossRef]
- Johnson, J.A.; Caudle, K.E.; Gong, L.; Whirl-Carrillo, M.; Stein, C.M.; Scott, S.A.; Lee, M.T.; Gage, B.F.; Kimmel, S.E.; Perera, M.A.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Pharmacogenetics-Guided Warfarin Dosing: 2017 Update. Clin. Pharmacol. Ther. 2017, 102, 397–404. [Google Scholar] [CrossRef]
- Harter, K.; Levine, M.; Henderson, S. Anticoagulation Drug Therapy: A Review. West. J. Emerg. Med. 2015, 16, 11–17. [Google Scholar] [CrossRef]
- Sokolowska, E.; Kalaska, B.; Miklosz, J.; Mogielnicki, A. The Toxicology of Heparin Reversal with Protamine: Past, Present and Future. Expert Opin. Drug Metab. Toxicol. 2016, 12, 897–909. [Google Scholar] [CrossRef] [PubMed]
- Miklosz, J.; Kalaska, B.; Mogielnicki, A. Pharmacogenetic Considerations of Anticoagulant Medication. J. Physiol. Pharmacol. 2018, 96, 4. [Google Scholar] [CrossRef]
- Tait, R.C.; Walker, I.D.; Islam, S.I.A.M.; McCall, F.; Conkie, J.A.; Mitchell, R.; Davidson, J.F. Influence of Demographic Factors on Antithrombin III Activity in a Healthy Population. Br. J. Haematol. 1993, 84, 476–480. [Google Scholar] [CrossRef]
- Anderson, J.A.M.; Saenko, E.L. Heparin Resistance. Br. J. Anaesth. 2002, 88, 467–469. [Google Scholar] [CrossRef]
- Anton, A.I.; Teruel, R.; Corral, J.; Minano, A.; Martinez-Martinez, I.; Ordonez, A.; Vicente, V.; Sanchez-Vega, B. Functional Consequences of the Prothrombotic SERPINC1 Rs2227589 Polymorphism on Antithrombin Levels. Haematologica 2009, 94, 589–592. [Google Scholar] [CrossRef] [PubMed]
- Kovács, B.; Bereczky, Z.; Selmeczi, A.; Gindele, R.; Oláh, Z.; Kerényi, A.; Boda, Z.; Muszbek, L. Progressive Chromogenic Anti-Factor Xa Assay and Its Use in the Classification of Antithrombin Deficiencies. Clin. Chem. Lab. Med. CCLM 2014, 52, 1797–1806. [Google Scholar] [CrossRef]
- Rossi, E.; Chiusolo, P.; Za, T.; Marietti, S.; Ciminello, A.; Leone, G.; De Stefano, V. Report of a Novel Kindred with Antithrombin Heparin-Binding Site Variant (47 Arg to His): Demand for an Automated Progressive Antithrombin Assay to Detect Molecular Variants with Low Thrombotic Risk. Thromb. Haemost. 2007, 98, 695–697. [Google Scholar] [CrossRef]
- Qiao, J.; Al-Tamimi, M.; Baker, R.I.; Andrews, R.K.; Gardiner, E.E. The Platelet Fc Receptor, FcγRIIa. Immunol. Rev. 2015, 268, 241–252. [Google Scholar] [CrossRef]
- Trikalinos, T.A.; Karassa, F.B.; Ioannidis, J.P.A. Meta-Analysis of the Association between Low-affinityFcγ Receptor Gene Polymorphisms and Hematologic and Autoimmune Diseases. Blood 2001, 98, 1634–1636. [Google Scholar] [CrossRef]
- Dimatteo, C.; D’Andrea, G.; Vecchione, G.; Paoletti, O.; Cappucci, F.; Tiscia, G.L.; Buono, M.; Grandone, E.; Testa, S.; Margaglione, M. Pharmacogenetics of Dabigatran Etexilate Interindividual Variability. Thromb. Res. 2016, 144, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Chin, P.K.L.; Wright, D.F.B.; Zhang, M.; Wallace, M.C.; Roberts, R.L.; Patterson, D.M.; Jensen, B.P.; Barclay, M.L.; Begg, E.J. Correlation between Trough Plasma Dabigatran Concentrations and Estimates of Glomerular Filtration Rate Based on Creatinine and Cystatin C. Drugs RD 2014, 14, 113–123. [Google Scholar] [CrossRef]
- Gouin-Thibault, I.; Delavenne, X.; Blanchard, A.; Siguret, V.; Salem, J.E.; Narjoz, C.; Gaussem, P.; Beaune, P.; Funck-Brentano, C.; Azizi, M.; et al. Interindividual Variability in Dabigatran and Rivaroxaban Exposure: Contribution of ABCB1 Genetic Polymorphisms and Interaction with Clarithromycin. J. Thromb. Haemost. JTH 2017, 15, 273–283. [Google Scholar] [CrossRef]
- Ing Lorenzini, K.; Daali, Y.; Fontana, P.; Desmeules, J.; Samer, C. Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect. Front. Pharmacol. 2016, 7, 494. [Google Scholar] [CrossRef] [PubMed]
- Xie, Q.; Xiang, Q.; Mu, G.; Ma, L.; Chen, S.; Zhou, S.; Hu, K.; Zhang, Z.; Cui, Y.; Jiang, J. Effect of ABCB1 Genotypes on the Pharmacokinetics and Clinical Outcomes of New Oral Anticoagulants: A Systematic Review and Meta-Analysis. Curr. Pharm. Des. 2018, 24, 3558–3565. [Google Scholar] [CrossRef] [PubMed]
- Sennesael, A.-L.; Larock, A.-S.; Douxfils, J.; Elens, L.; Stillemans, G.; Wiesen, M.; Taubert, M.; Dogné, J.-M.; Spinewine, A.; Mullier, F. Rivaroxaban Plasma Levels in Patients Admitted for Bleeding Events: Insights from a Prospective Study. Thromb. J. 2018, 16, 28. [Google Scholar] [CrossRef] [PubMed]
- Sychev, D.A.; Vardanyan, A.; Rozhkov, A.; Hachatryan, E.; Badanyan, A.; Smirnov, V.; Ananichuk, A.; Denisenko, N. CYP3A Activity and Rivaroxaban Serum Concentrations in Russian Patients with Deep Vein Thrombosis. Genet. Test. Mol. Biomark. 2018, 22, 51–54. [Google Scholar] [CrossRef]
- Sherry, S.T.; Ward, M.H.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K. dbSNP: The NCBI Database of Genetic Variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Dai, D.; Tang, J.; Rose, R.; Hodgson, E.; Bienstock, R.J.; Mohrenweiser, H.W.; Goldstein, J.A. Identification of Variants of CYP3A4 and Characterization of Their Abilities to Metabolize Testosterone and Chlorpyrifos. J. Pharmacol. Exp. Ther. 2001, 299, 825–831. [Google Scholar]
- Sychev, D.; Minnigulov, R.; Bochkov, P.; Ryzhikova, K.; Yudina, I.; Lychagin, A.; Morozova, T. Effect of CYP3A4, CYP3A5, ABCB1 Gene Polymorphisms on Rivaroxaban Pharmacokinetics in Patients Undergoing Total Hip and Knee Replacement Surgery. High Blood Press. Cardiovasc. Prev. Off. J. Ital. Soc. Hypertens. 2019, 26, 413–420. [Google Scholar] [CrossRef]
- Dimatteo, C.; D’Andrea, G.; Vecchione, G.; Paoletti, O.; Tiscia, G.L.; Santacroce, R.; Correale, M.; Brunetti, N.; Grandone, E.; Testa, S.; et al. ABCB1 SNP Rs4148738 Modulation of Apixaban Interindividual Variability. Thromb. Res. 2016, 145, 24–26. [Google Scholar] [CrossRef]
- Ueshima, S.; Hira, D.; Fujii, R.; Kimura, Y.; Tomitsuka, C.; Yamane, T.; Tabuchi, Y.; Ozawa, T.; Itoh, H.; Horie, M.; et al. Impact of ABCB1, ABCG2, and CYP3A5 Polymorphisms on Plasma Trough Concentrations of Apixaban in Japanese Patients with Atrial Fibrillation. Pharmacogenet. Genom. 2017, 27, 329–336. [Google Scholar] [CrossRef]
- Kryukov, A.V.; Sychev, D.A.; Andreev, D.A.; Ryzhikova, K.A.; Grishina, E.A.; Ryabova, A.V.; Loskutnikov, M.A.; Smirnov, V.V.; Konova, O.D.; Matsneva, I.A.; et al. Influence of ABCB1 and CYP3A5 Gene Polymorphisms on Pharmacokinetics of Apixaban in Patients with Atrial Fibrillation and Acute Stroke. Pharm. Pers. Med. 2018, 11, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, A.; Grond-Ginsbach, C.; Dumschat, C.; Foerster, K.I.; Burhenne, J.; Weiss, J.; Czock, D.; Purrucker, J.C.; Rizos, T.; Haefeli, W.E. Unexpected Excessive Apixaban Exposure: Case Report of a Patient with Polymorphisms of Multiple Apixaban Elimination Pathways. BMC Pharmacol. Toxicol. 2019, 20, 53. [Google Scholar] [CrossRef] [PubMed]
- Gulilat, M.; Keller, D.; Linton, B.; Pananos, A.D.; Lizotte, D.; Dresser, G.K.; Alfonsi, J.; Tirona, R.G.; Kim, R.B.; Schwarz, U.I. Drug Interactions and Pharmacogenetic Factors Contribute to Variation in Apixaban Concentration in Atrial Fibrillation Patients in Routine Care. J. Thromb. Thrombolysis 2020, 49, 294–303. [Google Scholar] [CrossRef]
- Kanuri, S.H.; Kreutz, R.P. Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants. J. Pers. Med. 2019, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Vandell, A.G.; Lee, J.; Shi, M.; Rubets, I.; Brown, K.S.; Walker, J.R. An Integrated Pharmacokinetic/Pharmacogenomic Analysis of ABCB1 and SLCO1B1 Polymorphisms on Edoxaban Exposure. Pharm. J. 2018, 18, 153–159. [Google Scholar] [CrossRef]
- Paré, G.; Eriksson, N.; Lehr, T.; Connolly, S.; Eikelboom, J.; Ezekowitz, M.D.; Axelsson, T.; Haertter, S.; Oldgren, J.; Reilly, P.; et al. Genetic Determinants of Dabigatran Plasma Levels and Their Relation to Bleeding. Circulation 2013, 127, 1404–1412. [Google Scholar] [CrossRef]
- Sychev, D.A.; Levanov, A.N.; Shelekhova, T.V.; Bochkov, P.O.; Denisenko, N.P.; Ryzhikova, K.A.; Mirzaev, K.B.; Grishina, E.A.; Gavrilov, M.A.; Ramenskaya, G.V.; et al. The Impact of ABCB1 (Rs1045642 and Rs4148738) and CES1 (Rs2244613) Gene Polymorphisms on Dabigatran Equilibrium Peak Concentration in Patients after Total Knee Arthroplasty. Pharm. Pers. Med. 2018, 11, 127–137. [Google Scholar] [CrossRef]
- Shi, J.; Wang, X.; Nguyen, J.-H.; Bleske, B.E.; Liang, Y.; Liu, L.; Zhu, H.-J. Dabigatran Etexilate Activation Is Affected by the CES1 Genetic Polymorphism G143E (Rs71647871) and Gender. Biochem. Pharmacol. 2016, 119, 76–84. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mauriello, A.; Ascrizzi, A.; Molinari, R.; Falco, L.; Caturano, A.; D’Andrea, A.; Russo, V. Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk. Genes 2023, 14, 2057. https://doi.org/10.3390/genes14112057
Mauriello A, Ascrizzi A, Molinari R, Falco L, Caturano A, D’Andrea A, Russo V. Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk. Genes. 2023; 14(11):2057. https://doi.org/10.3390/genes14112057
Chicago/Turabian StyleMauriello, Alfredo, Antonia Ascrizzi, Riccardo Molinari, Luigi Falco, Alfredo Caturano, Antonello D’Andrea, and Vincenzo Russo. 2023. "Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk" Genes 14, no. 11: 2057. https://doi.org/10.3390/genes14112057
APA StyleMauriello, A., Ascrizzi, A., Molinari, R., Falco, L., Caturano, A., D’Andrea, A., & Russo, V. (2023). Pharmacogenomics of Cardiovascular Drugs for Atherothrombotic, Thromboembolic and Atherosclerotic Risk. Genes, 14(11), 2057. https://doi.org/10.3390/genes14112057