The Regulatory Role of MicroRNAs in Obesity and Obesity-Derived Ailments
Abstract
:1. Introduction
2. Roles of microRNAs in Obesity
3. Roles of microRNAs in Obesity-Derived Ailments
4. miRNA-Based Therapeutic Strategies in Obesity
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Guerreiro, V.A.; Carvalho, D.; Freitas, P. Obesity, Adipose Tissue, and Inflammation Answered in Questions. J. Obes. 2022, 2022, 2252516. [Google Scholar] [CrossRef] [PubMed]
- Caballero, B. Humans against Obesity: Who Will Win? Adv. Nutr. 2019, 10, S4–S9. [Google Scholar] [CrossRef]
- Müller, T.D.; Blüher, M.; Tschöp, M.H.; DiMarchi, R.D. Anti-Obesity Drug Discovery: Advances and Challenges. Nat. Rev. Drug Discov. 2022, 21, 201–223. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.; Rohli, K.E.; Yang, S.; Jia, P. Impact of Obesity on COVID-19 Patients. J. Diabetes Complicat. 2021, 35, 107817. [Google Scholar] [CrossRef] [PubMed]
- Oussaada, S.M.; van Galen, K.A.; Cooiman, M.I.; Kleinendorst, L.; Hazebroek, E.J.; van Haelst, M.M.; ter Horst, K.W.; Serlie, M.J. The Pathogenesis of Obesity. Metabolism. 2019, 92, 26–36. [Google Scholar] [CrossRef]
- Morales, I. Brain Regulation of Hunger and Motivation: The Case for Integrating Homeostatic and Hedonic Concepts and Its Implications for Obesity and Addiction. Appetite 2022, 177, 106146. [Google Scholar] [CrossRef]
- Miller, J. Genetic Obesity—Causes and Treatments. Pediatr. Ann. 2023, 52, e57–e61. [Google Scholar] [CrossRef]
- Thaker, V. V Genetic and Epigenetic Causes of Obesity. Adolesc. Med. State Art Rev. 2017, 28, 379–405. [Google Scholar]
- Mahmoud, R.; Kimonis, V.; Butler, M.G. Genetics of Obesity in Humans: A Clinical Review. Int. J. Mol. Sci. 2022, 23, 11005. [Google Scholar] [CrossRef]
- Baxter, J.; Armijo, P.R.; Flores, L.; Krause, C.; Samreen, S.; Tanner, T. Updates on Monogenic Obesity in a Multifactorial Disease. Obes. Surg. 2019, 29, 4077–4083. [Google Scholar] [CrossRef]
- Carvalho, L.M.L.; D’Angelo, C.S.; Villela, D.; da Costa, S.S.; de Lima Jorge, A.A.; da Silva, I.T.; de Oliveira Scliar, M.; Chaves, L.D.; Krepischi, A.C.V.; Koiffmann, C.P.; et al. Genetic Investigation of Syndromic Forms of Obesity. Int. J. Obes. 2022, 46, 1582–1586. [Google Scholar] [CrossRef] [PubMed]
- Loos, R.J.F.; Yeo, G.S.H. The Genetics of Obesity: From Discovery to Biology. Nat. Rev. Genet. 2022, 23, 120–133. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.Y.; Yin, R.X. Recent Progress in Epigenetics of Obesity. Diabetol. Metab. Syndr. 2022, 14, 171. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Manriquez, L.M.; Villarreal-Garza, C.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Isidoro-Sánchez, J.; Estrada-Meza, C.; Arvizu-Espinosa, M.G.; Paul, S.; Cuevas-Diaz Duran, R. Exploring the Potential Role of Circulating MicroRNAs as Biomarkers for Predicting Clinical Response to Neoadjuvant Therapy in Breast Cancer. Int. J. Mol. Sci. 2023, 24, 9984. [Google Scholar] [CrossRef]
- Benavides-Aguilar, J.A.; Morales-Rodríguez, J.I.; Ambriz-González, H.; Ruiz-Manriquez, L.M.; Banerjee, A.; Pathak, S.; Duttaroy, A.K.; Paul, S. The Regulatory Role of MicroRNAs in Common Eye Diseases: A Brief Review. Front. Genet. 2023, 14, 1152110. [Google Scholar] [CrossRef]
- Kargutkar, N.; Hariharan, P.; Nadkarni, A. Dynamic Interplay of MicroRNA in Diseases and Therapeutic. Clin. Genet. 2023, 103, 268–276. [Google Scholar] [CrossRef]
- Ledesma-Pacheco, S.J.; Uriostegui-Pena, A.G.; Rodriguez-Jacinto, E.; Gomez-Hernandez, E.; Estrada-Meza, C.; Banerjee, A.; Pathak, S.; Ruiz-Manriquez, L.M.; Duttaroy, A.K.; Paul, S. Regulatory Mechanisms of MicroRNAs in Endocrine Disorders and Their Therapeutic Potential. Front. Genet. 2023, 14, 1137017. [Google Scholar] [CrossRef]
- Guo, J.; Yang, P.; Li, Y.F.; Tang, J.F.; He, Z.X.; Yu, S.G.; Yin, H.Y. MicroRNA: Crucial Modulator in Purinergic Signalling Involved Diseases. Purinergic Signal. 2023, 19, 329–341. [Google Scholar] [CrossRef]
- Ruiz-Manriquez, L.M.; Carrasco-Morales, O.; Sanchez, Z.E.A.; Osorio-Perez, S.M.; Estrada-Meza, C.; Pathak, S.; Banerjee, A.; Bandyopadhyay, A.; Duttaroy, A.K.; Paul, S. MicroRNA-Mediated Regulation of Key Signaling Pathways in Hepatocellular Carcinoma: A Mechanistic Insight. Front. Genet. 2022, 13, 910733. [Google Scholar] [CrossRef]
- Samad, A.F.A.; Kamaroddin, M.F. Innovative Approaches in Transforming MicroRNAs into Therapeutic Tools. WIREs RNA 2023, 14, e1768. [Google Scholar] [CrossRef]
- Bayraktar, E.; Bayraktar, R.; Oztatlici, H.; Lopez-Berestein, G.; Amero, P.; Rodriguez-Aguayo, C. Targeting MiRNAs and Other Non-Coding RNAs as a Therapeutic Approach: An Update. Non-Coding RNA 2023, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Smolarz, B.; Durczyński, A.; Romanowicz, H.; Szyłło, K.; Hogendorf, P. MiRNAs in Cancer (Review of Literature). Int. J. Mol. Sci. 2022, 23, 2805. [Google Scholar] [CrossRef] [PubMed]
- Iacomino, G. MiRNAs: The Road from Bench to Bedside. Genes 2023, 14, 314. [Google Scholar] [CrossRef] [PubMed]
- Matsuyama, H.; Suzuki, H.I. Systems and Synthetic MicroRNA Biology: From Biogenesis to Disease Pathogenesis. Int. J. Mol. Sci. 2020, 21, 132. [Google Scholar] [CrossRef] [PubMed]
- Rani, V.; Sengar, R.S. Biogenesis and Mechanisms of MicroRNA-Mediated Gene Regulation. Biotechnol. Bioeng. 2022, 119, 685–692. [Google Scholar] [CrossRef]
- Pelletier, D.; Rivera, B.; Fabian, M.R.; Foulkes, W.D. MiRNA Biogenesis and Inherited Disorders: Clinico-Molecular Insights. Trends Genet. 2023, 39, 401–414. [Google Scholar] [CrossRef]
- Vishnoi, A.; Rani, S. MiRNA Biogenesis and Regulation of Diseases: An Overview. In MicroRNA Profiling: Methods and Protocols; Rani, S., Ed.; Springer: New York, NY, USA, 2017; pp. 1–10. ISBN 978-1-4939-6524-3. [Google Scholar]
- Ruiz-Manriquez, L.M.; Estrada-Meza, C.; Benavides-Aguilar, J.A.; Ledesma-Pacheco, S.J.; Torres-Copado, A.; Serrano-Cano, F.I.; Bandyopadhyay, A.; Pathak, S.; Chakraborty, S.; Srivastava, A.; et al. Phytochemicals Mediated Modulation of MicroRNAs and Long Non-Coding RNAs in Cancer Prevention and Therapy. Phyther. Res. 2022, 36, 705–729. [Google Scholar] [CrossRef]
- Bravo-Vázquez, L.A.; Frías-Reid, N.; Ramos-Delgado, A.G.; Osorio-Pérez, S.M.; Zlotnik-Chávez, H.R.; Pathak, S.; Banerjee, A.; Bandyopadhyay, A.; Duttaroy, A.K.; Paul, S. MicroRNAs and Long Non-Coding RNAs in Pancreatic Cancer: From Epigenetics to Potential Clinical Applications. Transl. Oncol. 2023, 27, 101579. [Google Scholar] [CrossRef]
- Paul, S.; Ruiz-Manriquez, L.M.; Ledesma-Pacheco, S.J.; Benavides-Aguilar, J.A.; Torres-Copado, A.; Morales-Rodríguez, J.I.; De Donato, M.; Srivastava, A. Roles of MicroRNAs in Chronic Pediatric Diseases and Their Use as Potential Biomarkers: A Review. Arch. Biochem. Biophys. 2021, 699, 108763. [Google Scholar] [CrossRef]
- Elkhawaga, S.Y.; Ismail, A.; Elsakka, E.G.E.; Doghish, A.S.; Elkady, M.A.; El-Mahdy, H.A. MiRNAs as Cornerstones in Adipogenesis and Obesity. Life Sci. 2023, 315, 121382. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Cherian, P.; Al-Khairi, I.; Nizam, R.; Alkandari, A.; Arefanian, H.; Tuomilehto, J.; Al-Mulla, F.; Abubaker, J. Reduced MiR-181d Level in Obesity and Its Role in Lipid Metabolism via Regulation of ANGPTL3. Sci. Rep. 2019, 9, 11866. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Li, Y.; Mao, R.; Yang, H.; Zhang, Y.; Zhang, Y.; Guo, P.; Zhan, D.; Zhang, T. Circular RNA SAMD4A Controls Adipogenesis in Obesity through the MiR-138-5p/EZH2 Axis. Theranostics 2020, 10, 4705–4719. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, H.; Zeng, D.; Xiong, J.; Luo, J.; Chen, X.; Chen, T.; Xi, Q.; Sun, J.; Ren, X.; et al. The Novel Importance of MiR-143 in Obesity Regulation. Int. J. Obes. 2023, 47, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Sun, Y.C.; Cheng, P.; Shao, H.G. Adipose Tissue Macrophage-Derived Exosomal MiR-29a Regulates Obesity-Associated Insulin Resistance. Biochem. Biophys. Res. Commun. 2019, 515, 352–358. [Google Scholar] [CrossRef]
- Du, J.; Zhang, P.; Luo, J.; Shen, L.; Zhang, S.; Gu, H.; He, J.; Wang, L.; Zhao, X.; Gan, M.; et al. Dietary Betaine Prevents Obesity through Gut Microbiota-Drived MicroRNA-378a Family. Gut Microbes 2021, 13, 1862612. [Google Scholar] [CrossRef]
- Feng, X.; Ding, Y.; Zhou, M.; Song, N.; Ding, Y. Integrative Analysis of Exosomal MiR-452 and MiR-4713 Downregulating NPY1R for the Prevention of Childhood Obesity. Dis. Markers 2022, 2022, 2843353. [Google Scholar] [CrossRef]
- Huang, X.Y.; Chen, J.X.; Ren, Y.; Fan, L.C.; Xiang, W.; He, X.J. Exosomal MiR-122 Promotes Adipogenesis and Aggravates Obesity through the VDR/SREBF1 Axis. Obesity 2022, 30, 666–679. [Google Scholar] [CrossRef]
- Yue, J.; Sun, C.; Tang, J.; Zhang, Q.; Lou, M.; Sun, H.; Zhang, L. Downregulation of MiRNA-155–5p Contributes to the Adipogenic Activity of 2-Ethylhexyl Diphenyl Phosphate in 3T3-L1 Preadipocytes. Toxicology 2023, 487, 153452. [Google Scholar] [CrossRef]
- Fu, X.; Jin, L.; Han, L.; Yuan, Y.; Mu, Q.; Wang, H.; Yang, J.; Ning, G.; Zhou, D.; Zhang, Z. MiR-129-5p Inhibits Adipogenesis through Autophagy and May Be a Potential Biomarker for Obesity. Int. J. Endocrinol. 2019, 2019, 5069578. [Google Scholar] [CrossRef]
- Gjorgjieva, M.; Sobolewski, C.; Ay, A.S.; Abegg, D.; de Sousa, M.C.; Portius, D.; Berthou, F.; Fournier, M.; Maeder, C.; Rantakari, P.; et al. Genetic Ablation of MiR-22 Fosters Diet-Induced Obesity and NAFLD Development. J. Pers. Med. 2020, 10, 170. [Google Scholar] [CrossRef]
- Li, D.; Chen, J.; Yun, C.; Li, X.; Huang, Z. MiR-122–5p Regulates the Pathogenesis of Childhood Obesity by Targeting CPEB1. Obes. Res. Clin. Pract. 2022, 16, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Murgia, N.; Liu, Y.; Li, Z.; Sirakawin, C.; Konovalov, R.; Kovzel, N.; Xu, Y.; Kang, X.; Tiwari, A.; et al. Neuronal MiR-29a Protects from Obesity in Adult Mice. Mol. Metab. 2022, 61, 101507. [Google Scholar] [CrossRef] [PubMed]
- Gan, M.; Shen, L.; Wang, S.; Guo, Z.; Zheng, T.; Tan, Y.; Fan, Y.; Liu, L.; Chen, L.; Jiang, A.; et al. Genistein Inhibits High Fat Diet-Induced Obesity through MiR-222 by Targeting BTG2 and Adipor1. Food Funct. 2020, 11, 2418–2426. [Google Scholar] [CrossRef] [PubMed]
- Juiz-Valiña, P.; Varela-Rodríguez, B.M.; Outeiriño-Blanco, E.; García-Brao, M.J.; Mena, E.; Cordido, F.; Sangiao-Alvarellos, S. MiR-19 Family Impairs Adipogenesis by the Downregulation of the PPARγ Transcriptional Network. Int. J. Mol. Sci. 2022, 23, 15792. [Google Scholar] [CrossRef]
- Liu, L.; Li, D.; Peng, C.; Gao, R.; Li, X.; Zhang, L.; Lv, Q.; Xiao, X.; Li, Q. MicroRNA-27a, Downregulated in Human Obesity, Exerts an Antiapoptotic Function in Adipocytes. Endocr. J. 2023, 70, 581–589. [Google Scholar] [CrossRef]
- Chang, R.C.; Joloya, E.M.; Li, Z.; Shoucri, B.M.; Shioda, T.; Blumberg, B. MiR-223 Plays a Key Role in Obesogen-Enhanced Adipogenesis in Mesenchymal Stem Cells and in Transgenerational Obesity. Endocrinology 2023, 164, bqad027. [Google Scholar] [CrossRef]
- Lou, P.; Bi, X.; Tian, Y.; Li, G.; Kang, Q.; Lv, C.; Song, Y.; Xu, J.; Sheng, X.; Yang, X.; et al. MiR-22 Modulates Brown Adipocyte Thermogenesis by Synergistically Activating the Glycolytic and MTORC1 Signaling Pathways. Theranostics 2021, 11, 3607–3623. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.X.; Jena, P.K.; Sheng, L.; Ali, M.R.; Wan, Y.J.Y. MiR-22 Inhibition Reduces Hepatic Steatosis via FGF21 and FGFR1 Induction. JHEP Rep. 2020, 2, 100093. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, D.; Ding, C.Z.; Guo, F.; Wu, L.N.; Huang, F.J.; Liu, Y.L.; Zhao, S.Y.; Xin, Y.; Ma, S.N.; et al. MicroRNA-194: A Novel Regulator of Glucagon-like Peptide-1 Synthesis in Intestinal L Cells. Cell Death Dis. 2021, 12, 113. [Google Scholar] [CrossRef]
- Guo, L.; Jia, L.; Luo, L.; Xu, X.; Xiang, Y.; Ren, Y.; Ren, D.; Shen, L.; Liang, T. Critical Roles of Circular RNA in Tumor Metastasis via Acting as a Sponge of MiRNA/IsomiR. Int. J. Mol. Sci. 2022, 23, 7024. [Google Scholar] [CrossRef]
- Wang, H. Role of EZH2 in Adipogenesis and Obesity: Current State of the Art and Implications-A Review. Medicine 2022, 101, E30344. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.F.; Teodoro, J.S.; Palmeira, C.M.; Rolo, A.P. MiR-378a: A New Emerging MicroRNA in Metabolism. Cell. Mol. Life Sci. 2020, 77, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.-M.; Li, Y.-F.; Luo, J.; Wang, J.-Q.; Wei, J.; Wang, J.-Q.; Xiao, T.; Xie, C.; Hong, J.; Ning, G.; et al. Gpnmb Secreted from Liver Promotes Lipogenesis in White Adipose Tissue and Aggravates Obesity and Insulin Resistance. Nat. Metab. 2019, 1, 570–583. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, S.; Rehman, K.; Shahid, M.; Suhail, S.; Akash, M.S.H. Therapeutic Potentials of Genistein: New Insights and Perspectives. J. Food Biochem. 2022, 46, e14228. [Google Scholar] [CrossRef] [PubMed]
- Cabiati, M.; Randazzo, E.; Guiducci, L.; Falleni, A.; Cecchettini, A.; Casieri, V.; Federico, G.; Del Ry, S. Evaluation of Exosomal Coding and Non-Coding RNA Signature in Obese Adolescents. Int. J. Mol. Sci. 2023, 24, 139. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, S.C.; Nadler, E.P.; Pillai, D.K.; Hubal, M.J.; Wang, Z.; Wang, J.M.; Gordish-Dressman, H.; Koeck, E.; Sevilla, S.; Wiles, A.A.; et al. Adipocyte-Derived Exosomal MiRNAs: A Novel Mechanism for Obesity-Related Disease. Pediatr. Res. 2015, 77, 447–454. [Google Scholar] [CrossRef]
- Wittrisch, S.; Klöting, N.; Mörl, K.; Chakaroun, R.; Blüher, M.; Beck-Sickinger, A.G. NPY1R-Targeted Peptide-Mediated Delivery of a Dual PPARα/γ Agonist to Adipocytes Enhances Adipogenesis and Prevents Diabetes Progression. Mol. Metab. 2020, 31, 163–180. [Google Scholar] [CrossRef]
- Wang, C.; Yang, N.; Wu, S.; Liu, L.; Sun, X.; Nie, S. Difference of NPY and Its Receptor Gene Expressions between Obesity and Obesity-Resistant Rats in Response to High-Fat Diet. Horm. Metab. Res. 2007, 39, 262–267. [Google Scholar] [CrossRef]
- Sun, S.; Cao, X.; Castro, L.F.C.; Monroig, Ó.; Gao, J. A Network-Based Approach to Identify Protein Kinases Critical for Regulating Srebf1 in Lipid Deposition Causing Obesity. Funct. Integr. Genom. 2021, 21, 557–570. [Google Scholar] [CrossRef]
- Du, J.; Li, H.; Xu, S.; Zhou, Q.; Jin, M.; Tang, J. A Review of Organophosphorus Flame Retardants (OPFRs): Occurrence, Bioaccumulation, Toxicity, and Organism Exposure. Environ. Sci. Pollut. Res. 2019, 26, 22126–22136. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, Y.; Yu, N.; Crump, D.; Li, J.; Su, H.; Letcher, R.J.; Su, G. Organophosphate Ester, 2-Ethylhexyl Diphenyl Phosphate (EHDPP), Elicits Cytotoxic and Transcriptomic Effects in Chicken Embryonic Hepatocytes and Its Biotransformation Profile Compared to Humans. Environ. Sci. Technol. 2019, 53, 2151–2160. [Google Scholar] [CrossRef] [PubMed]
- Sprenkle, N.T.; Winn, N.C.; Bunn, K.E.; Zhao, Y.; Park, D.J.; Giese, B.G.; Karijolich, J.J.; Ansel, K.M.; Serezani, C.H.; Hasty, A.H.; et al. The MiR-23-27-24 Clusters Drive Lipid-Associated Macrophage Proliferation in Obese Adipose Tissue. Cell Rep. 2023, 42, 112928. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.L.; Usategui-Martín, R.; Hernández-Cosido, L.; Bernardo, E.; Manzanedo-Bueno, L.; Hernández-García, I.; Mateos-Díaz, A.M.; Rozo, O.; Matesanz, N.; Salete-Granado, D.; et al. PPAR-γ Gene Expression in Human Adipose Tissue Is Associated with Weight Loss After Sleeve Gastrectomy. J. Gastrointest. Surg. 2022, 26, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Youssef, E.M.; Elfiky, A.M.; Banglysoliman; Abu-Shahba, N.; Elhefnawi, M.M. Expression Profiling and Analysis of Some MiRNAs in Subcutaneous White Adipose Tissue during Development of Obesity. Genes Nutr. 2020, 15, 8. [Google Scholar] [CrossRef]
- Abente, E.J.; Subramanian, M.; Ramachandran, V.; Najafi-Shoushtari, S.H. MicroRNAs in Obesity-Associated Disorders. Arch. Biochem. Biophys. 2016, 589, 108–119. [Google Scholar] [CrossRef]
- Ying, W.; Riopel, M.; Bandyopadhyay, G.; Dong, Y.; Birmingham, A.; Seo, J.B.; Ofrecio, J.M.; Wollam, J.; Hernandez-Carretero, A.; Fu, W.; et al. Adipose Tissue Macrophage-Derived Exosomal MiRNAs Can Modulate in Vivo and in Vitro Insulin Sensitivity. Cell 2017, 171, 372–384.e12. [Google Scholar] [CrossRef]
- Dooley, J.; Garcia-Perez, J.E.; Sreenivasan, J.; Schlenner, S.M.; Vangoitsenhoven, R.; Papadopoulou, A.S.; Tian, L.; Schonefeldt, S.; Serneels, L.; Deroose, C.; et al. The MicroRNA-29 Family Dictates the Balance between Homeostatic and Pathological Glucose Handling in Diabetes and Obesity. Diabetes 2016, 65, 53–61. [Google Scholar] [CrossRef]
- Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W. Obesity Is Associated with Macrophage Accumulation in Adipose Tissue. J. Clin. Investig. 2003, 112, 1796–1808. [Google Scholar] [CrossRef]
- Atkin, S.L.; Ramachandran, V.; Yousri, N.A.; Benurwar, M.; Simper, S.C.; McKinlay, R.; Adams, T.D.; Najafi-Shoushtari, S.H.; Hunt, S.C. Changes in Blood MicroRNA Expression and Early Metabolic Responsiveness 21 Days Following Bariatric Surgery. Front. Endocrinol. 2019, 10, 773. [Google Scholar] [CrossRef]
- das Neves, V.J.; Fernandes, T.; Roque, F.R.; Soci, U.P.R.; Melo, S.F.S.; de Oliveira, E.M. Exercise Training in Hypertension: Role of MicroRNAs. World J. Cardiol. 2014, 6, 713–727. [Google Scholar] [CrossRef]
- Improta-Caria, A.C.; Vasques Nonaka, C.K.V.; Pereira, C.S.; Soares, M.B.P.; Macambira, S.G.; Souza, B.S.d.F. Exercise Training-Induced Changes in MicroRNAs: Beneficial Regulatory Effects in Hypertension, Type 2 Diabetes, and Obesity. Int. J. Mol. Sci. 2018, 19, 3608. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Shi, C.; Lv, Y.; Zhao, C.; Jiao, Z.; Wang, T. Circulating MicroRNAs in Response to Exercise Training in Healthy Adults. Front. Genet. 2020, 11, 256. [Google Scholar] [CrossRef] [PubMed]
- Improta-Caria, A.C.; Soci, Ú.P.; Rodrigues, L.F.; Fernandes, T.; Oliveira, E.M. MicroRNAs Regulating Pathophysiological Processes in Obesity: The Impact of Exercise Training. Curr. Opin. Physiol. 2023, 33, 100648. [Google Scholar] [CrossRef]
Associated miRNAs | Target | Altered Biological Mechanism | Source/Sample | Reference |
---|---|---|---|---|
miR-29a ↑ | PPAR-d | Promotion of insulin resistance | ATM-derived exosomes | [35] |
miR-138-5p ↑ | EZH2 | Preadipocyte differentiation | AT | [33] |
miR-378a ↑ | YY1 | Regulation of lipid and glucose metabolism Inhibition of lipogenesis | WAT and liver tissue | [36] |
miR-4713 ↓ | NPY1R | Adipocyte proliferation and mitogenesis | AT | [37] |
miR-452 ↓ | ||||
miR-122 ↑ | VDR | Lipid synthesis Homeostasis of cholesterol and fatty acids Adipogenesis | Exo-AT | [38] |
miR-155-5p ↓ | C/EBPβ | Adipogenesis Expression of IL-6 and IL-8 | 3T3-L1 preadipocytes | [39] |
miR-129-5p ↑ | ATG7 | Adipocyte differentiation | AT in obese mice | [40] |
miR-22-3p ↓ | CD36, Fatp1, Fatp2, FAS, ACC, Scd1, Eno1, Shpk, Gck, Pkm2, Pfkl | Regulation of lipid and glucose metabolism | Human liver biopsies of obese patients | [41] |
miR-122-5p ↓ | CPEB1 | Regulation of chemokines and proinflammatory cytokines | SGBS preadipocytes | [42] |
miR-29a-3p ↑ | Nras | Protection against insulin resistance and obesity Decreased energy expenditure | Brain tissue | [43] |
miR-181d ↑ | ANGPTL3 | Regulation of lipid metabolism | Human plasma | [32] |
miR-222 ↑ | BTG2 adipor1 | Regulation of lipid metabolism | 3T3-L1 preadipocytes and in vivo | [44] |
miR-19a ↑ | Pparg Cebpa Adipoq Fasn | Regulation of adipogenesis and lipid accumulation | 3T3-L1 cells | [45] |
miR-19b ↑ | ||||
miR-27a ↓ | PPAR-γ | Adipocyte differentiation and repression | Serum and AT | [46] |
miR-143 ↓ | GPNMB | Regulation of lipogenesis | WAT | [47] |
miR-22 ↑ | Hif1an | Regulation of glycolysis and thermogenesis | BAT | [48] |
miR-22 ↓ | FGFR1 | Regulation of fatty acid oxidation | BAT | [49] |
miR-194 ↑ | GLP-1 | Mitochondrial dysfunction and cardiac injury | Plasma and ileum tissue of mice | [50] |
Therapeutic Strategy | Altered miRNAs | Implications of the Treatment in Obesity | Reference |
---|---|---|---|
Bariatric surgery | miR-7-5p let-7f-5p miR-15b-5p let-7i-5p miR-320x miR-205-5p miR-335-5p | Enhancement of adipocyte differentiationInhibition of beige adipocyte function Aid in the accumulation of brown thermogenic fat | [70] |
CPET and AET | miR-1 miR-20a miR-21 miR-126 miR-133a miR-133b miR-146 miR-155 miR-208a miR-208b miR-210 miR-221 miR-222 miR-328 miR-378 miR-499 miR-940a | Promotion of angiogenesis Anti-apoptotic effects Anti-inflammatory effects | [71,72,73,74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benavides-Aguilar, J.A.; Torres-Copado, A.; Isidoro-Sánchez, J.; Pathak, S.; Duttaroy, A.K.; Banerjee, A.; Paul, S. The Regulatory Role of MicroRNAs in Obesity and Obesity-Derived Ailments. Genes 2023, 14, 2070. https://doi.org/10.3390/genes14112070
Benavides-Aguilar JA, Torres-Copado A, Isidoro-Sánchez J, Pathak S, Duttaroy AK, Banerjee A, Paul S. The Regulatory Role of MicroRNAs in Obesity and Obesity-Derived Ailments. Genes. 2023; 14(11):2070. https://doi.org/10.3390/genes14112070
Chicago/Turabian StyleBenavides-Aguilar, Javier A., Andrea Torres-Copado, José Isidoro-Sánchez, Surajit Pathak, Asim K. Duttaroy, Antara Banerjee, and Sujay Paul. 2023. "The Regulatory Role of MicroRNAs in Obesity and Obesity-Derived Ailments" Genes 14, no. 11: 2070. https://doi.org/10.3390/genes14112070
APA StyleBenavides-Aguilar, J. A., Torres-Copado, A., Isidoro-Sánchez, J., Pathak, S., Duttaroy, A. K., Banerjee, A., & Paul, S. (2023). The Regulatory Role of MicroRNAs in Obesity and Obesity-Derived Ailments. Genes, 14(11), 2070. https://doi.org/10.3390/genes14112070