The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways
Abstract
:1. Introduction
2. Materials and Methods
Methods
- Literature comparison: A systematic analysis of the literature was performed on PubMed with the MeSH terms “idiopathic scoliosis” and “variant” to collect a list of genes significantly associated with AIS in clinical cohorts with confirmed genetic testing. Matches between this list and the list of SCOGEN variants were searched using ExcelStat.
- Interaction pathways analysis: The list of variants obtained was then submitted to GO-enrichment analysis using BiNGO (Biological Networks Gene Ontology tool) Cytoscape plugin. The data were analyzed using an overrepresentation binomial test, and p-values were corrected via Benjamini-Hochberg false discovery rate (FDR). Significance level was set at p < 0.05.
- Functional categories analysis: In order to identify the functional categories to which the variants present in our patients with AIS belonged, an analysis with Panther Version 18.0, (available at http://pantherdb.org/, accessed on 1 May 2023) was conducted. To retain only the most meaningful variants, the SCOGEN list was reduced to those present in 3 or more individuals. This subsequent list of 490 genes’ variants was then compared using a statistical overrepresentation test (binomial testing) to the GO cellular component list with the reference list on homo sapiens’ genome.
3. Results
3.1. Patients
3.2. Variants
- Comparison to the literature
- BINGO analysis
- Panther analysis
3.3. Familial Analysis—BICD2 Gene
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horne, J.P.; Flannery, R.; Usman, S. Adolescent Idiopathic Scoliosis: Diagnosis and Management. Am. Fam. Physician 2014, 89, 193–198. [Google Scholar] [PubMed]
- Weinstein, S.L.; Dolan, L.A.; Cheng, J.C.; Danielsson, A.; Morcuende, J.A. Adolescent Idiopathic Scoliosis. Lancet 2008, 371, 1527–1537. [Google Scholar] [CrossRef] [PubMed]
- Altaf, F.; Gibson, A.; Dannawi, Z.; Noordeen, H. Adolescent Idiopathic Scoliosis. BMJ 2013, 346, f2508. [Google Scholar] [CrossRef]
- Miller, N.H. Cause and Natural History of Adolescent Idiopathic Scoliosis. Orthop. Clin. N. Am. 1999, 30, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Ragborg, L.C.; Dragsted, C.; Ohrt-Nissen, S.; Andersen, T.; Gehrchen, M.; Dahl, B. Health-Related Quality of Life in Patients 40 Years after Diagnosis of an Idiopathic Scoliosis. Bone Jt. J. 2023, 105, 166–171. [Google Scholar] [CrossRef]
- Theologis, A.A.; Wu, H.-H.; Diab, M. Thoracic Posterior Spinal Instrumented Fusion vs. Thoracic Anterior Spinal Tethering for Adolescent Idiopathic Scoliosis with a Minimum of 2-Year Follow-up: A Cost Comparison of Index and Revision Operations. Spine Deform. 2022, 11, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Terhune, E.A.; Wethey, C.I.; Cuevas, M.T.; Monley, A.M.; Baschal, E.E.; Bland, M.R.; Baschal, R.; Trahan, G.D.; Taylor, M.R.G.; Jones, K.L.; et al. Whole Exome Sequencing of 23 Multigeneration Idiopathic Scoliosis Families Reveals Enrichments in Cytoskeletal Variants, Suggests Highly Polygenic Disease. Genes 2021, 12, 922. [Google Scholar] [CrossRef]
- Zaydman, A.M.; Strokova, E.L.; Pahomova, N.Y.; Gusev, A.F.; Mikhaylovskiy, M.V.; Shevchenko, A.I.; Zaidman, M.N.; Shilo, A.R.; Subbotin, V.M. Etiopathogenesis of Adolescent Idiopathic Scoliosis: Review of the Literature and New Epigenetic Hypothesis on Altered Neural Crest Cells Migration in Early Embryogenesis as the Key Event. Med. Hypotheses 2021, 151, 110585. [Google Scholar] [CrossRef]
- Sheng, F.; Xia, C.; Xu, L.; Qin, X.; Tang, N.L.-S.; Qiu, Y.; Cheng, J.C.-Y.; Zhu, Z. New Evidence Supporting the Role of FBN1 in the Development of Adolescent Idiopathic Scoliosis. Spine 2019, 44, E225–E232. [Google Scholar] [CrossRef]
- De Salvatore, S.; Ruzzini, L.; Longo, U.G.; Marino, M.; Greco, A.; Piergentili, I.; Costici, P.F.; Denaro, V. Exploring the Association between Specific Genes and the Onset of Idiopathic Scoliosis: A Systematic Review. BMC Med. Genom. 2022, 15, 115. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, Y.; Huang, S.; Song, Y. The Susceptibility and Potential Functions of the LBX1 Gene in Adolescent Idiopathic Scoliosis. Front. Genet. 2020, 11, 614984. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, Z.; Qiu, G. Is Polymorphism of CALM1 Gene or Growth Hormone Receptor Gene Associated with Susceptibility to Adolescent Idiopathic Scoliosis? Zhonghua Yi Xue Za Zhi 2007, 87, 2198–2202. [Google Scholar] [PubMed]
- Einarsdottir, E.; Grauers, A.; Wang, J.; Jiao, H.; Escher, S.A.; Danielsson, A.; Simony, A.; Andersen, M.; Christensen, S.B.; Åkesson, K.; et al. CELSR2 Is a Candidate Susceptibility Gene in Idiopathic Scoliosis. PLoS ONE 2017, 12, e0189591. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, H.; Patten, S.A.; Aragon-Martin, J.A.; Ocaka, L.; Simpson, M.; Child, A.; Moldovan, F. Genetic Variant of TTLL11 Gene and Subsequent Ciliary Defects Are Associated with Idiopathic Scoliosis in a 5-Generation UK Family. Sci. Rep. 2021, 11, 11026. [Google Scholar] [CrossRef] [PubMed]
- Marie-Hardy, L.; Cantaut-Belarif, Y.; Pietton, R.; Slimani, L.; Pascal-Moussellard, H. The Orthopedic Characterization of Cfap298tm304 Mutants Validate Zebrafish to Faithfully Model Human AIS. Sci. Rep. 2021, 11, 7392. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Xu, L.; Xue, B.; Sheng, F.; Qiu, Y.; Zhu, Z. Rare Variant of HSPG2 Is Not Involved in the Development of Adolescent Idiopathic Scoliosis: Evidence from a Large-Scale Replication Study. BMC Musculoskelet. Disord. 2019, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Matsumoto, M.; Karasugi, T.; Watanabe, K.; Chiba, K.; Kawakami, N.; Tsuji, T.; Uno, K.; Suzuki, T.; Ito, M.; et al. Replication Study of the Association between Adolescent Idiopathic Scoliosis and Two Estrogen Receptor Genes. J. Orthop. Res. 2011, 29, 834–837. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.H. Idiopathic Scoliosis: Cracking the Genetic Code and What Does It Mean? J. Pediatr. Orthop. 2011, 31, S49–S52. [Google Scholar] [CrossRef] [PubMed]
- Baschal, E.E.; Terhune, E.A.; Wethey, C.I.; Baschal, R.M.; Robinson, K.D.; Cuevas, M.T.; Pradhan, S.; Sutphin, B.S.; Taylor, M.R.G.; Gowan, K.; et al. Idiopathic Scoliosis Families Highlight Actin-Based and Microtubule-Based Cellular Projections and Extracellular Matrix in Disease Etiology. G3 Genes Genomes Genet. 2018, 8, 2663–2672. [Google Scholar] [CrossRef]
- Otomo, N.; Lu, H.-F.; Koido, M.; Kou, I.; Takeda, K.; Momozawa, Y.; Kubo, M.; Kamatani, Y.; Ogura, Y.; Takahashi, Y.; et al. Polygenic Risk Score of Adolescent Idiopathic Scoliosis for Potential Clinical Use. J. Bone Miner. Res. 2021, 36, 1481–1491. [Google Scholar] [CrossRef]
- Haller, G.; Alvarado, D.; Mccall, K.; Yang, P.; Cruchaga, C.; Harms, M.; Goate, A.; Willing, M.; Morcuende, J.A.; Baschal, E.; et al. A Polygenic Burden of Rare Variants across Extracellular Matrix Genes among Individuals with Adolescent Idiopathic Scoliosis. Hum. Mol. Genet. 2016, 25, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Diab, M. Physical Examination in Adolescent Idiopathic Scoliosis. Neurosurg. Clin. N. Am. 2007, 18, 229–236. [Google Scholar] [CrossRef]
- Burton, M.S. Diagnosis and Treatment of Adolescent Idiopathic Scoliosis. Pediatr. Ann. 2013, 42, 224–228. [Google Scholar] [CrossRef] [PubMed]
- Kruse, L.M.; Buchan, J.G.; Gurnett, C.A.; Dobbs, M.B. Polygenic Threshold Model with Sex Dimorphism in Adolescent Idiopathic Scoliosis: The Carter Effect. J. Bone Jt. Surg. 2012, 94, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Gicking, A.M.; Hancock, W.O. High-Resolution Tracking of Dynein-Dynactin-BicD2 Complexes. Methods Mol. Biol. 2023, 2623, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Koboldt, D.C.; Waldrop, M.A.; Wilson, R.K.; Flanigan, K.M. The Genotypic and Phenotypic Spectrum of BICD2 Variants in Spinal Muscular Atrophy. Ann. Neurol. 2020, 87, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Carrera, L.A.; Wirth, B. Dominant Spinal Muscular Atrophy Is Caused by Mutations in BICD2, an Important Golgin Protein. Front. Neurosci. 2015, 9, 401. [Google Scholar] [CrossRef] [PubMed]
- Neveling, K.; Martinez-Carrera, L.A.; Hölker, I.; Heister, A.; Verrips, A.; Hosseini-Barkooie, S.M.; Gilissen, C.; Vermeer, S.; Pennings, M.; Meijer, R.; et al. Mutations in BICD2, Which Encodes a Golgin and Important Motor Adaptor, Cause Congenital Autosomal-Dominant Spinal Muscular Atrophy. Am. J. Hum. Genet. 2013, 92, 946–954. [Google Scholar] [CrossRef]
- Storbeck, M.; Horsberg Eriksen, B.; Unger, A.; Hölker, I.; Aukrust, I.; Martínez-Carrera, L.A.; Linke, W.A.; Ferbert, A.; Heller, R.; Vorgerd, M.; et al. Phenotypic Extremes of BICD2-Opathies: From Lethal, Congenital Muscular Atrophy with Arthrogryposis to Asymptomatic with Subclinical Features. Eur. J. Hum. Genet. 2017, 25, 1040–1048. [Google Scholar] [CrossRef]
- AlMekkawi, A.K.; Caruso, J.P.; El Ahmadieh, T.Y.; Palmisciano, P.; Aljardali, M.W.; Derian, A.G.; Al Tamimi, M.; Bagley, C.A.; Aoun, S.G. Single Nucleotide Polymorphisms and Adolescent Idiopathic Scoliosis: A Systematic Review and Meta-Analysis of the Literature. Spine 2023, 48, 695–701. [Google Scholar] [CrossRef]
- Ward, K.; Ogilvie, J.W.; Singleton, M.V.; Chettier, R.; Engler, G.; Nelson, L.M. Validation of DNA-Based Prognostic Testing to Predict Spinal Curve Progression in Adolescent Idiopathic Scoliosis. Spine 2010, 35, E1455–E1464. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Qin, X.; Sun, W.; Qiao, J.; Qiu, Y.; Zhu, Z. Replication of Association Between 53 Single-Nucleotide Polymorphisms in a DNA-Based Diagnostic Test and AIS Progression in Chinese Han Population. Spine 2016, 41, 306–310. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.L.; Julien, C.; Eveleigh, R.; Bourque, G.; Franco, A.; Labelle, H.; Grimard, G.; Parent, S.; Ouellet, J.; Mac-Thiong, J.-M.; et al. A Replication Study for Association of 53 Single Nucleotide Polymorphisms in ScoliScore Test with Adolescent Idiopathic Scoliosis in French-Canadian Population. Spine 2015, 40, 537–543. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Dai, Z.; Yuwen, W.; Liu, Z.; Qiu, Y.; Cheng, J.C.-Y.; Zhu, Z.; Xu, L. Genetic Variants of CHD7 Are Associated with Adolescent Idiopathic Scoliosis. Spine 2021, 46, E618–E624. [Google Scholar] [CrossRef] [PubMed]
- Akel, I.; Kocak, O.; Bozkurt, G.; Alanay, A.; Marcucio, R.; Acaroglu, E. The Effect of Calmodulin Antagonists on Experimental Scoliosis: A Pinealectomized Chicken Model. Spine 2009, 34, 533–538. [Google Scholar] [CrossRef]
- Lowe, T.; Lawellin, D.; Smith, D.; Price, C.; Haher, T.; Merola, A.; O’Brien, M. Platelet Calmodulin Levels in Adolescent Idiopathic Scoliosis: Do the Levels Correlate with Curve Progression and Severity? Spine 2002, 27, 768–775. [Google Scholar] [CrossRef] [PubMed]
- Acaroglu, E.; Akel, I.; Alanay, A.; Yazici, M.; Marcucio, R. Comparison of the Melatonin and Calmodulin in Paravertebral Muscle and Platelets of Patients with or without Adolescent Idiopathic Scoliosis. Spine 2009, 34, E659–E663. [Google Scholar] [CrossRef]
- Zhao, Y.; Qiu, G. Expression of Calmodulin and NNOS in the Paraspinal Muscles in Idiopathic Scoliosis. Zhonghua Yi Xue Za Zhi 2004, 84, 1358–1361. [Google Scholar]
- Zhao, D.; Qiu, G.; Wang, Y.; Zhang, J.; Shen, J.; Wu, Z.; Wang, H. Association of Calmodulin1 Gene Polymorphisms with Susceptibility to Adolescent Idiopathic Scoliosis. Orthop. Surg. 2009, 1, 58–65. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Z.; Qiu, G. The Association Study of Calmodulin 1 Gene Polymorphisms with Susceptibility to Adolescent Idiopathic Scoliosis. Biomed. Res. Int. 2014, 2014, 168106. [Google Scholar] [CrossRef]
- Huerto-Delgadillo, L.; Antón-Tay, F.; Benítez-King, G. Effects of Melatonin on Microtubule Assembly Depend on Hormone Concentration: Role of Melatonin as a Calmodulin Antagonist. J. Pineal Res. 1994, 17, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Benítez-King, G.; Antón-Tay, F. Calmodulin Mediates Melatonin Cytoskeletal Effects. Experientia 1993, 49, 635–641. [Google Scholar] [CrossRef]
- Caglayan, A.O.; Tuysuz, B.; Gül, E.; Alkaya, D.U.; Yalcinkaya, C.; Gleeson, J.G.; Bilguvar, K.; Gunel, M. Biallelic BICD2 Variant Is a Novel Candidate for Cohen-like Syndrome. J. Hum. Genet. 2022, 67, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Carrera, L.A.M.; Gabriel, E.; Donohoe, C.D.; Hölker, I.; Mariappan, A.; Storbeck, M.; Uhlirova, M.; Gopalakrishnan, J.; Wirth, B. Novel Insights into SMALED2: BICD2 Mutations Increase Microtubule Stability and Cause Defects in Axonal and NMJ Development. Hum. Mol. Genet. 2018, 27, 1772–1784. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.T.; Boswell, C.W.; Morante, N.F.C.; Henkelman, R.M.; Burdine, R.D.; Ciruna, B. Zebrafish Models of Idiopathic Scoliosis Link Cerebrospinal Fluid Flow Defects to Spine Curvature. Science 2016, 352, 1341–1344. [Google Scholar] [CrossRef] [PubMed]
- Faldini, C.; Manzetti, M.; Neri, S.; Barile, F.; Viroli, G.; Geraci, G.; Ursini, F.; Ruffilli, A. Epigenetic and Genetic Factors Related to Curve Progression in Adolescent Idiopathic Scoliosis: A Systematic Scoping Review of the Current Literature. Int. J. Mol. Sci. 2022, 23, 5914. [Google Scholar] [CrossRef] [PubMed]
- Marya, S.; Tambe, A.D.; Millner, P.A.; Tsirikos, A.I. Adolescent Idiopathic Scoliosis: A Review of Aetiological Theories of a Multifactorial Disease. Bone Jt. J. 2022, 104, 915–921. [Google Scholar] [CrossRef]
Found in SCOGEN datalist | ABCC1- AJAP1- CHD7- COL11A1- DLG1- DST- EPHA7- EPHB6- LRRK2- MACF1- MAGI1- MCM3- MTNR1A- NTF3- PAX3- PCDHA11- SEMA4C- TNIK- VANGL1 |
Not found in SCOGEN datalist | ABO- ADAMTSL2- ADGRG6- ADIPOQ- AKAP2- AKAP9- AQP2- ATP12A- ATRN- BLC2- BMP4- BNC2- BOC- C2CD3- CALM1- CCKBR- CDH13- CELSR2- CEP290- CHI3L1- COL11A2- COMP- CPEB1- CSF3R- DNAAF1- DNAH6- DNAH8- DNHD1- EGR1- EPHA4- EPS8- ESR1- ESR2- FAT3- FBN1- FBN2- FGFR1- FLRT2- FNLB- GJB4- GNGT2- GPR126- GPR50- GRID2- HGF- HHIP- IGF1- IL17RC- IL6- KCNJ2- KIF15- KIF6- LBX1- LEP- LEPR- LRP2- LTBP4- MAPK7- MATN1- MEIS1- MGA- MMP3- MTNR1B- NEDD4- NPHP4- NPY4R- NUCKS1- PAX1- PCDHA4- PITX1- POC5- PRMT5- PTK7- PTPRB- ROBO3- SCNN1A- SCO- SEC16B- SELPLG- SLC22A14- SLC26A7- SLC39A8- SNTG1- SOCS3- SOX6- SOX9- STAB1- SULT1C2- TBX6- TGFB1- TNFRSF10C- TPH1- TTLL11- ZMYND10 |
GO ID | GO Description | Corrected p-Value | Cluster Frequency |
---|---|---|---|
1882 | nucleoside binding | 6.6291 × 10−12 | 179/970 18.4% |
1883 | purine nucleoside binding | 6.6291 × 10−12 | 178/970 18.3% |
17076 | purine nucleotide binding | 6.6291 × 10−12 | 203/970 20.9% |
30554 | adenyl nucleotide binding | 9.4134 × 10−12 | 174/970 17.9% |
32553 | ribonucleotide binding | 1.7312 × 10−11 | 194/970 20.0% |
32555 | purine ribonucleotide binding | 1.7312 × 10−11 | 194/970 20.0% |
32559 | adenyl ribonucleotide binding | 3.0105 × 10−11 | 165/970 17.0% |
5524 | ATP binding | 1.1851 × 10−10 | 161/970 16.5% |
166 | nucleotide binding | 2.1163 × 10−9 | 217/970 22.3% |
3824 | catalytic activity | 9.1279 × 10−9 | 413/970 42.5% |
5488 | binding | 1.2959 × 10−7 | 846/970 87.2% |
5515 | protein binding | 1.3637 × 10−7 | 600/970 61.8% |
16887 | ATPase activity | 1.9803 × 10−5 | 44/970 4.5% |
17111 | nucleoside-triphosphatase activity | 1.9803 × 10−5 | 79/970 8.1% |
16462 | pyrophosphatase activity | 8.5471 × 10−5 | 79/970 8.1% |
16818 | hydrolase activity, acting on acid anhydrides, in phosphorus-containing anhydrides | 9.4250 × 10−5 | 79/970 8.1% |
16817 | hydrolase activity, acting on acid anhydrides | 1.0988 × 10−4 | 79/970 8.1% |
5516 | calmodulin binding | 1.4874 × 10−4 | 25/970 2.5% |
16772 | transferase activity, transferring phosphorus-containing groups | 1.4972 × 10−4 | 90/970 9.2% |
16301 | kinase activity | 1.4972 × 10−4 | 79/970 8.1% |
16787 | hydrolase activity | 2.7345 × 10−4 | 190/970 19.5% |
16773 | phosphotransferase activity, alcohol group as acceptor | 2.7345 × 10−4 | 73/970 7.5% |
42623 | ATPase activity, coupled | 6.2897 × 10−4 | 35/970 3.6% |
GO Cellular Component | Homo sapiens | SCOGEN | Expected | Fold-Enrichment | Corrected p Value |
---|---|---|---|---|---|
plasma membrane region | 1307 | 30 | 13.33 | 2.25 | 9.53 × 10−3 |
apical part of cell | 461 | 15 | 4.70 | 3.19 | 1.07 × 10−2 |
myosin II complex | 25 | 4 | 0.25 | 15.69 | 1.08 × 10−2 |
apical plasma membrane | 396 | 13 | 4.04 | 3.22 | 1.24 × 10−2 |
myosin complex | 57 | 5 | 0.58 | 8.60 | 1.26 × 10−2 |
neuron projection | 1366 | 28 | 13.93 | 2.01 | 1.31 × 10−2 |
muscle myosin complex | 15 | 3 | 0.15 | 19.61 | 1.51 × 10−2 |
specific granule | 159 | 7 | 1.62 | 4.32 | 1.57 × 10−2 |
cluster of actin-based cell projections | 166 | 7 | 1.69 | 4.13 | 1.68 × 10−2 |
cytosol | 5515 | 76 | 56.25 | 1.35 | 2.03 × 10−2 |
myosin filament | 24 | 3 | 0.24 | 12.26 | 2.13 × 10−2 |
dendrite | 625 | 15 | 6.37 | 2.35 | 2.17 × 10−2 |
plasma membrane | 5909 | 80 | 60.27 | 1.33 | 2.24 × 10−2 |
dendritic tree | 627 | 15 | 6.40 | 2.35 | 2.29 × 10−2 |
cell periphery | 6395 | 85 | 65.23 | 1.30 | 2.31 × 10−2 |
intracellular anatomical structure | 14,910 | 170 | 152.08 | 1.12 | 2.48 × 10−2 |
stereocilium | 56 | 4 | 0.57 | 7.00 | 2.59 × 10−2 |
vesicle tethering complex | 58 | 4 | 0.59 | 6.76 | 2.86 × 10−2 |
somatodendritic compartment | 862 | 18 | 8.79 | 2.05 | 3.13 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marie-Hardy, L.; Courtin, T.; Pascal-Moussellard, H.; Zakine, S.; Brice, A. The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways. Genes 2023, 14, 2094. https://doi.org/10.3390/genes14112094
Marie-Hardy L, Courtin T, Pascal-Moussellard H, Zakine S, Brice A. The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways. Genes. 2023; 14(11):2094. https://doi.org/10.3390/genes14112094
Chicago/Turabian StyleMarie-Hardy, Laura, Thomas Courtin, Hugues Pascal-Moussellard, Serge Zakine, and Alexis Brice. 2023. "The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways" Genes 14, no. 11: 2094. https://doi.org/10.3390/genes14112094
APA StyleMarie-Hardy, L., Courtin, T., Pascal-Moussellard, H., Zakine, S., & Brice, A. (2023). The Whole-Exome Sequencing of a Cohort of 19 Families with Adolescent Idiopathic Scoliosis (AIS): Candidate Pathways. Genes, 14(11), 2094. https://doi.org/10.3390/genes14112094