High Levels of Diversity in Anopheles Subgenus Kerteszia Revealed by Species Delimitation Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxon Sampling
2.2. DNA Barcodes
2.3. Exploratory Data Analysis
2.4. Phylogeny
2.5. Species Delimitation
3. Results
3.1. Phylogenetic Network and Tree
3.2. Species Delimitation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
Copyright Statement
References
- WHO. World Malaria Report 2021; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Grillet, M.E.; Moreno, J.E.; Hernández-Villena, J.V.; Vincenti-González, M.F.; Noya, O.; Tami, A.; Paniz-Mondolfi, A.; Llewellyn, M.; Lowe, R.; Escalante, A.A.; et al. Malaria in Southern Venezuela: The Hottest Hotspot in Latin America. PLoS Negl. Trop. Dis. 2021, 15, e0008211. [Google Scholar] [CrossRef] [PubMed]
- Grillet, M.E.; Hernández-Villena, J.V.; Llewellyn, M.S.; Paniz-Mondolfi, A.E.; Tami, A.; Vincenti-Gonzalez, M.F.; Marquez, M.; Mogollon-Mendoza, A.C.; Hernandez-Pereira, C.E.; Plaza-Morr, J.D.; et al. Venezuela’s Humanitarian Crisis, Resurgence of Vector-Borne Diseases, and Implications for Spillover in the Region. Lancet Infect. Dis. 2019, 19, e149–e161. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.C.; Baeza, A.; Codeço, C.T.; Cucunubá, Z.M.; Dal’Asta, A.P.; de Leo, G.A.; Dobson, A.P.; Carrasco-Escobar, G.; Lana, R.M.; Lowe, R.; et al. Development, Environmental Degradation, and Disease Spread in the Brazilian Amazon. PLoS Biol. 2019, 17, e3000526. [Google Scholar] [CrossRef] [Green Version]
- De Pina-Costa, A.; Brasil, P.; di Santi, S.M.; de Araujo, M.P.; Suárez-Mutis, M.C.; Santelli, A.C.F.e.S.; Oliveira-Ferreira, J.; Lourenço-de-Oliveira, R.; Daniel-Ribeiro, C.T. Malaria in Brazil: What Happens Outside the Amazonian Endemic Region. Mem. Inst. Oswaldo Cruz 2014, 109, 618–633. [Google Scholar] [CrossRef]
- Ribeiro de Castro Duarte, A.M.; Fernandes, L.N.; Silva, F.S.; Sicchi, I.L.; Mucci, L.F.; Curado, I.; Fernandes, A.; Medeiros-Sousa, A.R.; Ceretti-Junior, W.; Marrelli, M.T.; et al. Complexity of Malaria Transmission Dynamics in the Brazilian Atlantic Forest. Curr. Res. Parasitol. Vector-Borne Dis. 2021, 1, 100032. [Google Scholar] [CrossRef] [PubMed]
- Multini, L.C.; Wilke, A.B.B.; Marrelli, M.T. Neotropical Anopheles (Kerteszia) Mosquitoes Associated with Bromeliad-Malaria Transmission in a Changing World. Acta Trop. 2020, 205, 105413. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, P. From “Forest Malaria” to “Bromeliad Malaria”: A Case-Study of Scientific Controversy and Malaria Control. Parassitologia 1994, 36, 175–195. [Google Scholar]
- Downs, W.G.; Pittendrigh, C.S. Bromeliad Malaria in Trinidad, British West Indies. Am. J. Trop. Med. Hyg. 1946, 26, 47–66. [Google Scholar] [CrossRef]
- Griffing, S.M.; Tauil, P.L.; Udhayakumar, V.; Silva-Flannery, L. A Historical Perspective on Malaria Control in Brazil. Mem. Inst. Oswaldo Cruz 2015, 110, 701–718. [Google Scholar] [CrossRef] [Green Version]
- Downs, W.G.; Gillette, H.P.S.; Shannon, R.C. A Malaria Survey of Trinidad and Tobago, British West Indies. J. Natl. Malar. Soc. 1943, 2 (Suppl. 1), 1–44. [Google Scholar]
- Gillette, H.P.S. Malaria in Trinidad, Its Investigation and Control…past, Present and Future. Mosq. News 1953, 13, 66–72. [Google Scholar]
- Wilkerson, R.C.; Linton, Y.-M.; Strickman, D. Mosquitoes of the World; Johns Hopkins University Press: Baltimore, MD, USA, 2021; Volume 1–2. [Google Scholar]
- Deane, L.M. Malaria Vectors in Brazil. Mem. Inst. Oswaldo Cruz 1986, 81 (Suppl. 2), 5–14. [Google Scholar] [CrossRef] [Green Version]
- Laporta, G.Z.; Burattini, M.N.; Levy, D.; Fukuya, L.A.; de Oliveira, T.M.P.; Maselli, L.M.F.; Conn, J.E.; Massad, E.; Bydlowski, S.P.; Sallum, M.A.M. Plasmodium Falciparum in the Southeastern Atlantic Forest: A Challenge to the Bromeliad-Malaria Paradigm? Malar. J. 2015, 14, 181. [Google Scholar] [CrossRef]
- Gutiérrez, L.A.; Naranjo, N.; Jaramillo, L.M.; Muskus, C.; Luckhart, S.; Conn, J.E.; Correa, M.M. Natural Infectivity of Anopheles Species from the Pacific and Atlantic Regions of Colombia. Acta Trop. 2008, 107, 99–105. [Google Scholar] [CrossRef]
- Kirchgatter, K.; de Oliveira Guimarães, L.; Hugo Yañez Trujillano, H.; Rafael Arias, F.; Cáceres, A.G.; de Castro Duarte, A.M.R.; dos Santos Malafronte, R.; Tubaki, R.M.; Mureb Sallum, M.A. Phylogeny of Anopheles (Kerteszia) (Diptera: Culicidae) Using Mitochondrial Genes. Insects 2020, 11, 324. [Google Scholar] [CrossRef]
- Oliveira, T.M.P.; Foster, P.G.; Bergo, E.S.; Nagaki, S.S.; Sanabani, S.S.; Marinotti, O.; Marinotti, P.N.; Sallum, M.A.M. Mitochondrial Genomes of Anopheles (Kerteszia) (Diptera: Culicidae) from the Atlantic Forest, Brazil. J. Med. Entomol. 2016, 53, 790–797. [Google Scholar] [CrossRef]
- Rona, L.D.P.; Carvalho-Pinto, C.J.; Peixoto, A.A. Evidence for the Occurrence of Two Sympatric Sibling Species within the Anopheles (Kerteszia) Cruzii Complex in Southeast Brazil and the Detection of Asymmetric Introgression between Them Using a Multilocus Analysis. BMC Evol. Biol. 2013, 13, 207. [Google Scholar] [CrossRef] [Green Version]
- Ahumada, M.L.; Orjuela, L.I.; Pareja, P.X.; Conde, M.; Cabarcas, D.M.; Cubillos, E.F.G.; Lopez, J.A.; Beier, J.C.; Herrera, S.; Quiñones, M.L. Spatial Distributions of Anopheles Species in Relation to Malaria Incidence at 70 Localities in the Highly Endemic Northwest and South Pacific Coast Regions of Colombia. Malar. J. 2016, 15, 407. [Google Scholar] [CrossRef] [Green Version]
- Sallum, M.A.M.; dos Santos, C.L.S.; Wilkerson, R.C. Studies on Anopheles (Kerteszia) Homunculus Komp (Diptera: Culicidae). Zootaxa 2009, 2299, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kapli, P.; Lutteropp, S.; Zhang, J.; Kobert, K.; Pavlidis, P.; Stamatakis, A.; Flouri, T. Multi-Rate Poisson Tree Processes for Single-Locus Species Delimitation under Maximum Likelihood and Markov Chain Monte Carlo. Bioinformatics 2017, 33, 1630–1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble Species by Automatic Partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Ratnasingham, S.; Hebert, P.D.N. A DNA-Based Registry for All Animal Species: The Barcode Index Number (BIN) System. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavortink, T.J. Mosquito Studies (Diptera: Culicidae) XXIX. A Review of the Subgenus Kerteszia of Anopheles. Contrib. Am. Entomol. Inst. 1973, 9, 1–54. [Google Scholar]
- Harrison, B.A.; Ruiz-Lopez, F.; Falero, G.C.; Savage, H.M.; Pecor, J.E.; Wilkerson, R.C. Anopheles (Kerteszia) Lepidotus (Diptera: Culicidae), Not the Malaria Vector We Thought It Was: Revised Male and Female Morphology; Larva, Pupa, and Male Genitalia Characters; and Molecular Verification. Zootaxa 2012, 3218, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cova Garcia, P.; Pulido, F.J.; Escalante de Ugueto, C. Anopheles (Kerteszia) Gonzálezrinconesi n. Sp. (Diptera, Culicidae) de Venezuela. Boletín Dir. Malariol. Saneam. Ambient. 1977, 17, 140–149. [Google Scholar]
- Folmer, O.; Black, M.; Hoeh, W.; Lutz, R.; Vrijenhoek, R. DNA Primers for Amplification of Mitochondrial Cytochrome c oxidase Subunit I from Diverse Metazoan Invertebrates. Mol. Mar. Biol. Biotechnol. 1994, 3, 294–299. [Google Scholar] [PubMed]
- Ruiz-Lopez, F.; Wilkerson, R.C.; Conn, J.E.; McKeon, S.N.; Levin, D.M.; Quiñones, M.L.; Póvoa, M.M.; Linton, Y.-M. DNA Barcoding Reveals Both Known and Novel Taxa in the Albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical Malaria Vectors. Parasit. Vectors 2012, 5, 44. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Muscle: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouy, M.; Guindon, S.; Gascuel, O. SeaView Version 4: A Multiplatform Graphical User Interface for sequence Alignment and Phylogenetic Tree Building. Mol. Biol. Evol. 2010, 27, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Abascal, F.; Zardoya, R.; Telford, M.J. TranslatorX: Multiple Alignment of Nucleotide Sequences Guided by Amino Acid Translations. Nucleic Acids Res. 2010, 38, W7–W13. [Google Scholar] [CrossRef] [Green Version]
- Huson, D.H.; Bryant, D. Application of Phylogenetic Networks in Evolutionary Studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef] [PubMed]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grant, T. Outgroup Sampling in Phylogenetics: Severity of Test and Successive Outgroup Expansion. J. Zool. Syst. Evol. Res. 2019, 57, 748–763. [Google Scholar] [CrossRef]
- Cywinska, A.; Hunter, F.F.; Hebert, P.D.N. Identifying Canadian Mosquito Species through DNA Barcodes. Med. Vet. Entomol. 2006, 20, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.P.; Rajavel, A.R.; Natarajan, R.; Jambulingam, P. DNA Barcodes Can Distinguish Species of Indian Mosquitoes (Diptera: Culicidae). J. Med. Entomol. 2007, 44, 01–07. [Google Scholar] [CrossRef]
- Wang, G.; Li, C.; Guo, X.; Xing, D.; Dong, Y.; Wang, Z.; Zhang, Y.; Liu, M.; Zheng, Z.; Zhang, H.; et al. Identifying the Main Mosquito Species in China Based on DNA Barcoding. PLoS ONE 2012, 7, e47051. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.N.; Ratnasingham, S.; DeWaard, J.R. Barcoding Animal Life: Cytochrome c Oxidase Subunit 1 Divergences among Closely Related Species. Proc. R. Soc. B Biol. Sci. 2003, 270 (Suppl. 1), S96–S99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huemer, P.; Mutanen, M.; Sefc, K.M.; Hebert, P.D.N. Testing DNA Barcode Performance in 1000 Species of European Lepidoptera: Large Geographic Distances Have Small Genetic Impacts. PLoS ONE 2014, 9, e115774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza Lopes, O.; Forattini, O.P.; Fonseca, I.E.; Lacerda, J.P.; Sacchetta, L.A.; Rabello, E.X. Boracéia Virus. A New Virus Related to Anopheles B Virus. Proc. Soc. Exp. Biol. Med. 1966, 123, 502–504. [Google Scholar] [CrossRef]
- De Souza Lopes, O.; de Abreu Sacchetta, L. Epidemiology of Boraceia Virus in a Forested Area in São Paulo, Brazil. Am. J. Epidemiol. 1974, 100, 410–413. [Google Scholar] [CrossRef]
- Silva-do-Nascimento, T.F.; Sánchez-Ribas, J.; Oliveira, T.M.P.; Bourke, B.P.; Oliveira-Ferreira, J.; Rosa-Freitas, M.G.; Lourenço-de-Oliveira, R.; Marinho-E-Silva, M.; Neves, M.S.A.S.; Conn, J.E.; et al. Molecular Analysis Reveals a High Diversity of Anopheline Mosquitoes in Yanomami Lands and the Pantanal Region of Brazil. Genes 2021, 12, 1995. [Google Scholar] [CrossRef] [PubMed]
- Talaga, S.; Leroy, C.; Guidez, A.; Dusfour, I.; Girod, R.; Dejean, A.; Murienne, J. DNA Reference Libraries of French Guianese Mosquitoes for Barcoding and Metabarcoding. PLoS ONE 2017, 12, e0176993. [Google Scholar] [CrossRef] [Green Version]
- Carvajal, H.; de Herrera, M.A.; Quintero, J.; Alzate, A.; Herrera, S. Anopheles Neivai: A Vector of Malaria in the Pacific Lowlands of Colombia. Trans. R Soc. Trop. Med. Hyg. 1989, 83, 609. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.H.; Sanmartin, C. Isolations of Guaroa Virus from Anopheles (Kerteszia) Neivai in the Pacific Lowlands of Colombia. Am. J. Trop. Med. Hyg. 1967, 16, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, P.V.; Morrison, A.C.; Rocha, C.; Watts, D.M.; Beingolea, L.; Suarez, V.; Vargas, J.; Cruz, C.; Guevara, C.; Montgomery, J.M.; et al. Guaroa Virus Infection among Humans in Bolivia and Peru. Am. J. Trop. Med. Hyg. 2010, 83, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Siles, C.; Elson, W.H.; Vilcarromero, S.; Morrison, A.C.; Hontz, R.D.; Alava, F.; Valdivia, H.; Felices, V.; Guevara, C.; Jenkins, S.; et al. Guaroa Virus and Plasmodium Vivax Co-Infections, Peruvian Amazon. Emerg. Infect. Dis. 2020, 26, 731–737. [Google Scholar] [CrossRef] [Green Version]
- De Rodaniche, E.; Galindo, P.; Johnson, C.M. Isolation of Yellow Fever Virus from Haemagogus Lucifer, H. Equinus, H. Spegazzinii Falco, Sabethes Chloropterus and Anopheles Neivai Captured in Panama in the Fall of 1956. Am. J. Trop. Med. Hyg. 1957, 6, 681–685. [Google Scholar] [CrossRef]
- López-Rubio, A.; Suaza-Vasco, J.; Marcet, P.L.; Ruíz-Molina, N.; Cáceres, L.; Porter, C.; Uribe, S. Use of DNA Barcoding to Distinguish the Malaria Vector Anopheles Neivai in Colombia. Zootaxa 2016, 4175, 377–389. [Google Scholar] [CrossRef] [Green Version]
- Forattini, O.P.; Kakitani, I.; Santos, R.L.; Ueno, H.M.; Kobayashi, K.M. Role of Anopheles (Kerteszia) Bellator as Malaria Vector in Southeastern Brazil (Diptera: Culicidae). Mem. Inst. Oswaldo Cruz 1999, 94, 715–718. [Google Scholar] [CrossRef] [Green Version]
- Marrelli, M.T.; Malafronte, R.S.; Sallum, M.A.; Natal, D. Kerteszia Subgenus of Anopheles Associated with the Brazilian Atlantic Rainforest:Current Knowledge and Future Challenges. Malar. J. 2007, 6, 127. [Google Scholar] [CrossRef]
- Rosero-GarcÍa, D.; Bickersmith, S.A.; Suaza-Vasco, J.D.; Porter, C.; Correa, M.M.; Conn, J.E.; Uribe-Soto, S. Molecular Operational Taxonomic Units of Mosquitoes (Diptera: Culicidae) Collected in High Andean Mountain Ecosystems of Antioquia, Colombia. Zootaxa 2017, 4277, 369–385. [Google Scholar] [CrossRef] [PubMed]
- Clark, G.C.; Rubio-Palis, Y. Mosquito Vector Biology and Control in Latin America—A 20th Symposium. J. Am. Mosq. Control Assoc. 2010, 26, 306–320. [Google Scholar] [CrossRef] [PubMed]
- Reagan, R.L.; Strand, N.; Brueckner, A.L. Comparison by Electron Microscopy of Anopheles A and Anopheles B Viruses. Tex. Rep. Biol. Med. 1953, 11, 508–511. [Google Scholar] [PubMed]
- Ghassemi-Khademi, T.; Oshaghi, M.A.; Vatandoost, H.; Madjdzadeh, S.M.; Gorouhi, M.A. Utility of Complete Mitochondrial Genomes in Phylogenetic Classification of the Species of Anopheles (Culicidae: Anophelinae). J. Arthropod Borne Dis. 2021, 15, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Elias, M.; Hill, R.I.; Willmott, K.R.; Dasmahapatra, K.K.; Brower, A.V.Z.; Mallet, J.; Jiggins, C.D. Limited Performance of DNA Barcoding in a Diverse Community of Tropical Butterflies. Proc. Biol. Sci. 2007, 274, 2881–2889. [Google Scholar] [CrossRef] [PubMed]
- Funk, D.J.; Omland, K.E. Species-Level Paraphyly and Polyphyly: Frequency, Causes, and Consequences, with Insights from Animal Mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 397–423. [Google Scholar] [CrossRef] [Green Version]
- Degnan, J.H.; Rosenberg, N.A. Gene Tree Discordance, Phylogenetic Inference and the Multispecies Coalescent. Trends Ecol. Evol. 2009, 24, 332–340. [Google Scholar] [CrossRef]
Species/Taxon | Distribution (by Country) | Type Locality of Sensu Stricto | Type Coordinates | Type Species BOLD BIN | Species Delimitation Clusters | ||
---|---|---|---|---|---|---|---|
Latitude | Longitude | ASAP | BOLD BIN | ||||
Neivai complex | Belize, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, El Salvador, French Guiana, Guatemala, Guyana, Mexico, Nicaragua, Panama, Peru, Suriname, Venezuela | Portobelo, Panama | 9.554444 | −79.655 | BOLD:AAN2775 | 8 | 9 * |
Anopheles cruzii | Argentina, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, French Guiana, Guyana, Mexico, Panama, Peru, Suriname, Venezuela | Rio de Janeiro, Brazil | −22.9 | −43.2 | BOLD:AAG3843 | 1 | 1 |
Laneanus complex | Argentina, Bolivia, Brazil, Peru | Campos do Jordão, São Paulo Brazil | −22.738889 | −45.590833 | BOLD:AAN3565 | 2 | 2 |
Bellator complex | Brazil, Guyana, Suriname, Trinidad and Tobago, Venezuela | Trinidad and Tobago | 10.460556 | −61.248611 | BOLD:AAJ2798 | 2 | 2 |
Homunculus complex | Bolivia, Brazil, Colombia, French Guiana, Guyana, Peru, Trinidad and Tobago, Venezuela | Restrepo, Meta, Colombia | 4.262333 | −73.564091 | n/a | 1 | 2 |
Boliviensis complex | Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname, Venezuela | Songo, Bolivia | −16.100884 | −68.051994 | n/a | 3 | 3 |
Rollai complex | Venezuela | Mata Mulas, Táchira, Venezuela | 7.62935 | −72.45209 | n/a | 3 | 5 |
(Unknown locality), Barinas, Venezuela | unknown | unknown | |||||
Pholidotus complex | Bolivia, Colombia, Costa Rica, Ecuador, Panama, Peru, Venezuela | La Zorra, Bocas del Toro, Panama | 9.340556 | −82.240556 | n/a | 4 | 4 |
Anopheles bambusicolus | Argentina, Bolivia, Brazil, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname, Venezuela | La Unión, Meta, Colombia | 3.42787 | −73.82803 | n/a | 1 | 1 |
Anopheles lepidotus | Bolivia, Colombia, Ecuador, Peru | Restrepo, Meta, Colombia | 4.262333 | −73.564091 | n/a | 1 | 1 |
Other: | |||||||
Kerteszia sp. | Colombia | n/a | n/a | 2 | 2 | ||
Total | 28 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bourke, B.P.; Wilkerson, R.C.; Ruiz-Lopez, F.; Justi, S.A.; Pecor, D.B.; Quinones, M.L.; Navarro, J.-C.; Ormaza, J.A.; Ormaza, J.A., Jr.; González, R.; et al. High Levels of Diversity in Anopheles Subgenus Kerteszia Revealed by Species Delimitation Analyses. Genes 2023, 14, 344. https://doi.org/10.3390/genes14020344
Bourke BP, Wilkerson RC, Ruiz-Lopez F, Justi SA, Pecor DB, Quinones ML, Navarro J-C, Ormaza JA, Ormaza JA Jr., González R, et al. High Levels of Diversity in Anopheles Subgenus Kerteszia Revealed by Species Delimitation Analyses. Genes. 2023; 14(2):344. https://doi.org/10.3390/genes14020344
Chicago/Turabian StyleBourke, Brian P., Richard C. Wilkerson, Fredy Ruiz-Lopez, Silvia A. Justi, David B. Pecor, Martha L. Quinones, Juan-Carlos Navarro, Joubert Alarcón Ormaza, Joubert Alarcón Ormaza, Jr., Ranulfo González, and et al. 2023. "High Levels of Diversity in Anopheles Subgenus Kerteszia Revealed by Species Delimitation Analyses" Genes 14, no. 2: 344. https://doi.org/10.3390/genes14020344
APA StyleBourke, B. P., Wilkerson, R. C., Ruiz-Lopez, F., Justi, S. A., Pecor, D. B., Quinones, M. L., Navarro, J. -C., Ormaza, J. A., Ormaza, J. A., Jr., González, R., Flores-Mendoza, C., Castro, F., Escovar, J. E., & Linton, Y. -M. (2023). High Levels of Diversity in Anopheles Subgenus Kerteszia Revealed by Species Delimitation Analyses. Genes, 14(2), 344. https://doi.org/10.3390/genes14020344