Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Study Population
2.3. Imputation
2.4. Quality Control
2.5. Genetic Analyses
2.6. Data Availability
3. Results
3.1. Bayesian Analysis Defined Nineteen Genetic Loci
3.2. Selection Signature Analysis Defined Three Regions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brachycephalic Working Group. The 2020 Pug Breed Health and Conservation Plans (BHCPs). 2020. Available online: http://www.ukbwg.org.uk/wp-content/uploads/2020/05/Pug_BHCP_2020.pdf (accessed on 9 August 2022).
- O’Neill, D.G.; Sahota, J.; Brodbelt, D.C.; Church, D.B.; Packer, R.M.A.; Pegram, C. Health of Pug dogs in the UK: Disorder predispositions and protections. Canine Med. Genet. 2022, 9, 4. [Google Scholar] [CrossRef]
- Fisher, S.C.; Shores, A.; Simpson, S.T. Constrictive myelopathy secondary to hypoplasia or aplasia of the thoracolumbar caudal articular processes in pugs: 11 cases (1993–2009). J. Am. Vet. Med. Assoc. 2013, 242, 223–229. [Google Scholar] [CrossRef]
- Rohdin, C.; Häggström, J.; Ljungvall, I.; Nyman Lee, H.; De Decker, S.; Bertram, S.; Lindblad-Toh, K.; Hultin Jäderlund, K. Presence of thoracic and lumbar vertebral malformations in pugs with and without chronic neurological deficits. Vet. J. 2018, 241, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Alisauskaite, N.; Cizinauskas, S.; Jeserevics, J.; Rakauskas, M.; Cherubini, G.B.; Anttila, M.; Steffen, F. Short- and long-term outcome and magnetic resonance imaging findings after surgical treatment of thoracolumbar spinal arachnoid diverticula in 25 Pugs. J. Vet. Intern. Med. 2019, 33, 1376–1383. [Google Scholar] [CrossRef]
- Driver, C.J.; Rose, J.; Tauro, A.; Fernandes, R.; Rusbridge, C. Magnetic resonance image findings in pug dogs with thoracolumbar myelopathy and concurrent caudal articular process dysplasia. BMC Vet. Res. 2019, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Lourinho, F.; Holdsworth, A.; McConnell, J.F.; Gonçalves, R.; Gutierrez-Quintana, R.; Morales, C.; Lowrie, M.; Trevail, R.; Carrera, I. Clinical features and MRI characteristics of presumptive constrictive myelopathy in 27 pugs. Vet. Radiol. Ultrasound 2020, 61, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Rohdin, C.; Ljungvall, I.; Häggström, J.; Leijon, A.; Lindblad-Toh, K.; Matiasek, K.; Rosati, M.; Wohlsein, P.; Hultin Jäderlund, K. Thoracolumbar meningeal fibrosis in pugs. J. Vet. Intern. Med. 2020, 34, 797–807. [Google Scholar] [CrossRef]
- Moser, G.; Lee, S.H.; Hayes, B.J.; Goddard, M.E.; Wray, N.R.; Visscher, P.M. Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model. PLoS Genet. 2015, 11, e1004969. [Google Scholar] [CrossRef]
- Sabeti, P.C.; Reich, D.E.; Higgins, J.M.; Levine, H.Z.P.; Richter, D.J.; Schaffner, S.F.; Gabriel, S.B.; Platko, J.V.; Patterson, N.J.; McDonald, G.J.; et al. Detecting recent positive selection in the human genome from haplotype structure. Nature 2002, 419, 832–837. [Google Scholar] [CrossRef]
- Sabeti, P.C.; Varilly, P.; Fry, B.; Lohmueller, J.; Hostetter, E.; Cotsapas, C.; Xie, X.; Byrne, E.H.; McCarroll, S.A.; Gaudet, R. Genome-wide detection and characterization of positive selection in human populations. Nature 2007, 449, 913–918. [Google Scholar] [CrossRef] [Green Version]
- Hoeppner, M.P.; Lundquist, A.; Pirun, M.; Meadows, J.R.S.; Zamani, N.; Johnson, J.; Sundström, G.; Cook, A.; FitzGerald, M.G.; Swofford, R. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts. PLoS ONE 2014, 9, e91172. [Google Scholar] [CrossRef]
- Delaneau, O.; Marchini, J.; Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 2012, 9, 179–181. [Google Scholar] [CrossRef]
- Howie, B.N.; Donnelly, P.; Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 2009, 5, e1000529. [Google Scholar] [CrossRef]
- Chang, C.C.; Chow, C.C.; Tellier, L.C.A.M.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867–2873. [Google Scholar] [CrossRef]
- Ihaka, R.; Gentleman, R. R: A Language for Data Analysis and Graphics. J. Comput. Graph. Stat. 1996, 5, 299–314. [Google Scholar] [CrossRef]
- Gogarten, S.M.; Bhangale, T.; Conomos, M.P.; Laurie, C.A.; McHugh, C.P.; Painter, I.; Zheng, X.; Crosslin, D.R.; Levine, D.; Lumley, T.; et al. GWASTools: An R/Bioconductor package for quality control and analysis of genome-wide association studies. Bioinformatics 2012, 28, 3329–3331. [Google Scholar] [CrossRef] [PubMed]
- Gogarten, S.M.; Sofer, T.; Chen, H.; Yu, C.; Brody, J.A.; Thornton, T.A.; Rice, K.M.; Conomos, M.P. Genetic association testing using the GENESIS R/Bioconductor package. Bioinformatics 2019, 35, 5346–5348. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Levine, D.; Shen, J.; Gogarten, S.M.; Laurie, C.; Weir, B.S. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 2012, 28, 3326–3328. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Scheet, P.; Stephens, M. A fast and flexible statistical model for large-scale population genotype data: Applications to inferring missing genotypes and haplotypic phase. Am. J. Hum. Genet. Genet. 2006, 78, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Gautier, M.; Vitalis, R. rehh: An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 2012, 28, 1176–1177. [Google Scholar] [CrossRef] [PubMed]
- Gautier, M.; Klassmann, A.; Vitalis, R. rehh 2.0: A reimplementation of the R package rehh to detect positive selection from haplotype structure. Mol. Ecol. Resour. 2017, 17, 78–90. [Google Scholar] [CrossRef]
- Coudert, A.E.; Del Fattore, A.; Baulard, C.; Olaso, R.; Schiltz, C.; Collet, C.; Teti, A.; De Vernejoul, M.C. Differentially expressed genes in autosomal dominant osteopetrosis type II osteoclasts reveal known and novel pathways for osteoclast biology. Lab. Investig. 2014, 94, 275–285. [Google Scholar] [CrossRef]
- Mosig, R.A.; Dowling, O.; DiFeo, A.; Ramirez, M.C.M.; Parker, I.C.; Abe, E.; Diouri, J.; Al Aqeel, A.; Wylie, J.D.; Oblander, S.A. Loss of MMP-2 disrupts skeletal and craniofacial development and results in decreased bone mineralization, joint erosion and defects in osteoblast and osteoclast growth. Hum. Mol. Genet. 2007, 16, 1113–1123. [Google Scholar] [CrossRef] [PubMed]
- Mosig, R.A.; Martignetti, J.A. Loss of MMP-2 in murine osteoblasts upregulates osteopontin and bone sialoprotein expression in a circuit regulating bone homeostasis. DMM Dis. Model. Mech. 2013, 6, 397–403. [Google Scholar] [CrossRef]
- Paic, F.; Igwe, J.C.; Nori, R.; Kronenberg, M.S.; Franceschetti, T.; Harrington, P.; Kuo, L.; Shin, D.G.; Rowe, D.W.; Harris, S.E.; et al. Identification of differentially expressed genes between osteoblasts and osteocytes. Bone 2009, 45, 682–692. [Google Scholar] [CrossRef]
- Jia, T.; Lao, J. Bioinformatics Analyses of Regulatory Network of Biomarkers in Chondrocytes from Patients with Osteoarthritis. Braz. Arch. Biol. Technol. 2022, 65. [Google Scholar] [CrossRef]
- Boer, C.; de Kruijf, M.; Broer, L.; Hofman, A.; Uitterlinden, A.; van Meurs, J. Novel susceptability loci for osteoarthritis of the hand: Variants in coding EN GENE regulatory regions. Osteoarthr. Cartil. 2015, 23, A196. [Google Scholar] [CrossRef]
- Mesner, L.D.; Ray, B.; Hsu, Y.-H.; Manichaikul, A.; Lum, E.; Bryda, E.C.; Rich, S.S.; Rosen, C.J.; Criqui, M.H.; Allison, M.; et al. Bicc1 is a genetic determinant of osteoblastogenesis and bone mineral density. J. Clin. Investig. 2014, 124, 2736–2749. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, T.; Iwasawa, M.; Nakashima, T.; Mori, S.; Shigemoto, K.; Nakamura, H.; Katagiri, H.; Takayanagi, H.; Tanaka, S. Intracellular and extracellular ATP coordinately regulate the inverse correlation between osteoclast survival and bone resorption. J. Biol. Chem. 2012, 287, 37808–37823. [Google Scholar] [CrossRef] [Green Version]
- Itzstein, C.; Coxon, F.P.; Rogers, M.J. The regulation of osteoclast function and bone resorption by small GTPases. Small GTPases 2011, 2, 117–130. [Google Scholar] [CrossRef]
- Ory, S.; Brazier, H.; Pawlak, G.; Blangy, A. Rho GTPases in osteoclasts: Orchestrators of podosome arrangement. Eur. J. Cell Biol. 2008, 87, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, X.; Lotz, M.; Terkeltaub, R.; Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 2015, 67, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Bu, Y.; Zhu, B.; Zhao, Q.; Lv, Z.; Li, B.; Liu, J. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Jt. Res. 2018, 7, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, T.; He, F.; Chen, A.C.; Yang, H.; Zhu, X. Identification of Key Genes and Pathways Associated with Differences of Subchondral Bone in Osteoarthritis. 2020; preprint. [Google Scholar] [CrossRef]
- Zhou, X.; Trinh-Minh, T.; Tran-Manh, C.; Gießl, A.; Bergmann, C.; Györfi, A.-H.; Schett, G.; Distler, J.H.W. Impaired Mitochondrial Transcription Factor A Expression Promotes Mitochondrial Damage to Drive Fibroblast Activation and Fibrosis in Systemic Sclerosis. Arthritis Rheumatol. 2022, 74, 871–881. [Google Scholar] [CrossRef]
- Ory, S.; Brazier, H.; Blangy, A. Identification of a bipartite focal adhesion localization signal in RhoU/Wrch-1, a Rho family GTPase that regulates cell adhesion and migration. Biol. Cell 2007, 99, 701–716. [Google Scholar] [CrossRef]
- Schindler, S.M.; Frank, M.G.; Annis, J.L.; Maier, S.F.; Klegeris, A. Pattern recognition receptors mediate pro-inflammatory effects of extracellular mitochondrial transcription factor A (TFAM). Mol. Cell. Neurosci. 2018, 89, 71–79. [Google Scholar] [CrossRef]
- Saito, H.; Gasser, A.; Bolamperti, S.; Maeda, M.; Matthies, L.; Jähn, K.; Long, C.L.; Schlüter, H.; Kwiatkowski, M.; Saini, V. TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nat. Commun. 2019, 10, 1354. [Google Scholar] [CrossRef]
- Eichholz, K.F.; Woods, I.; Riffault, M.; Johnson, G.P.; Corrigan, M.; Lowry, M.C.; Shen, N.; Labour, M.N.; Wynne, K.; O’Driscoll, L.; et al. Human bone marrow stem/stromal cell osteogenesis is regulated via mechanically activated osteocyte-derived extracellular vesicles. Stem Cells Transl. Med. 2020, 9, 1431–1447. [Google Scholar] [CrossRef]
- Chen, L.; Jiang, C.; Tiwari, S.R.; Shrestha, A.; Xu, P.; Liang, W.; Sun, Y.; He, S.; Cheng, B. TGIF1 gene silencing in tendon-derived stem cells improves the tendon-to-bone insertion site regeneration. Cell. Physiol. Biochem. 2015, 37, 2101–2114. [Google Scholar] [CrossRef]
- Kimura, M.Y.; Koyama-Nasu, R.; Yagi, R.; Nakayama, T. A new therapeutic target: The CD69-Myl9 system in immune responses. Semin. Immunopathol. 2019, 41, 349–358. [Google Scholar] [CrossRef] [PubMed]
- Vacher, J.; Bruccoleri, M.; Pata, M. Ostm1 from mouse to human: Insights into osteoclast maturation. International Journal of Mol. Sci. 2020, 21, 5600. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.F.; Gulati, G.S.; Sinha, R.; Tompkins, J.V.; Lopez, M.; Carter, A.C.; Ransom, R.C.; Reinisch, A.; Wearda, T.; Murphy, M.; et al. Identification of the Human Skeletal Stem Cell. Cell 2018, 175, 43–56. [Google Scholar] [CrossRef] [PubMed]
- Jasenc, L.; Stražar, K.; Mihelič, A.; Mihalič, R.; Trebše, R.; Haring, G.; Jeras, M.; Zupan, J. In Vitro Characterization of the Human Skeletal Stem Cell-like Properties of Primary Bone-Derived Mesenchymal Stem/Stromal Cells in Patients with Late and Early Hip Osteoarthritis. Life 2022, 12, 899. [Google Scholar] [CrossRef]
- Tajuddin, S.M.; Schick, U.M.; Eicher, J.D.; Chami, N.; Giri, A.; Brody, J.A.; Hill, W.D.; Kacprowski, T.; Li, J.; Lyytikäinen, L.P.; et al. Large-Scale Exome-wide Association Analysis Identifies Loci for White Blood Cell Traits and Pleiotropy with Immune-Mediated Diseases. Am. J. Hum. Genet. 2016, 99, 22–39. [Google Scholar] [CrossRef]
- Kowanetz, M.; Valcourt, U.; Bergström, R.; Heldin, C.-H.; Moustakas, A. Id2 and Id3 Define the Potency of Cell Proliferation and Differentiation Responses to Transforming Growth Factor β and Bone Morphogenetic Protein. Mol. Cell. Biol. 2004, 24, 4241–4254. [Google Scholar] [CrossRef]
- Huynh, N.P.T.; Gloss, C.C.; Lorentz, J.; Tang, R.; Brunger, J.M.; McAlinden, A.; Zhang, B.; Guilak, F. Long non-coding rna graslnd enhances chondrogenesis via suppression of interferon type II signaling pathway. Elife 2020, 9, e49558. [Google Scholar] [CrossRef]
- He, P.; Zhang, Z.; Liao, W.; Xu, D.; Fu, M.; Kang, Y. Screening of gene signatures for rheumatoid arthritis and osteoarthritis based on bioinformatics analysis. Mol. Med. Rep. 2016, 14, 1587–1593. [Google Scholar] [CrossRef]
- Severa, M.; Coccia, E.M.; Fitzgerald, K.A. Toll-like receptor-dependent and -independent Viperin gene expression and counter-regulation by PRDI-binding factor-1/BLIMP1. J. Biol. Chem. 2006, 281, 26188–26195. [Google Scholar] [CrossRef] [Green Version]
- Cho, H.; Proll, S.C.; Szretter, K.J.; Katze, M.G.; Gale, M.; Diamond, M.S. Differential innate immune response programs in neuronal subtypes determine susceptibility to infection in the brain by positive-stranded RNA viruses. Nat. Med. 2013, 19, 458–464. [Google Scholar] [CrossRef]
- You, D.; Yang, C.; Huang, J.; Gong, H.; Yan, M.; Ni, J. Long non-coding RNA MEG3 inhibits chondrogenic differentiation of synovium-derived mesenchymal stem cells by epigenetically inhibiting TRIB2 via methyltransferase EZH2. Cell. Signal. 2019, 63, 109379. [Google Scholar] [CrossRef] [PubMed]
- Azuma, K.; Shiba, S.; Hasegawa, T.; Ikeda, K.; Urano, T.; Horie-Inoue, K.; Ouchi, Y.; Amizuka, N.; Inoue, S. Osteoblast-Specific γ-Glutamyl Carboxylase-Deficient Mice Display Enhanced Bone Formation with Aberrant Mineralization. J. Bone Miner. Res. 2015, 30, 1245–1254. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Chen, S.; Deng, S.; Long, L.; Peng, P.; Gao, M.; Cheng, S.; Cao, J.; Peng, H. Gene expression profiling of osteoblasts subjected to dexamethasone-induced apoptosis with/without GSK3β-shRNA. Biochem. Biophys. Res. Commun. 2018, 506, 41–47. [Google Scholar] [CrossRef]
- Swan, A.L.; Schütt, C.; Rozman, J.; del Mar Muñiz Moreno, M.; Brandmaier, S.; Simon, M.; Leuchtenberger, S.; Griffiths, M.; Brommage, R.; Keskivali-Bond, P.; et al. Mouse mutant phenotyping at scale reveals novel genes controlling bone mineral density. PLoS Genet. 2020, 16, e1009190. [Google Scholar] [CrossRef] [PubMed]
- Macsai, C.E.; Georgiou, K.R.; Foster, B.K.; Zannettino, A.C.W.; Xian, C.J. Microarray expression analysis of genes and pathways involved in growth plate cartilage injury responses and bony repair. Bone 2012, 50, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Ma, X.; Ma, D.; Xu, C. Microarray analysis of differential gene expression in temporomandibular joint condylar cartilage after experimentally induced osteoarthritis. Osteoarthr. Cartil. 2005, 13, 1115–1125. [Google Scholar] [CrossRef]
- Calender, A.; Rollat Farnier, P.A.; Buisson, A.; Pinson, S.; Bentaher, A.; Lebecque, S.; Corvol, H.; Abou Taam, R.; Houdouin, V.; Bardel, C.; et al. Whole exome sequencing in three families segregating a pediatric case of sarcoidosis. BMC Med. Genom. 2018, 11, 23. [Google Scholar] [CrossRef]
- Hershey, C.L.; Fisher, D.E. Mitf and Tfe3: Members of a b-HLH-ZIP transcription factor family essential for osteoclast development and function. Bone 2004, 34, 689–696. [Google Scholar] [CrossRef]
- Yao, J.; Wang, Y.; Cao, C.; Song, R.; Bi, D.; Zhang, H.; Li, Y.; Qin, G.; Hou, N.; Zhang, N.; et al. CRISPR/Cas9-mediated correction of MITF homozygous point mutation in a Waardenburg syndrome 2A pig model. Mol. Nucleic Acids 2021, 24, 986–999. [Google Scholar] [CrossRef]
- Zhang, J.G.; Tan, L.J.; Xu, C.; He, H.; Tian, Q.; Zhou, Y.; Qiu, C.; Chen, X.D.; Deng, H.W. Integrative analysis of transcriptomic and epigenomic data to reveal regulation patterns for BMD variation. PLoS ONE 2015, 10, e0138524. [Google Scholar] [CrossRef]
- Thaler, R.; Zwerina, J.; Rumpler, M.; Spitzer, S.; Gamsjaeger, S.; Paschalis, E.P.; Klaushofer, K.; Varga, F. Homocysteine induces serum amyloid A3 in osteoblasts via unlocking RGD-motifs in collagen. FASEB J. 2013, 27, 446–463. [Google Scholar] [CrossRef] [PubMed]
- Lind, T.; Melo, F.R.; Gustafson, A.-M.; Sundqvist, A.; Zhao, X.O.; Moustakas, A.; Melhus, H.; Pejler, G. Mast cell chymase has a negative impact on human osteoblasts. Matrix Biol. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Zhengquan, D.; Lei, W. Gene expression profiles in osteoarthritis: A bioinformatic analysis. Chin. J. Tissue Eng. Res. 2019, 23, 335. [Google Scholar] [CrossRef]
- Chen, T.C.; Lai, C.H.; Chang, J.L.; Chang, S.W. Mitomycin C retardation of corneal fibroblast migration via sustained dephosphorylation of paxillin at Tyrosine 118. Investig. Opthalmol. Vis. Sci. 2012, 53, 1539–1547. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, S.; Zhou, Q.; Liu, S.; Liu, X.; Xiao, J.; Jiang, W.; Xu, Y.; Kong, D.; Wang, F.; et al. PDCD4 Negatively Regulated Osteogenic Differentiation and Bone Defect Repair of Mesenchymal Stem Cells through GSK-3β/β-Catenin Pathway. Stem Cells Dev. 2021, 30, 806–815. [Google Scholar] [CrossRef]
- Liu, L.; Feng, Y.; Hu, S.; Li, H.; Li, Y.; Ke, J.; Long, X. PDCD4 suppresses autophagy and promotes apoptosis via Akt in chondrocytes of temporomandibular joint osteoarthritis. Oral Dis. 2021, 27, 547–558. [Google Scholar] [CrossRef]
- Jo, S.H.; Kim, D.E.; Clocchiatti, A.; Dotto, G.P. PDCD4 is a CSL associated protein with a transcription repressive function in cancer associated fibroblast activation. Oncotarget 2016, 7, 58717–58727. [Google Scholar] [CrossRef]
- Selfors, L.M.; Schutzman, J.L.; Borland, C.Z.; Stern, M.J. soc-2 encodes a leucine-rich repeat protein implicated in fibroblast growth factor receptor signaling. Proc. Natl. Acad. Sci. USA 1998, 95, 6903–6908. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, L.; Hu, L.; Dong, W.; Zhang, M.; Liu, Y.; Li, P. Effect of Celastrus orbiculatus in inhibiting Helicobacter pylori induced inflammatory response by regulating epithelial mesenchymal transition and targeting miR-21/PDCD4 signaling pathway in gastric epithelial cells. BMC Complement. Altern. Med. 2019, 19, 91. [Google Scholar] [CrossRef] [Green Version]
- Alam, I.; Sun, O.; Koller, D.L.; Liu, L.; Liu, Y.; Edenberg, H.J.; Li, J.; Foroud, T.; Turner, C.H. Differentially expressed genes strongly correlated with femur strength in rats. Genomics 2009, 94, 257–262. [Google Scholar] [CrossRef]
- Gorrell, L.; Omari, S.; Makareeva, E.; Leikin, S. Noncanonical ER–Golgi trafficking and autophagy of endogenous procollagen in osteoblasts. Cell. Mol. Life Sci. 2021, 78, 8283–8300. [Google Scholar] [CrossRef]
- Liu, H.; Wang, W.; Shen, W.; Wang, L.; Zuo, Y. ARHGAP24 ameliorates inflammatory response through inactivating Rac1/Akt/NF-κB pathway in acute pneumonia model of rat. Ann. Transl. Med. 2020, 8, 1289. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J.H.; Kim, I.; Seong, S.; Kim, N. TRIM38 regulates NF-κB activation through TAB2 degradation in osteoclast and osteoblast differentiation. Bone 2018, 113, 17–28. [Google Scholar] [CrossRef]
- Ribet, A.B.P.; Ng, P.Y.; Pavlos, N.J. Membrane Transport Proteins in Osteoclasts: The Ins and Outs. Front. Cell Dev. Biol. 2021, 9, 644986. [Google Scholar] [CrossRef]
- Wang, Q.; Notay, K.; Downey, G.P.; McCulloch, C.A. The Leucine-Rich Repeat Region of CARMIL1 Regulates IL-1-Mediated ERK Activation, MMP Expression, and Collagen Degradation. Cell Rep. 2020, 31, 107781. [Google Scholar] [CrossRef]
- Hu, M.-M.; Xie, X.-Q.; Yang, Q.; Liao, C.-Y.; Ye, W.; Lin, H.; Shu, H.-B. TRIM38 Negatively Regulates TLR3/4-Mediated Innate Immune and Inflammatory Responses by Two Sequential and Distinct Mechanisms. J. Immunol. 2015, 195, 4415–4425. [Google Scholar] [CrossRef]
- Downey, P.A.; I Siegel, M. Bone biology and the clinical implications for osteoporosis. Phys. Ther. 2006, 86, 77–91. [Google Scholar] [CrossRef]
- Florencio-Silva, R.; Sasso, G.R.D.S.; Sasso-Cerri, E.; Simões, M.J.; Cerri, P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Res. Int. 2015, 2015, 421746. [Google Scholar] [CrossRef]
- Parker, A.J.; Smith, C.W. Meningeal cyst in a dog. J. Am. Anim. Hosp. Assoc. 1974, 10, 595–597. [Google Scholar]
- Flegel, T.; Müller, M.K.; Truar, K.; Löffler, C.; Oechtering, G. Thoracolumbar spinal arachnoid diverticula in 5 pug dogs. Can. Vet. J. 2013, 54, 969. [Google Scholar]
- Chen, A.V.; Bagley, R.S.; West, C.L.; Gavin, P.R.; Tucker, R.L. Fecal incontinence and spinal cord abnormalities in seven dogs. J. Am. Vet. Med. Assoc. 2005, 227, 1945–1951. [Google Scholar] [CrossRef]
- Wyatt, S.; Gonçalves, R.; Gutierrez-Quintana, R.; de Decker, S. Outcomes of nonsurgical treatment for congenital thoracic vertebral body malformations in dogs: 13 cases (2009–2016). J. Am. Vet. Med. Assoc. 2018, 253, 768–773. [Google Scholar] [CrossRef]
- De Rycke, L.M.; Crijns, C.; Chiers, K.; van Bree, H.J.J.; Gielen, I. Late-onset wedge-shaped thoracic vertebrae in a six-month-old pug. Vet. Rec. Case Rep. 2016, 4, e000317. [Google Scholar] [CrossRef]
- Bar-Shavit, Z. The osteoclast: A multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J. Cell. Biochem. 2007, 102, 1130–1139. [Google Scholar] [CrossRef]
- Kjøller, L.; Hall, A. Signaling to Rho GTPases. Exp. Cell Res. 1999, 253, 166–179. [Google Scholar] [CrossRef]
- Brazier, H.; Pawlak, G.; Vives, V.; Blangy, A. The Rho GTPase Wrch1 regulates osteoclast precursor adhesion and migration. Int. J. Biochem. Cell Biol. 2009, 41, 1391–1401. [Google Scholar] [CrossRef]
- Chuang, Y.Y.; Valster, A.; Coniglio, S.J.; Backer, J.M.; Symons, M. The atypical Rho family GTPase Wrch-1 regulates focal adhesion formation and cell migration. J. Cell Sci. 2007, 120, 1927–1934. [Google Scholar] [CrossRef]
- Brady, D.C.; Alan, J.K.; Madigan, J.P.; Fanning, A.S.; Cox, A.D. The Transforming Rho Family GTPase Wrch-1 Disrupts Epithelial Cell Tight Junctions and Epithelial Morphogenesis. Mol. Cell. Biol. 2009, 29, 1035–1049. [Google Scholar] [CrossRef]
- Alan, J.K.; Berzat, A.C.; Dewar, B.J.; Graves, L.M.; Cox, A.D. Regulation of the Rho Family Small GTPase Wrch-1/RhoU by C-Terminal Tyrosine Phosphorylation Requires Src. Mol. Cell. Biol. 2010, 30, 4324–4338. [Google Scholar] [CrossRef]
- Zieba, J.T.; Chen, Y.-T.; Lee, B.H.; Bae, Y. Notch signaling in skeletal development, homeostasis and pathogenesis. Biomolecules 2020, 10, 332. [Google Scholar] [CrossRef]
- Zanotti, S.; Canalis, E. Notch1 and Notch2 expression in osteoblast precursors regulates femoral microarchitecture. Bone 2014, 62, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Hunziker, E.B.; Lippuner, K.; Keel, M.J.B.; Shintani, N. An educational review of cartilage repair: Precepts & practice—Myths & misconceptions—Progress & prospects. Osteoarthr. Cartil. 2015, 23, 334–350. [Google Scholar] [CrossRef]
- American Kennel Club. Official Standard of the Pug. 2008. Available online: https://images.akc.org/pdf/breeds/standards/Pug.pdf (accessed on 9 August 2022).
- United Kennel Club. Official UKC Breed Standard: Pug. 2012. Available online: https://www.ukcdogs.com/docs/breeds/pug.pdf (accessed on 9 August 2022).
- Kuo, H.J.; Tran, N.T.; Clary, S.A.; Morris, N.P.; Glanville, R.W. Characterization of EHD4, an EH Domain-containing Protein Expressed in the Extracellular Matrix. J. Biol. Chem. 2001, 276, 43103–43110. [Google Scholar] [CrossRef]
- Lorda-Diez, C.I.; Montero, J.A.; Martinez-Cue, C.; Garcia-Porrero, J.A.; Hurle, J.M. Transforming growth factors β coordinate cartilage and tendon differentiation in the developing limb mesenchyme. J. Biol. Chem. 2009, 284, 29988–29996. [Google Scholar] [CrossRef]
- Moqbel, S.A.A.; Zeng, R.; Ma, D.; Xu, L.; Lin, C.; He, Y.; Ma, C.; Xu, K.; Ran, J.; Jiang, L.; et al. The effect of mitochondrial fusion on chondrogenic differentiation of cartilage progenitor/stem cells via Notch2 signal pathway. Stem Cell Res. Ther. 2022, 13, 127. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, T.; He, F.; Chen, A.C.; Yang, H.; Zhu, X. Identification of Key Genes and Pathways in Osteoarthritis via Bioinformatic Tools: An Updated Analysis. Cartilage 2021, 13, 1457S–1464S. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Kraus, V.B.; Shevell, D.; Bay-Jensen, A.C.; Schattenberg, J.; Rambabu Surabattula, R.; Schuppan, D. Profiling and targeting connective tissue remodeling in autoimmunity—A novel paradigm for diagnosing and treating chronic diseases. Autoimmun. Rev. 2021, 20, 102706. [Google Scholar] [CrossRef]
- Derk, J.; Jones, H.E.; Como, C.; Pawlikowski, B.; Siegenthaler, J.A. Living on the Edge of the CNS: Meninges Cell Diversity in Health and Disease. Front. Cell. Neurosci. 2021, 15, 703944. [Google Scholar] [CrossRef]
- Natoli, G.; Ghisletti, S.; Barozzi, I. The genomic landscapes of inflammation. Genes Dev. 2011, 25, 101–106. [Google Scholar] [CrossRef]
- Jiang, Y.; Jia, Y.; Zhang, L. Role of programmed cell death 4 in diseases: A double-edged sword. Cell. Mol. Immunol. 2017, 14, 884–886. [Google Scholar] [CrossRef]
- Hilliard, A.; Hilliard, B.; Zheng, S.-J.; Sun, H.; Miwa, T.; Song, W.; Göke, R.; Chen, Y.H. Translational Regulation of Autoimmune Inflammation and Lymphoma Genesis by Programmed Cell Death 4. J. Immunol. 2006, 177, 8095–8102. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Tian, B.X.; Wang, S.H.; Liu, P.J.; Wang, Y.C. The function of SEC22B and its role in human diseases. Cytoskeleton 2020, 77, 303–312. [Google Scholar] [CrossRef]
- Baker, L.A.; Momen, M.; McNally, R.; Berres, M.E.; Binversie, E.E.; Sample, S.J.; Muir, P. Biologically Enhanced Genome-Wide Association Study Provides Further Evidence for Candidate Loci and Discovers Novel Loci That Influence Risk of Anterior Cruciate Ligament Rupture in a Dog Model. Front. Genet. 2021, 12, 593515. [Google Scholar] [CrossRef]
- Jurga, S.; Szymańska-Adamcewicz, O.; Wierzchołowski, W.; Pilchowska-Ujma, E.; Urbaniak, Ł. Spinal adhesive arachnoiditis: Three case reports and review of literature. Acta Neurol. Belg. 2021, 121, 47–53. [Google Scholar] [CrossRef]
- Anderson, T.L.; Morris, J.M.; Wald, J.T.; Kotsenas, A.L. Imaging appearance of advanced chronic adhesive arachnoiditis: A retrospective review. Am. J. Roentgenol. 2017, 209, 648–655. [Google Scholar] [CrossRef]
Top Variant | A1/A2 | Effect Size 1 | EAF A/U | VAR EXP (%) | Variants in Top 50 (N) | LD Region 2 (Size in Kb) | Genes Closest to Top Variant | Genes in LD Region | Bone Homeostasis | Cartilage | Osteoarthritis | Fibrotic Scar Tissue | Inflammatory Response |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
chr2:60108854 | G/A | 5.36E−05 | 0.42/0.59 | 4.77 | 1 | chr2:60095511–60653394 (558) | CES5A (intergenic 55 Kb); GNAO1 (intergenic 128 Kb) | CAPNS2, CES1, CES5A, IRX6, LPCAT2, MMP2, SLC6A2 | CES1 [25], MMP2 [26] [27], IRX6 [28] | GNAO1 [29] | |||
chr3:71553918 | A/G | −3.64E−05 | 0.58/0.34 | 13.57 | 1 | chr3:71521315–71768914 (248) | APBB2 | APBB2 | APBB2 [30] | ||||
chr4:10805369 | C/T | 4.88E−05 | 0.14/0.37 | 10.83 | 17 | chr4:9844757–11012379 (1168) | BICC1 | BICC1, CCSAP, RAB4A, RHOU, TFAM, UBE2D1 | BICC1 [31], TFAM [32], RHOU [33] [34] | TFAM [35] [36], BICC1 [37] | TFAM [38], RHOU [39] | TFAM [40] | |
chr6:65661296 | T/C | −4.09E−05 | 0.16/0.04 | 4.67 | 1 | chr6:65386176–65714252 (328) | ADGRL2 | ADGRL2 | |||||
chr7:70300935 | A/G | −3.90E−05 | 0.22/0.09 | 1.66 | 1 | chr7:69701081–71152660 (1452) | DLGAP1 | DLGAP1, MYL12B, MYOM1, TGIF1 | TGIF1 [41], MYL12B [42] | TGIF1 [43] | MYOM1 [37] | MYL12B [44] | |
chr12:65015175 | C/T | 5.76E−05 | 0.21/0.41 | 3.80 | 2 | chr12:64968699–65110915 (142) | SEC63 | SEC63, OSTM1 | OSTM1 [45] | ||||
chr12:66289122 | G/A | 4.18E−05 | 0.16/0.38 | 0.27 | 1 | chr12:66266562–66343853 (77) | CD164 (intergenic 6 Kb); CCDC162P (intergenic 5 Kb) | CCDC162P/C12H6orf183, CD164, PPIL6 | CD164 [46] | CD164 [46] | CD164 [47] | CCDC162P [48] | |
chr17:5061849 | A/G | 3.90E−05 | 0.29/0.46 | 3.67 | 1 | chr17:4062154–5436291 (1374) | RNF144A (intergenic 424 Kb); ID2 (intergenic 895 Kb) | CMPK2, RNF144A, RSAD2 | ID2 [49] | RNF144A (as GRASLND, i.e., RNF144-AS1; human transcript) [50] | RSAD2 [51,52 and 53] | ||
chr17:9192869 | G/C | −3.62E−05 | 0.33/0.12 | 7.78 | 1 | chr17:8871659–9520837 (649) | TRIB2 (intergenic 33 Kb) | TRIB2 | TRIB2 [54] | ||||
chr17:39587560 | A/G | −4.43E−05 | 0.19/0.07 | 1.64 | 1 | chr17:39502199–39589843 (88) | SH2D6 (intergenic 15K Kb), MAT2A(intergenic 55 Kb) | GGCX, MAT2A | GGCX [55] | ||||
chr17:53278611 | T/A | 8.22E−05 | 0.28/0.53 | 1.44 | 11 | chr17:53239890–53619454 (380) | CASQ2, SLC22A15 | CASQ2, MAB21L3, NHLH2, SLC22A15 | CASQ2 [56], NHLH2 [57] | CASQ2 [58] | CASQ2 [59] | ||
chr17:54018787 | C/T | −4.27E−05 | 0.54/0.30 | 0.06 | 1 | chr17:54018787–54024163 (5) | IGSF3 | IGSF3 | IGSF3 [60] | ||||
chr20:22144318 | A/G | −5.05E−05 | 0.42/0.27 | 0.31 | 1 | chr20:21579384–22373451 (794) | MITF (intergenic 271 Kb), FRMD48 (intergenic 258 Kb) | FRMD4B, MITF | MITF [61] | MITF [62] | |||
chr26:15777160 | C/T | 3.86E−05 | 0.01/0.14 | 5.00 | 2 | chr26:15350328–16204269 (854) | CIT | BICDL1, CCDC60, CIT, GCN1, PRKAB1, PXN, RAB35, RPLP0, TMEM233 | PKAB1 [63], PXN [64], TMEM233 [65] | PXN [66] | PXN [67] | ||
chr28:21986613 | C/T | 3.96E−05 | 0.44/0.57 | 0.03 | 1 | chr28:21986613–22282079 (295) | RBM20 | BBIP1, PDCD4, RBM20, SHOC2 | PDCD4 [68] | PCDC4 [69] | PDCD4 [70], SHOC2 [71] | PDCD4 [72] | |
chr28:30266337 | G/T | −6.34E−05 | 0.33/0.24 | 0.47 | 1 | chr28:30041108–30695769 (655) | ARF1 (intergenic 26 Kb), PLPP4 (intergenic 244 Kb) | SEC23IP, PLPP4 | SEC23IP [73], ARF1 [74] | ||||
chr32:9378372 | C/T | −4.51E−05 | 0.28/0.22 | 0.41 | 1 | chr32:9192329–9505692 (313) | ARHGAP24 | ARHGAP24 | ARHGAP24 [75] | ||||
chr33:31097826 | C/T | −5.78E−05 | 0.10/0.04 | 0.63 | 5 | chr33:31088620–31160245 (72) | LSG1 | LSG1 | |||||
chr35:23618123 | T/C | −3.65E−05 | 0.44/0.41 | 0.02 | 1 | chr35:23525268–23956076 (431) | SCGN | CARMIL1, HIST1H2AA, HIST1H2BA, SCGN, SLC17A1, SLC17A2, SLC17A3, SLC17A4, TRIM38 | TRIM38 [76], SLC17A2 (i.e., SLC34A1) and SLC17A1 [77] | CARMIL1 [78] | CARMIL1 [78] | CARMIL1 [78], TRIM38 [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brander, G.; Rohdin, C.; Bianchi, M.; Bergvall, K.; Andersson, G.; Ljungvall, I.; Hultin Jäderlund, K.; Häggström, J.; Hedhammar, Å.; Lindblad-Toh, K.; et al. Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy. Genes 2023, 14, 385. https://doi.org/10.3390/genes14020385
Brander G, Rohdin C, Bianchi M, Bergvall K, Andersson G, Ljungvall I, Hultin Jäderlund K, Häggström J, Hedhammar Å, Lindblad-Toh K, et al. Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy. Genes. 2023; 14(2):385. https://doi.org/10.3390/genes14020385
Chicago/Turabian StyleBrander, Gustaf, Cecilia Rohdin, Matteo Bianchi, Kerstin Bergvall, Göran Andersson, Ingrid Ljungvall, Karin Hultin Jäderlund, Jens Häggström, Åke Hedhammar, Kerstin Lindblad-Toh, and et al. 2023. "Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy" Genes 14, no. 2: 385. https://doi.org/10.3390/genes14020385
APA StyleBrander, G., Rohdin, C., Bianchi, M., Bergvall, K., Andersson, G., Ljungvall, I., Hultin Jäderlund, K., Häggström, J., Hedhammar, Å., Lindblad-Toh, K., & Tengvall, K. (2023). Multiple Genetic Loci Associated with Pug Dog Thoracolumbar Myelopathy. Genes, 14(2), 385. https://doi.org/10.3390/genes14020385