Challenges and Opportunities for Clinical Cytogenetics in the 21st Century
Abstract
:1. Introduction
2. The New Cytogenetic Framework in the Era of Large-Scale Genomics and System Biology
3. New Opportunities for Cytogenetics and Cytogenomics
3.1. Studying Non-Clonal Chromosome Aberrations and Multiple Types of Cyto-Heterogeneity
3.1.1. Collection of NCCAs to Monitor the Genome Instability (Both Inherited and Induced Types)
3.1.2. Identification and Classification of New Types of Chromosome/Nuclei Variations
3.1.3. Mosaicism
3.1.4. Polymorphism
3.1.5. Nuclear Architecture and Diseases
3.2. Monitoring the Process of Somatic Evolution under Various Physiological, Pathological, and Medical Conditions
3.2.1. Monitor Individualized Genome Instability during Disease Evolution
3.2.2. Studying Genome Instability in Developmental and Aging Processes
3.2.3. Studying Environment-Contributed Diseases
3.2.4. Monitoring the Dynamic Impact of Medical Treatment
3.3. New Methods Development
3.3.1. Establishing Data Analysis Platforms to Convert DNA Sequencing Data into Cytogenetic/Genomic Data
3.3.2. Comparing the Capability of Monitoring Genome Instability Using Different Types of Non-Clonal Chromosome Aberrations
3.3.3. Establish NCCAs Database
3.3.4. Further Improvement and Implementation of Cytogenetic Platforms in Clinical Cytogenetics
4. Call to Action
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tjio, J.-H.; Levan, A. The chromosome number of man. Hereditas 1956, 42, 112–118. [Google Scholar]
- Lejeune, J.; Gautier, M.; Turpin, R. Etude des chromosomes somatiques de neuf enfants mongoliens. L’Acaddemie Des Sci. Paris 1959, 248, 1721–1722. [Google Scholar]
- Nowell, P.C.; Hungerford, D.A. Chromosome studies on normal and leukemic human leukocytes. J. Natl. Cancer Inst. 1960, 25, 85–109. [Google Scholar]
- Rowley, J.D. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 1973, 243, 290–293. [Google Scholar] [PubMed]
- Available online: https://mitelmandatabase.isb-cgc.org/ (accessed on 14 February 2023).
- Heng, H.H. Genome Chaos: Rethinking Genetics, Evolution, and Molecular Medicine; Academic Press Elsevier: Cambridge, MA, USA, 2019; ISBN 978-012-8136-35-5. [Google Scholar]
- Hsu, T.C. Human and Mammalian Cytogenetics: An Historical Perspective; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1979. [Google Scholar]
- Caspersson, T.; Farber, S.; Foley, G.E.; Kudynowski, J.; Modest, E.J.; Simonsson, E.; Wagh, U.; Zech, L. Chemical differentiation along metaphase chromosomes. Exp. Cell Res. 1968, 49, 219–222. [Google Scholar] [CrossRef]
- Arrighi, F.E.; Hsu, T.C. Localization of heterochromatin in human chromosomes. Cytogenet. Genome Res. 1971, 10, 81–86. [Google Scholar] [CrossRef]
- Heng, H.H.; Spyropoulos, B.; Moens, P.B. FISH technology in chromosome and genome research. Bioessays 1997, 19, 75–84. [Google Scholar] [CrossRef]
- Heng, H.H.; Squire, J.; Tsui, L.C. High-resolution mapping of mammalian genes by in situ hybridization to free chromatin. Proc. Natl. Acad. Sci. USA 1992, 89, 9509–9513. [Google Scholar] [CrossRef] [Green Version]
- Heng, H.H.; Ye, C.J.; Yang, F.; Ebrahim, S.; Liu, G.; Bremer, S.W.; Thomas, C.M.; Ye, J.; Chen, T.J.; Tuck-Muller, C.; et al. Analysis of marker or complex chromosomal rearrangements present in pre- and post-natal karyotypes utilizing a combination of G-banding, spectral karyotyping and fluorescence in situ hybridization. Clin. Genet. 2003, 63, 358–367. [Google Scholar] [CrossRef]
- Heng, H.H.; Chamberlain, J.W.; Shi, X.M.; Spyropoulos, B.; Tsui, L.C.; Moens, P.B. Regulation of meiotic chromatin loop size by chromosomal position. Proc. Natl. Acad. Sci. USA 1996, 93, 2795–2800. [Google Scholar] [CrossRef] [Green Version]
- Speicher, M.R.; Gwyn Ballard, S.; Ward, D.C. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat. Genet. 1996, 12, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Schröck, E.; du Manoir, S.; Veldman, T.; Schoell, B.; Wienberg, J.; Ferguson-Smith, M.A.; Ning, Y.; Ledbetter, D.H.; Bar-Am, I.; Soenksen, D.; et al. Multicolor spectral karyotyping of human chromosomes. Science 1996, 273, 494–497. [Google Scholar] [CrossRef] [PubMed]
- Eils, R.; Dietzel, S.; Bertin, E.; Schröck, E.; Speicher, M.R.; Ried, T.; Robert-Nicoud, M.; Cremer, C.; Cremer, T. Three-dimensional reconstruction of painted human interphase chromosomes: Active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 1996, 135, 1427–1440. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H.; Goetze, S.; Ye, C.J.; Liu, G.; Stevens, J.B.; Bremer, S.W.; Wykes, S.M.; Bode, J.; Krawetz, S.A. Chromatin loops are selectively anchored using scaffold/matrix-attachment regions. J. Cell Sci. 2004, 117 Pt 7, 999–1008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, C.J.; Liu, G.; Heng, H.H. Simultaneous Fluorescence Immunostaining and FISH. In Fluorescence In Situ Hybridization (FISH); Liehr, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 301–325. [Google Scholar]
- Lansdorp, P.M.; Verwoerd, N.P.; van de Rijke, F.M.; Dragowska, V.; Little, M.T.; Dirks, R.W.; Raap, A.K.; Tanke, H.J. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 1996, 5, 685–691. [Google Scholar] [CrossRef]
- Pinkel, D.; Segraves, R.; Sudar, D.; Clark, S.; Poole, I.; Kowbel, D.; Collins, C.; Kuo, W.L.; Chen, C.; Zhai, Y.; et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat. Genet. 1998, 20, 207–211. [Google Scholar] [CrossRef]
- Heng, H.H.; Stevens, J.B.; Liu, G.; Bremer, S.W.; Ye, K.J.; Reddy, P.V.; Wu, G.S.; Wang, Y.A.; Tainsky, M.A.; Ye, C.J. Stochastic cancer progression driven by non-clonal chromosome aberrations. J. Cell. Physiol. 2006, 208, 461–472. [Google Scholar] [CrossRef]
- Ye, C.J.; Stevens, J.B.; Liu, G.; Bremer, S.W.; Jaiswal, A.S.; Ye, K.J.; Lin, M.F.; Lawrenson, L.; Lancaster, W.D.; Kurkinen, M.; et al. Genome based cell population heterogeneity promotes tumorigenicity: The evolutionary mechanism of cancer. J. Cell. Physiol. 2009, 219, 288–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solinas-Toldo, S.; Lampel, S.; Stilgenbauer, S.; Nickolenko, J.; Benner, A.; Döhner, H.; Cremer, T.; Lichter, P. Matrix-based comparative genomic hybridization: Biochips to screen for genomic imbalances. Genes Chromosomes Cancer 1997, 20, 399–407. [Google Scholar] [CrossRef]
- Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. The variome concept: Focus on CNVariome. Mol. Cytogenet. 2019, 12, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlin, L.K.; Spinner, N.B. Cytogenetics into Cytogenomics: SNP Arrays Expand the Screening Capabilities of Genetics Laboratories; Application Note: DNA Analysis; Illumina, Inc.: San Diego, CA, USA, 2010. [Google Scholar]
- Speicher, M.R.; Carter, N.P. The new cytogenetics: Blurring the boundaries with molecular biology. Nat. Rev. Genet. 2005, 6, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T. From Human Cytogenetics to Human Chromosomics. Int. J. Mol. Sci. 2019, 20, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, H.H. The genome-centric concept: Resynthesis of evolutionary theory. Bioessays 2009, 31, 512–525. [Google Scholar] [CrossRef]
- Heng, H.H.; Liu, G.; Stevens, J.B.; Bremer, S.W.; Ye, K.J.; Abdallah, B.Y.; Horne, S.D.; Ye, C.J. Decoding the genome beyond sequencing: The new phase of genomic research. Genomics 2011, 98, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Ye, C.J.; Stilgenbauer, L.; Moy, A.; Liu, G.; Heng, H.H. What is karyotype coding and why is genomic topology important for cancer and evolution? Front. Genet. 2019, 10, 1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, J.; Heng, H.H. Karyotype coding: The creation and maintenance of system information for complexity and biodiversity. Biosystems 2021, 208, 104476. [Google Scholar] [CrossRef] [PubMed]
- McClintock, B. The Fusion of Broken Ends of Chromosomes Following Nuclear Fusion. Proc. Natl. Acad. Sci. USA 1942, 28, 458–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldschmidt, R. The Material Basis of Evolution, Reissued (The Silliman Memorial Lectures Series), 1982; Yale University Press: New Haven, CT, USA, 1940. [Google Scholar]
- Dekker, J.; Rippe, K.; Dekker, M.; Kleckner, N. Capturing chromosome conformation. Science 2002, 295, 1306–1311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, H.H.; Horne, S.D.; Chaudhry, S.; Regan, S.M.; Liu, G.; Abdallah, B.Y.; Ye, C.J. A Postgenomic Perspective on Molecular Cytogenetics. Curr. Genom. 2018, 19, 227–239. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H.; Tsui, L.C.; Moens, P.B. Organization of heterologous DNA inserts on the mouse meiotic chromosome core. Chromosoma 1994, 103, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Matarazzo, M.R.; Boyle, S.; D’Esposito, M.; Bickmore, W.A. Chromosome territory reorganization in a human disease with altered DNA methylation. Proc. Natl. Acad. Sci. USA 2007, 104, 16546–16551. [Google Scholar] [CrossRef] [Green Version]
- Claussen, U. Chromosomics. Cytogenet. Genome Res. 2005, 111, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H.; Krawetz, S.A.; Lu, W.; Bremer, S.; Liu, G.; Ye, C.J. Re-defining the chromatin loop domain. Cytogenet. Genome Res. 2001, 93, 155–161. [Google Scholar] [CrossRef]
- Heng, H.H.; Regan, S.; Ye, C.J. Genotype, environment, and evolutionary mechanism of diseases. Environ. Dis. 2016, 1, 14–23. Available online: http://www.environmentmed.org/text.asp?2016/1/1/14/180332 (accessed on 24 January 2023). [CrossRef]
- Ferguson-Smith, M.A. Putting the genetics back into cytogenetics. Am. J. Hum. Genet. 1991, 48, 179–182. [Google Scholar] [PubMed]
- McClintock, B. The significance of responses of the genome to challenge. Science 1984, 226, 792–801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, H.H. Debating Cancer: The Paradox in Cancer Research; World Scientific Publishing Co.: Singapore, 2015; ISBN 978-981-4520-84-3. [Google Scholar]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the Evolution of Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef] [Green Version]
- Davoli, T.; Uno, H.; Wooten, E.C.; Elledge, S.J. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 2017, 355, eaaf8399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, H.H.; Bremer, S.W.; Stevens, J.B.; Horne, S.D.; Liu, G.; Abdallah, B.Y.; Ye, K.J.; Ye, C.J. Chromosomal instability (CIN): What it is and why it is crucial to cancer evolution. Cancer Metastasis Rev. 2013, 32, 325–340. [Google Scholar] [CrossRef]
- Ye, C.J.; Sharpe, Z.; Heng, H.H. Origins and Consequences of Chromosomal Instability: From Cellular Adaptation to Genome Chaos-Mediated System Survival. Genes 2020, 11, 1162. [Google Scholar] [CrossRef]
- Furst, R. The Importance of Henry H. Heng’s Genome Archit. Theory. Prog. Biophys. Mol. Biol. 2021, 165, 153–156. [Google Scholar] [CrossRef] [PubMed]
- Heng, J.; Heng, H.H. Genome chaos: Creating new genomic information essential for cancer evolution. Semin. Cancer Biol. 2022, 81, 160–175. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H. Elimination of altered karyotypes by sexual reproduction preserves species identity. Genome 2007, 50, 517–524. [Google Scholar] [CrossRef]
- Gorelick, R.; Heng, H.H. Sex reduces genetic variation: A multidisciplinary review. Evolution 2011, 65, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Wilkins, A.S.; Holliday, R. The evolution of meiosis from mitosis. Genetics 2009, 181, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Heng, J.; Heng, H.H. Two-phased evolution: Genome chaos-mediated information creation and maintenance. Prog. Biophys. Mol. Biol. 2021, 165, 29–42. [Google Scholar] [CrossRef]
- Horne, S.D.; Chowdhury, S.K.; Heng, H.H. Stress, genomic adaptation, and the evolutionary trade-off. Front. Genet. 2014, 5, 92. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Stevens, J.B.; Horne, S.D.; Abdallah, B.Y.; Ye, K.J.; Bremer, S.W.; Ye, C.J.; Chen, D.J.; Heng, H.H. Genome chaos: Survival strategy during crisis. Cell Cycle 2014, 13, 528–537. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.C.; Horne, S.; Zhang, J.Z.; Jackson, L.; Heng, H.H. Therapy induced genome chaos: A novel mechanism of rapid cancer drug resistance. Front. Cell Dev. Biol. 2021, 9, 676344. [Google Scholar] [CrossRef]
- Weihua, Z.; Lin, Q.; Ramoth, A.J.; Fan, D.; Fidler, I.J. Formation of solid tumors by a single multinucleated cancer cell. Cancer 2011, 117, 4092–4099. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Mercado-Uribe, I.; Xing, Z.; Sun, B.; Kuang, J.; Liu, J. Generation of cancer stem-like cells through the formation of polyploid giant cancer cells. Oncogene 2014, 33, 116–128. [Google Scholar] [CrossRef] [PubMed]
- Erenpreisa, J.; Salmina, K.; Huna, A.; Jackson, T.R.; Vazquez-Martin, A.; Cragg, M.S. The “virgin birth”, polyploidy, and the origin of cancer. Oncoscience 2015, 2, 3–14. [Google Scholar] [CrossRef]
- Liu, J. The dualistic origin of human tumors. Semin. Cancer Biol. 2018, 53, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Niu, N.; Zhang, J.; Zhang, N.; Mercado-Uribe, I.; Tao, F.; Han, Z.; Pathak, S.; Multani, A.S.; Kuang, J.; Yao, J.; et al. Linking genomic reorganization to tumor initiation via the giant cell cycle. Oncogenesis 2016, 5, e281. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Zhong, Y.; Zhang, X.; Sood, A.K.; Liu, J. Spatiotemporal view of malignant histogenesis and macroevolution via formation of polyploid giant cancer cells. Oncogene 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Ye, C.J.; Sharpe, Z.; Alemara, S.; Mackenzie, S.; Liu, G.; Abdallah, B.; Horne, S.; Regan, S.; Heng, H.H. Micronuclei and genome chaos: Changing the system inheritance. Genes 2019, 10, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitelman, F. Recurrent chromosome aberrations in cancer. Mutat. Res. 2000, 462, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Heng, E.; Thanedar, S.; Heng, H.H. The importance of monitoring Non-Clonal Chromosome Aberrations (NCCAs) in cancer research. Cancer Cytogenet. Cytogenomics 2023, in press. [Google Scholar]
- Niederwieser, C.; Nicolet, D.; Carroll, A.J.; Kolitz, J.E.; Powell, B.L.; Kohlschmidt, J.; Stone, R.M.; Byrd, J.C.; Mrózek, K.; Bloomfield, C.D. Chromosome abnormalities at onset of complete remission are associated with worse outcome in patients with acute myeloid leukemia and an abnormal karyotype at diagnosis: CALGB 8461 (Alliance). Haematologica 2016, 101, 1516–1523. [Google Scholar] [CrossRef] [Green Version]
- Rangel, N.; Forero-Castro, M.; Rond’on-Lagos, M. New insights in the cytogenetic practice: Karyotypic chaos, non-clonal chromosomal alterations and chromosomal instability in human cancer and therapy response. Genes 2017, 8, 155. [Google Scholar] [CrossRef]
- Vargas-Rondón, N.; Villegas, V.E.; Rondón-Lagos, M. The role of chromosomal instability in cancer and therapeutic responses. Cancers 2017, 10, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, L. Two dogmas of biology. Philos. Theory Pract. Biol. 2017, 9, 2. [Google Scholar] [CrossRef]
- Ramos, S.; Navarrete-Meneses, P.; Molina, B.; Cervantes-Barragán, D.E.; Lozano, V.; Gallardo, E.; Marchetti, F.; Frias, S. Genomic chaos in peripheral blood lymphocytes of Hodgkin’s lymphoma patients one year after ABVD chemotherapy/radiotherapy. Environ. Mol. Mutagen. 2018, 59, 755–768. [Google Scholar] [CrossRef] [PubMed]
- Chin, T.F.; Ibrahim, K.; Thirunavakarasu, T.; Azanan, M.S.; Oh, L.; Lum, S.H.; Yap, T.Y.; Ariffin, H. Nonclonal chromosomal aberrations in childhood leukemia survivors. Fetal Pediatr. Pathol. 2018, 37, 243–253. [Google Scholar] [CrossRef]
- Frias, S.; Ramos, S.; Salas, C.; Molina, B.; Sánchez, S.; Rivera-Luna, R. Nonclonal chromosome aberrations and genome chaos in somatic and germ cells from patients and survivors of hodgkin lymphoma. Genes 2019, 10, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imataki, O.; Kubo, H.; Takeuchi, A.; Uemura, M.; Kadowaki, N. Nonclonal chromosomal alterations and poor survival in cytopenic patients without hematological malignancies. Mol. Cytogenet. 2019, 12, 46. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H.; Liu, G.; Stevens, J.B.; Abdallah, B.Y.; Horne, S.D.; Ye, K.J.; Bremer, S.W.; Chowdhury, S.K.; Ye, C.J. Karyotype heterogeneity and unclassified chromosomal abnormalities. Cytogenet. Genome Res. 2013, 139, 144–157. [Google Scholar] [CrossRef]
- Stephens, P.J.; Greenman, C.D.; Fu, B.; Yang, F.; Bignell, G.R.; Mudie, L.J.; Pleasance, E.D.; Lau, K.W.; Beare, D.; Stebbings, L.A.; et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 2011, 144, 27–40. [Google Scholar] [CrossRef]
- Baca, S.C.; Prandi, D.; Lawrence, M.S.; Mosquera, J.M.; Romanel, A.; Drier, Y.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Ghandi, M.; et al. Punctuated evolution of prostate cancer genomes. Cell 2013, 153, 666–677. [Google Scholar] [CrossRef] [Green Version]
- Pellestor, F.; Gatinois, V. Chromoanagenesis: A piece of the macroevolution scenario. Mol. Cytogenet. 2020, 13, 3. [Google Scholar] [CrossRef]
- Heng, H.H.; Regan, S.M.; Liu, G.; Ye, C.J. Why it is crucial to analyze non clonal chromosome aberrations or NCCAs? Mol. Cytogenet. 2016, 9, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iourov, I.Y.; Heng, H.H. Editorial: Somatic genomic mosaicism & human disease. Front. Genet. 2022, 13, 1045559. [Google Scholar] [CrossRef] [PubMed]
- Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Single cell genomics of the brain: Focus on neuronal diversity and neuropsychiatric diseases. Curr. Genom. 2012, 13, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Chromosomal mosaicism goes global. Mol. Cytogenet. 2008, 1, 26. [Google Scholar] [CrossRef] [PubMed]
- Hultén, M.A.; Jonasson, J.; Iwarsson, E.; Uppal, P.; Vorsanova, S.G.; Yurov, Y.B.; Iourov, I.Y. Trisomy 21 mosaicism: We may all have a touch of Down syndrome. Cytogenet. Genome Res. 2013, 139, 189–192. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.H.; Hayano, M.; Griffin, P.T.; Amorim, J.A.; Bonkowski, M.S.; Apostolides, J.K.; Salfati, E.L.; Blanchette, M.; Munding, E.M.; Bhakta, M.; et al. Loss of epigenetic information as a cause of mammalian aging. Cell 2023, 186, 305–326.e27. [Google Scholar] [CrossRef] [PubMed]
- Iourov, I.Y.; Yurov, Y.B.; Vorsanova, S.G.; Kutsev, S.I. Chromosome Instability, Aging and Brain Diseases. Cells 2021, 10, 1256. [Google Scholar] [CrossRef] [PubMed]
- Ye, C.J.; Regan, S.; Liu, G.; Alemara, S.; Heng, H.H. Understanding aneuploidy in cancer through the lens of system inheritance, fuzzy inheritance and emergence of new genome systems. Mol. Cytogenet. 2018, 11, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heng, H.H.; Tsui, L.C. Modes of DAPI banding and simultaneous in situ hybridization. Chromosoma 1993, 102, 325–332. [Google Scholar] [CrossRef]
- Sahin, F.I.; Yilmaz, Z.; Yuregir, O.O.; Bulakbasi, T.; Ozer, O.; Zeyneloglu, H.B. Chromosome heteromorphisms: An impact on infertility. J. Assist. Reprod. Genet. 2008, 25, 191–195. [Google Scholar] [CrossRef] [Green Version]
- Anton, E.; Garcia-Guixé, E.; Ramos-Muntada, M.; Godo, A.; Sandalinas, M.; Blanco, J. Chromosome heteromorphisms: Do they entail a reproductive risk for male carriers? Asian J. Androl. 2020, 22, 544–546. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T. Chromosomal Heteromorphisms and Cancer Susceptibility Revisited. Cells 2022, 11, 3239. [Google Scholar] [CrossRef] [PubMed]
- Liehr, T. About classical molecular genetics, cytogenetic and molecular cytogenetic data not considered by Genome Reference Consortium and thus not included in genome browsers like UCSC, Ensembl or NCBI. Mol. Cytogenet. 2021, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Weimer, R.; Haaf, T.; Kruger, J.; Poot, M.; Schmid, M. Characterization of centromere arrangements and test for random distribution in G0, G1, S, G2, G1, and early S0 phase in human lymphocytes. Hum. Genet. 1992, 88, 673–682. [Google Scholar] [CrossRef]
- Cremer, T.; Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001, 2, 292–301. [Google Scholar] [CrossRef]
- Cremer, T.; Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2010, 2, a003889. [Google Scholar] [CrossRef] [Green Version]
- Bickmore, W.A.; Teague, P. Influences of chromosome size, gene density and nuclear position on the frequency of constitutional translocations in the human population. Chromosome Res. 2002, 10, 707–715. [Google Scholar] [CrossRef]
- Lever, E.; Sheer, D. The role of nuclear organization in cancer. J. Pathol. 2010, 220, 114–125. [Google Scholar] [CrossRef]
- Kozubek, S.; Lukásová, E.; Marecková, A.; Skalníková, M.; Kozubek, M.; Bártová, E.; Kroha, V.; Krahulcová, E.; Slotová, J. The topological organization of chromosomes 9 and 22 in cell nuclei has a determinative role in the induction of t(9,22) translocations and in the pathogenesis of t(9,22) leukemias. Chromosoma 1999, 108, 426–435. [Google Scholar] [CrossRef]
- Roix, J.J.; McQueen, P.G.; Munson, P.J.; Parada, L.A.; Misteli, T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 2003, 34, 287–291. [Google Scholar] [CrossRef]
- Misteli, T. Higher-order genome organization in human disease. Cold Spring Harb. Perspect. Biol. 2010, 2, a000794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabian-Morales, E.; Vallejo-Escamilla, D.; Gudiño, A.; Rodríguez, A.; González-Barrios, R.; Rodríguez Torres, Y.L.; Castro Hernández, C.; de la Torre-Luján, A.H.; Oliva-Rico, D.A.; Ornelas Guzmán, E.C.; et al. Large-scale topological disruption of chromosome territories 9 and 22 is associated with nonresponse to treatment in CML. Int. J. Cancer 2022, 150, 1455–1470. [Google Scholar] [CrossRef]
- Liu, G.; Ye, C.J.; Chowdhury, S.K.; Abdallah, B.Y.; Horne, S.D.; Nichols, D.; Heng, H.H. Detecting Chromosome Condensation Defects in Gulf War Illness Patients. Curr. Genom. 2018, 19, 200–206. [Google Scholar] [CrossRef]
- Kültz, D. Molecular and evolutionary basis of the cellular stress response. Annu. Rev. Physiol. 2005, 67, 225–257. [Google Scholar] [CrossRef] [PubMed]
- Mojica, E.A.; Kültz, D. Physiological mechanisms of stress-induced evolution. J. Exp. Biol. 2022, 225 (Suppl. 1), jeb243264. [Google Scholar] [CrossRef] [PubMed]
- Heng, H.H. The conflict between complex systems and reductionism. JAMA 2008, 300, 1580–1581. [Google Scholar] [CrossRef] [PubMed]
- Stepanenko, A.A.; Heng, H.H. Transient and stable vector transfection: Pitfalls, off-target effects, artifacts. Mutat. Res. Rev. Mutat. Res. 2017, 773, 91–103. [Google Scholar] [CrossRef]
- Amendola, M.; Brusson, M.; Miccio, A. CRISPRthripsis: The risk of CRISPR/Cas9-induced chromothripsis in gene therapy. Stem Cells Transl. Med. 2022, 11, 1003–1009. [Google Scholar] [CrossRef]
- Boroviak, K.; Fu, B.; Yang, F.; Doe, B.; Bradley, A. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci. Rep. 2017, 7, 12867. [Google Scholar] [CrossRef] [Green Version]
- Horne, S.D.; Abdallah, B.Y.; Stevens, J.B.; Liu, G.; Ye, K.J.; Bremer, S.W.; Heng, H.H. Genome constraint through sexual reproduction: Application of 4D-Genomics in reproductive biology. Syst. Biol. Reprod. Med. 2013, 59, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Seferbekova, Z.; Lomakin, A.; Yates, L.R.; Gerstung, M. Spatial biology of cancer evolution. Nat. Rev. Genet. 2022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Kschischo, M. Distinct and Common Features of Numerical and Structural Chromosomal Instability across Different Cancer Types. Cancers 2022, 14, 1424. [Google Scholar] [CrossRef]
- Mirzaei, G. GraphChrom: A Novel Graph-Based Framework for Cancer Classification Using Chromosomal Rearrangement Endpoints. Cancers 2022, 14, 3060. [Google Scholar] [CrossRef]
- Lynch, A.R.; Arp, N.L.; Zhou, A.S.; Weaver, B.A.; Burkard, M.E. Quantifying chromosomal instability from intratumoral karyotype diversity using agent-based modeling and Bayesian inference. eLife 2022, 11, e69799. [Google Scholar] [CrossRef]
- Ban, I.; Tomašić, L.; Trakala, M.; Tolić, I.M.; Pavin, N. Proliferative advantage of specific aneuploid cells drives evolution of tumor karyotypes. Biophys. J. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Heng, H.; Chen, W.Y.; Wang, Y.C. Effects of pingyanymycin on chromosomes: A possible structural basis for chromosome aberration. Mutat. Res. Mol. Mech. Mutagen. 1988, 199, 199–205. [Google Scholar] [CrossRef] [PubMed]
- Stevens, J.B.; Abdallah, B.Y.; Liu, G.; Ye, C.J.; Horne, S.D.; Wang, G.; Savasan, S.; Shekhar, M.; Krawetz, S.A.; Hüttemann, M.; et al. Diverse system stresses: Common mechanisms of chromosome fragmentation. Cell Death Dis. 2011, 2, e178. [Google Scholar] [CrossRef] [Green Version]
- Haaf, T.; Schmid, M. 5-Azadeoxycytidine induced undercondensation in the giant X chromosomes of Microtus agrestis. Chromosoma 1989, 98, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Plug, A.; Thayer, M. Delayed replication timing leads to delayed mitotic chromosome condensation and chromosomal instability of chromosome translocations. Proc. Natl. Acad. Sci. USA 2001, 98, 13300–13305. [Google Scholar] [CrossRef] [Green Version]
- Stevens, J.B.; Liu, G.; Bremer, S.W.; Ye, K.J.; Xu, W.; Xu, J.; Sun, Y.; Wu, G.S.; Savasan, S.; Krawetz, S.A.; et al. Mitotic cell death by chromosome fragmentation. Cancer Res. 2007, 67, 7686–7694. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, S.; Juárez, U.; Domínguez, J.; Molina, B.; Barrientos, R.; Martínez-Hernández, A.; Carnevale, A.; Grether-González, P.; Mayen, D.G.; Villarroel, C.; et al. Frequent copy number variants in a cohort of Mexican-Mestizo individuals. Mol. Cytogenet. 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Cancellieri, S.; Zeng, J.; Lin, L.Y.; Tognon, M.; Nguyen, M.A.; Lin, J.; Bombieri, N.; Maitland, S.A.; Ciuculescu, M.F.; Katta, V.; et al. Human genetic diversity alters off-target outcomes of therapeutic gene editing. Nat. Genet. 2023, 55, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Sahajpal, N.S.; Barseghyan, H.; Kolhe, R.; Hastie, A.; Chaubey, A. Optical Genome Mapping as a Next-Generation Cytogenomic Tool for Detection of Structural and Copy Number Variations for Prenatal Genomic Analyses. Genes 2021, 12, 398. [Google Scholar] [CrossRef] [PubMed]
- Rangel-Pozzo, A.; Yu, P.L.I.; LaL, S.; Asbaghi, Y.; Sisdelli, L.; Tammur, P.; Tamm, A.; Punab, M.; Klewes, L.; Louis, S.; et al. Telomere Architecture Correlates with Aggressiveness in Multiple Myeloma. Cancers 2021, 13, 1969. [Google Scholar] [CrossRef]
- Spielmann, M.; Lupiáñez, D.G.; Mundlos, S. Structural variation in the 3D genome. Nat. Rev. Genet. 2018, 19, 453–467. [Google Scholar] [CrossRef] [Green Version]
- Moffitt, J.R.; Hao, J.; Bambah-Mukku, D.; Lu, T.; Dulac, C.; Zhuang, X. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl. Acad. Sci. USA 2016, 113, 14456–14461. [Google Scholar] [CrossRef] [Green Version]
- Finn, E.; Misteli, T.; Pegoraro, G. High-Throughput DNA FISH (hiFISH). Methods Mol Biol. 2022, 2532, 245–274. [Google Scholar] [CrossRef]
Rationales for refocusing on cytogenetics: |
Karyotype dynamics and macroevolution [6], |
Evolutionary selection unit [28], |
Broken promises of the gene-centric theory [28] |
Karyotype has better clinical prediction than mutation profiles [43,44,45] |
CIN is the common driver which links to diverse gene mutations [46,47] |
Main points of the genome architecture theory (GAT) [6,28,48] |
Karyotype codes system inheritance (a form of inheritance separate from gene-coded inheritance) |
Karyotype organizes gene function by defining the network structure [49] |
Can explain information creation (new karyotype formation) and preservation (through sexual reproduction) [50,51,52] |
System information is linked to many human diseases [40,49] |
Two-phased cancer evolution describes varied responses of tumors to stress [53] |
Fuzzy inheritance explains missing inheritance [43] |
The evolutionary mechanism of cancer unifies diverse molecular mechanisms [22] |
‘Game of outliers’ in evolutionary biology [6,47] |
The importance of the heterogeneity: reduced specificity of molecular interaction on the gene level [6,53,54] |
Example of the cytogenetic analysis to study cancer evolution: |
Genome chaos: key phase transitions including identifying treatment-induced drug resistance [55,56] |
NCCAs as an index of CIN [46] |
Polyploid giant cancer cells (PGCCs) link development to evolution [57,58,59,60,61,62,63] |
Organismal genomics: karyotype reorganization is the main genomic feature [6] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heng, E.; Thanedar, S.; Heng, H.H. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes 2023, 14, 493. https://doi.org/10.3390/genes14020493
Heng E, Thanedar S, Heng HH. Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes. 2023; 14(2):493. https://doi.org/10.3390/genes14020493
Chicago/Turabian StyleHeng, Eric, Sanjana Thanedar, and Henry H. Heng. 2023. "Challenges and Opportunities for Clinical Cytogenetics in the 21st Century" Genes 14, no. 2: 493. https://doi.org/10.3390/genes14020493
APA StyleHeng, E., Thanedar, S., & Heng, H. H. (2023). Challenges and Opportunities for Clinical Cytogenetics in the 21st Century. Genes, 14(2), 493. https://doi.org/10.3390/genes14020493