Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Human-Derived Cell Culture
2.2. Sonication
2.3. Immunoprecipitation
2.4. Library Preparation and Sequencing
2.5. Bioinformatic Analysis
3. Results
3.1. Trimethylation Status of H3K4 in Late-Stage RCT
3.2. Trimethylation Status of H3K27 in Late-Stage RCT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Longo, U.; Candela, V.; Berton, A.; Salvatore, G.; Guarnieri, A.; DeAngelis, J.; Nazarian, A.; Denaro, V. Genetic basis of rotator cuff injury: A systematic review. BMC Med. Genet. 2019, 20, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruvada, S.; Madrazo-Ibarra, A.; Varacallo, M. Anatomy, Rotator Cuff. StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Factor, D.; Dale, B. Current concepts of rotator cuff tendinopathy. Int. J. Sport. Phys. Ther. 2014, 9, 274–288. [Google Scholar]
- Lewis, J.; McCreesh, K.; Roy, J.; Ginn, K. Rotator Cuff Tendinopathy: Navigating the Diagnosis-Management Conundrum. J. Orthop. Sport. Phys. Ther. 2015, 45, 923–937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaudhury, S.; Xia, Z.; Thakkar, D.; Hakimi, O.; Carr, A. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears. J. Shoulder Elb. Surg. 2016, 25, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Dabija, D.; Gao, C.; Edwards, T.; Kuhn, J.; Jain, N. Genetic and familial predisposition to rotator cuff disease: A systematic review. J. Shoulder Elb. Surg. 2017, 26, 1103–1112. [Google Scholar] [CrossRef]
- Belangero, P.; Antônio Figueiredo, E.; Cohen, C.; de Seixas Alves, F.; Hiromi Yanaguizawa, W.; Cardoso Smith, M.; Vicente Andreoli, C.; de Castro Pochini, A.; Teresa de Seixas Alves, M.; Ejnisman, B.; et al. Changes in the expression of matrix extracellular genes and TGFB family members in rotator cuff tears. J. Orthop. Res.® 2018, 36, 2542–2553. [Google Scholar] [CrossRef]
- Assunção, J.; Godoy-Santos, A.; dos Santos, M.; Malavolta, E.; Gracitelli, M.; Ferreira Neto, A. Matrix Metalloproteases 1 and 3 Promoter Gene Polymorphism Is Associated with Rotator Cuff Tear. Clin. Orthop. Relat. Res. ® 2017, 475, 1904–1910. [Google Scholar] [CrossRef] [Green Version]
- Chaudhury, S.; Carr, A. Lessons we can learn from gene expression patterns in rotator cuff tears and tendinopathies. J. Shoulder Elb. Surg. 2012, 21, 191–199. [Google Scholar] [CrossRef]
- Barski, A.; Cuddapah, S.; Cui, K.; Roh, T.; Schones, D.; Wang, Z.; Wei, G.; Chepelev, I.; Zhao, K. High-Resolution Profiling of Histone Methylations in the Human Genome. Cell 2007, 129, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Becker, J.; Nicetto, D.; Zaret, K. H3K9me3-Dependent Heterochromatin: Barrier to Cell Fate Changes. Trends Genet. 2016, 32, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Schubert, M.; Noah, A.; Bedi, A.; Gumucio, J.; Mendias, C. Reduced Myogenic and Increased Adipogenic Differentiation Capacity of Rotator Cuff Muscle Stem Cells. J. Bone Jt. Surg. 2019, 101, 228–238. [Google Scholar] [CrossRef]
- Thankham, F.; Dilisio, M.; Gross, R.; Agrawal, D. Collagen I: A Kingpin for Rotator Cuff Tendon Pathology. Am. J. Transl. Res. 2018, 10, 3291–3309. [Google Scholar]
- Hall, K.; Sarkissian, E.; Sharpe, O.; Robinson, W.; Abrams, G. Identification of differentially expressed micro-RNA in rotator cuff tendinopathy. Muscle Ligaments Tendons J. 2018, 8, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Plachel, F.; Heuberer, P.; Gehwolf, R.; Frank, J.; Tempfer, H.; Lehner, C.; Weissenbacher, N.; Wagner, A.; Weigl, M.; Moroder, P.; et al. MicroRNA Profiling Reveals Distinct Signatures in Degenerative Rotator Cuff Pathologies. J. Orthop. Res. 2019, 38, 202–211. [Google Scholar] [CrossRef] [Green Version]
- Ho, J.; Bishop, E.; Karchenko, P.; Nègre, N.; White, K.; Park, P. ChIP-chip versus ChIP-seq: Lessons for experimental design and data analysis. BMC Genom. 2011, 12, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Flensburg, C.; Kinkel, S.; Keniry, A.; Blewitt, M.; Oshlack, A. A comparison of control samples for ChIP-seq of histone modifications. Front. Genet. 2014, 5, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Baldwick, C.; Briggs, L.; Murrell, G. Arthroscopic Undersurface Rotator Cuff Repair. Tech. Shoulder Elb. Surg. 2009, 10, 112–118. [Google Scholar] [CrossRef]
- Andrews, S. FastQC A Quality Control tool for High Throughput Sequence Data. 2018. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 3 May 2021).
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Čech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al. The Galaxy Platform for Accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46(W1), W537–W544. [Google Scholar] [CrossRef] [Green Version]
- Bolger, M.; Lohse, M.; Bjoern, U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Trapnell, C.; Pop, M.; Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009, 10, 25. [Google Scholar] [CrossRef] [Green Version]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, T.; Meyer, C.; Eeckhoute, J.; Johnson, D.; Bernstein, B.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, 137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, J.; Liu, T.; Qin, B.; Zhang, Y.; Liu, X. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 2012, 7, 1728–1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinlan, A.; Hall, I. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842. [Google Scholar] [CrossRef] [Green Version]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio 2020, PBC: Boston, MA, USA; Available online: http://www.rstudio.com/ (accessed on 29 October 2021).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 29 October 2021)ISBN 978-3-319-24277-4.
- Wickham, H. Reshaping Data with the reshape Package. J. Stat. Softw. 2007, 21, 1–20. [Google Scholar] [CrossRef]
- Lucas, A. amap: Another Multidimensional Analysis Package. 2019. Available online: https://cran.r-project.org/web/packages/amap/index.html (accessed on 29 October 2021).
- Heinz, S.; Benner, C.; Spann, N.; Bertolino, E.; Lin, Y.; Laslo, P.; Cheng, J.X.; Murre, C.; Singh, H.; Glass, C.K. Simple Combinations of Lineage-Determining Transcription Factors Prime cis-Regulatory Elements Required for Macrophage and B Cell Identities. Mol. Cell 2010, 38, 576–589. [Google Scholar] [CrossRef] [Green Version]
- Morgan, M. BiocManager: Access the Bioconductor Project Package Repository. 2019. Available online: https://CRAN.R-project.org/package=BiocManager (accessed on 29 October 2021).
- Guangchuang, Y.; Wang, L.; Yanyan, H.; Qing-Yu, H. ClusterProfiler: An R package for comparing biological themes among gene clusters. OMICS A J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinform. 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Sherman, B.; Lempicki, R. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 2008, 37, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.; Sherman, B.; Lempicki, R. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2008, 4, 44–57. [Google Scholar] [CrossRef]
- Coppens, S.; Barnard, A.; Puusepp, S.; Pajusalu, S.; Õunap, K.; Vargas-Franco, D.; Bruels, C.C.; Donkervoort, S.; Pais, L.; Chao, K.R.; et al. A form of muscular dystrophy associated with pathogenic variants in JAG2. Am. J. Hum. Genet. 2021, 108, 840–856. [Google Scholar] [CrossRef]
- Esteves de Lima, J.; Bonnin, M.; Birchmeier, C.; Duprez, D. Muscle contraction is required to maintain the pool of muscle progenitors via YAP and NOTCH during fetal myogenesis. Elife 2016, 5, e15593. [Google Scholar] [CrossRef]
- Gao, Q.; Mok, H.; Zhuang, J. Secreted modular calcium-binding proteins in pathophysiological processes and embryonic development. Chin. Med. J. 2019, 132, 2476–2484. [Google Scholar] [CrossRef]
- De Micheli, A.; Swanson, J.; Disser, N.; Martinez, L.; Walker, N.; Oliver, D.J.; Cosgrove, B.D.; Mendias, C.L. Single-cell transcriptomic analysis identifies extensive heterogeneity in the cellular composition of mouse Achilles tendons. Am. J. Physiol. -Cell Physiol. 2020, 319, 885–894. [Google Scholar] [CrossRef]
- Laussu, J.; Khuong, A.; Gautrais, J.; Davy, A. Beyond boundaries—Eph:ephrin signaling in neurogenesis. Cell Adhes. Migr. 2014, 8, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, S.; Ridley, A.; Lutz, S. The Function of Rho-Associated Kinases ROCK1 and ROCK2 in the Pathogenesis of Cardiovascular Disease. Front. Pharmacol. 2015, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Burridge, K. Focal adhesions: A personal perspective on a half century of progress. FEBS J. 2017, 284, 3355–3361. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, S.; Vazquez Nunez, R.; Biertümpfel, C.; Mizuno, N. Bottom-up reconstitution of focal adhesion complexes. FEBS J. 2021. [Google Scholar] [CrossRef]
- Eleniste, P.; Bruzzaniti, A. Focal Adhesion Kinases in Adhesion Structures and Disease. J. Signal Transduct. 2012, 2012, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elineni, K.; Gallant, N. Regulation of Cell Adhesion Strength by Peripheral Focal Adhesion Distribution. Biophys. J. 2011, 101, 2903–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lock, F.; Ryan, K.; Poulter, N.; Parsons, M.; Hotchin, N. Differential Regulation of Adhesion Complex Turnover by ROCK1 and ROCK2. PLoS ONE 2012, 7, e31423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cieślik, M.; Bagińska, N.; Górski, A.; Jończyk-Matysiak, E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response. Cells 2021, 10, 2991. [Google Scholar] [CrossRef]
- Meade, K.; O’Farrelly, C. β-Defensins: Farming the Microbiome for Homeostasis and Health. Front. Immunol. 2019, 3072, 1–20. [Google Scholar] [CrossRef]
- Rocha Motta, G.; Amaral, M.; Rezende, E.; Pitta, R.; dos Santos Vieira, T.; Duarte, M.; Vieira, A.; Casado, P. Evidence of Genetic Variations Associated with Rotator Cuff Disease. J. Shoulder Elb. Surg. 2014, 23, 227–235. [Google Scholar] [CrossRef]
- Im, G.; Kim, T. Stem Cells for the Regeneration of Tendon and Ligament: A Perspective. Int. J. Stem Cells 2020, 13, 335–341. [Google Scholar] [CrossRef]
- Wong, Y.; Fu, S.; Cheuk, Y.; Lee, K.; Wong, W.; Chan, K. Bone morphogenetic protein 13 stimulates cell proliferation and production of collagen in human patellar tendon fibroblasts. Acta Orthop. 2005, 76, 421–427. [Google Scholar] [CrossRef]
- Liu, J.; Tao, X.; Chen, L.; Han, W.; Zhou, Y.; Tang, K. CTGF Positively Regulates BMP12 Induced Tenogenic Differentiation of Tendon Stem Cells and Signalling. Cell. Physiol. Biochem. 2015, 35, 1831–1845. [Google Scholar] [CrossRef]
- MacFarlane, E.G.; Haupt, J.; Dietz, H.C.; Shore, E.M. TGF-β family signaling in connective tissue and skeletal diseases. Cold Spring Harb. Perspect. Biol. 2017, 9, a022269. [Google Scholar] [CrossRef] [Green Version]
- Goodier, H.C.; Carr, A.J.; Snelling, S.J.; Roche, L.; Wheway, K.; Watkins, B.; Dakin, S.G. Comparison of transforming growth factor β expression in healthy and diseased human tendon. Arthritis Res. Ther. 2016, 18, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, R.; Vickaryous, M.; Viloria-Petit, A. Signalling by transforming growth factor β isoforms in wound healing and tissue regeneration. J. Dev. Biol. 2016, 4, 21. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.; Grant, P. The Role of DNA Methylation and Histone Modifications in Transcriptional Regulation in Humans. Subcell. Biochem. 2013, 61, 289–317. [Google Scholar] [CrossRef]
Category | Term | Genes | Count | % | p-Value | Benjamini |
---|---|---|---|---|---|---|
KEGG pathway | Axon guidance | EPHA3, ROCK1, EFNA5, GDF7, NTN1 | 5 | 11.6 | 1.0 × 10−4 | 3.5 × 10−3 |
KEGG pathway | TGF-β signaling pathway | ROCK1, GDF6, GDF7, INHBB | 4 | 9.3 | 3.0 × 10−4 | 5.2 × 10−3 |
INTERPRO | TGF-β, N-terminal | GDF6, GDF7, INHBB | 3 | 7.0 | 4.3 × 10−4 | 2.8 × 10−2 |
TGF-β, conserved Site | 3 | 7.0 | 1.0 × 10−3 | 2.8 × 10−2 | ||
TGF-β, related | 3 | 7.0 | 1.1 × 10−3 | 2.8 × 10−2 | ||
TGF-β, C-terminal | 3 | 7.0 | 1.3 × 10−3 | 2.8 × 10−2 | ||
SMART | TGFβ | GDF6, GDF7, INHBB | 3 | 7.0 | 1.6 × 10−3 | 3.6 × 10−2 |
GOTERM BP | Activin receptor signaling pathway | GDF6, GDF7, INHBB | 3 | 7.0 | 3.5 × 10−4 | 7.7 × 10−2 |
GOTERM BP | Regulation of focal adhesion assembly | EPHA3, ROCK1, EFNA5 | 3 | 7.0 | 5.6 × 10−4 | 7.7 × 10−2 |
GOTERM CC | Axon | SRCIN1, CALB1, EMB, HCN1, LMTK3 | 5 | 11.6 | 1.3 × 10−3 | 8.1 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orchard, K.J.A.; Akbar, M.; Crowe, L.A.N.; Cole, J.; Millar, N.L.; Raleigh, S.M. Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes 2023, 14, 496. https://doi.org/10.3390/genes14020496
Orchard KJA, Akbar M, Crowe LAN, Cole J, Millar NL, Raleigh SM. Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes. 2023; 14(2):496. https://doi.org/10.3390/genes14020496
Chicago/Turabian StyleOrchard, Kayleigh J. A., Moeed Akbar, Lindsay A. N. Crowe, John Cole, Neal L. Millar, and Stuart M. Raleigh. 2023. "Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy" Genes 14, no. 2: 496. https://doi.org/10.3390/genes14020496
APA StyleOrchard, K. J. A., Akbar, M., Crowe, L. A. N., Cole, J., Millar, N. L., & Raleigh, S. M. (2023). Characterization of Histone Modifications in Late-Stage Rotator Cuff Tendinopathy. Genes, 14(2), 496. https://doi.org/10.3390/genes14020496