Lack of Association of Polymorphism Located Upstream of ABCA1 (rs2472493), in FNDC3B (rs7636836), and Near ANKRD55–MAP3K1 Genes (rs61275591) in Primary Open-Angle Glaucoma Patients of Saudi Origin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Study Population
2.2. Genotyping of rs2472493, rs7636836, and rs61275591 Polymorphisms
2.3. Statistics
3. Results
3.1. Demographic and Minor Allele Frequency Distribution
3.2. Genotype Association Analysis with POAG
3.3. Combined Genotype, Linkage, and Haplotype Analysis
3.4. Binary Logistic Regression Analysis and Genotype Influence on Clinical Markers
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khandekar, R.; Chauhan, D.; Yasir, Z.H.; Al-Zobidi, M.; Judaibi, R.; Edward, D.P. The prevalence and determinants of glaucoma among 40 years and older saudi residents in the riyadh governorate (except the capital)—A community based survey. Saudi J. Ophthalmol. 2019, 33, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMonnies, C.W. Glaucoma history and risk factors. J. Optom. 2017, 10, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Youngblood, H.; Hauser, M.A.; Liu, Y. Update on the genetics of primary open-angle glaucoma. Exp. Eye Res. 2019, 188, 107795. [Google Scholar] [CrossRef]
- Gharahkhani, P.; Jorgenson, E.; Hysi, P.; Khawaja, A.P.; Pendergrass, S.; Han, X.; Ong, J.S.; Hewitt, A.W.; Segre, A.V.; Rouhana, J.M.; et al. Genome-wide meta-analysis identifies 127 open-angle glaucoma loci with consistent effect across ancestries. Nat. Commun. 2021, 12, 1258. [Google Scholar] [CrossRef]
- Hysi, P.G.; Cheng, C.-Y.; Springelkamp, H.; Macgregor, S.; Bailey, J.N.C.; Wojciechowski, R.; Vitart, V.; Nag, A.; Hewitt, A.W.; Höhn, R.; et al. Genome-wide analysis of multiethnic cohorts identifies new loci influencing intraocular pressure and susceptibility to glaucoma. Nat. Genet. 2014, 46, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Shiga, Y.; Akiyama, M.; Nishiguchi, K.M.; Sato, K.; Shimozawa, N.; Takahashi, A.; Momozawa, Y.; Hirata, M.; Matsuda, K.; Yamaji, T.; et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum. Mol. Genet. 2018, 27, 1486–1496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Smith, J.D. Abca1 and nascent hdl biogenesis. Biofactors 2014, 40, 547–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Z.; Tian, Y.; Zhao, Z.; Wu, Y.; Hu, X.; Li, J.; Chen, Q.; Wang, Y.; An, C.; Zhang, K. Association between the abca1 (r219k) polymorphism and lipid profiles: A meta-analysis. Sci. Rep. 2021, 11, 21718. [Google Scholar] [CrossRef]
- Gharahkhani, P.; Burdon, K.P.; Fogarty, R.; Sharma, S.; Hewitt, A.W.; Martin, S.; Law, M.H.; Cremin, K.; Bailey, J.N.C.; Loomis, S.J.; et al. Common variants near abca1, afap1 and gmds confer risk of primary open-angle glaucoma. Nat. Genet. 2014, 46, 1120–1125. [Google Scholar] [CrossRef]
- Karasinska, J.M.; de Haan, W.; Franciosi, S.; Ruddle, P.; Fan, J.; Kruit, J.K.; Stukas, S.; Lutjohann, D.; Gutmann, D.H.; Wellington, C.L.; et al. Abca1 influences neuroinflammation and neuronal death. Neurobiol. Dis. 2013, 54, 445–455. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Chen, Y.; Zou, T.; Xue, B.; Yang, F.; Wang, X.; Huo, Y.; Yan, B.; Xu, Y.; He, S.; et al. Cholesterol homeostasis regulated by abca1 is critical for retinal ganglion cell survival. Sci. China Life Sci. 2023, 66, 211–225. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lin, Y.; Vithana, E.N.; Jia, L.; Zuo, X.; Wong, T.Y.; Chen, L.J.; Zhu, X.; Tam, P.O.; Gong, B.; et al. Common variants near abca1 and in pmm2 are associated with primary open-angle glaucoma. Nat. Genet. 2014, 46, 1115–1119. [Google Scholar] [CrossRef]
- Prendes, M.A.; Harris, A.; Wirostko, B.M.; Gerber, A.L.; Siesky, B. The role of transforming growth factor β in glaucoma and the therapeutic implications. Br. J. Ophthalmol. 2013, 97, 680–686. [Google Scholar] [CrossRef]
- Cai, C.; Rajaram, M.; Zhou, X.; Liu, Q.; Marchica, J.; Li, J.; Powers, R.S. Activation of multiple cancer pathways and tumor maintenance function of the 3q amplified oncogene fndc3b. Cell. Cycle 2012, 11, 1773–1781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zukerman, R.; Harris, A.; Verticchio Vercellin, A.; Siesky, B.; Pasquale, L.R.; Ciulla, T.A. Molecular genetics of glaucoma: Subtype and ethnicity considerations. Genes 2021, 12, 55. [Google Scholar] [CrossRef] [PubMed]
- Alkhatib, R.; Abudhaim, N.; Al-Eitan, L.; Abdo, N.; Alqudah, A.; Aman, H. Genetic analysis of abca1 gene of primary glaucoma in jordanian arab population. Appl. Clin. Genet. 2019, 12, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Narooie-Nejad, M.; Rasouli, A.; Mousavi, M.; Rohani, M.R. Study of myoc gene mutation in poag patients in zahedan, iran. Clin. Lab. 2017, 63, 1283–1291. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amero, K.; Kondkar, A.A.; Chalam, K.V. An updated review on the genetics of primary open angle glaucoma. Int. J. Mol. Sci. 2015, 16, 28886–28911. [Google Scholar] [CrossRef] [Green Version]
- Kondkar, A.A.; Azad, T.A.; Alobaidan, A.S.; Sultan, T.; Osman, E.A.; Almobarak, F.A.; Lobo, G.P.; Al-Obeidan, S.A. Lack of association between polymorphisms in txnrd2 and lmx1b and primary open-angle glaucoma in a saudi cohort. Front. Genet. 2021, 12, 690780. [Google Scholar] [CrossRef]
- Kondkar, A.A.; Sultan, T.; Azad, T.A.; Osman, E.A.; Almobarak, F.A.; Lobo, G.P.; Al-Obeidan, S.A. Evaluation of abca1 and fndc3b gene polymorphisms associated with pseudoexfoliation glaucoma and primary angle-closure glaucoma in a saudi cohort. Front. Genet. 2022, 13, 877174. [Google Scholar] [CrossRef] [PubMed]
- Zukerman, R.; Harris, A.; Oddone, F.; Siesky, B.; Verticchio Vercellin, A.; Ciulla, T.A. Glaucoma heritability: Molecular mechanisms of disease. Genes 2021, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Choquet, H.; Paylakhi, S.; Kneeland, S.C.; Thai, K.K.; Hoffmann, T.J.; Yin, J.; Kvale, M.N.; Banda, Y.; Tolman, N.G.; Williams, P.A.; et al. A multiethnic genome-wide association study of primary open-angle glaucoma identifies novel risk loci. Nat. Commun. 2018, 9, 2278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, H.; Chen, Y.; Ye, Z.; Sun, X.; Shi, Y.; Luo, Q.; Gong, B.; Shuai, P.; Yang, J.; Zhou, Y.; et al. Evaluation of the association between common genetic variants near the abca1 gene and primary angle closure glaucoma in a han chinese population. Investig. Ophthalmol. Vis. Sci. 2015, 56, 6248–6254. [Google Scholar] [CrossRef] [Green Version]
- Araki, M.V.R.; Silva, Y.C.O.; Rodrigues, T.A.R.; Bajano, F.F.; de Souza, B.B.; Costa, F.F.; Costa, V.P.; de Melo, M.B.; de Vasconcellos, J.P.C. Association of abca1 (rs2472493) and gas7 (rs9913911) gene variants with primary open-angle glaucoma in a brazilian population. Mol. Vis. 2022, 28, 1–10. [Google Scholar]
- Yang, H.; Zheng, S.; Qiu, Y.; Yang, Y.; Wang, C.; Yang, P.; Li, Q.; Lei, B. Activation of liver x receptor alleviates ocular inflammation in experimental autoimmune uveitis. Investig. Ophthalmol. Vis. Sci. 2014, 55, 2795–2804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Xu, L.; Chen, W.; Li, X.; Xia, Q.; Zheng, L.; Duan, Q.; Zhang, H.; Zhao, Y. Reduced annexin a1 secretion by abca1 causes retinal inflammation and ganglion cell apoptosis in a murine glaucoma model. Front. Cell. Neurosci. 2018, 12, 347. [Google Scholar] [CrossRef]
- Li, Z.; Allingham, R.R.; Nakano, M.; Jia, L.; Chen, Y.; Ikeda, Y.; Mani, B.; Chen, L.J.; Kee, C.; Garway-Heath, D.F.; et al. A common variant near tgfbr3 is associated with primary open angle glaucoma. Hum. Mol. Genet. 2015, 24, 3880–3892. [Google Scholar] [CrossRef]
- Tominaga, K.; Kondo, C.; Johmura, Y.; Nishizuka, M.; Imagawa, M. The novel gene fad104, containing a fibronectin type iii domain, has a significant role in adipogenesis. FEBS Lett. 2004, 577, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Nishizuka, M.; Kishimoto, K.; Kato, A.; Ikawa, M.; Okabe, M.; Sato, R.; Niida, H.; Nakanishi, M.; Osada, S.; Imagawa, M. Disruption of the novel gene fad104 causes rapid postnatal death and attenuation of cell proliferation, adhesion, spreading and migration. Exp. Cell. Res. 2009, 315, 809–819. [Google Scholar] [CrossRef]
- Li, Y.Q.; Chen, Y.; Xu, Y.F.; He, Q.M.; Yang, X.J.; Hong, X.H.; Huang, S.Y.; Tang, L.L.; Liu, N. Fndc3b 3’-utr shortening escapes from microrna-mediated gene repression and promotes nasopharyngeal carcinoma progression. Cancer Sci. 2020, 111, 1991–2003. [Google Scholar] [CrossRef]
- Goto, M.; Osada, S.; Imagawa, M.; Nishizuka, M. Fad104, a regulator of adipogenesis, is a novel suppressor of tgf-β-mediated emt in cervical cancer cells. Sci. Rep. 2017, 7, 16365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, Y.; Wang, J.; Luo, X. Integrins in trabecular meshwork and optic nerve head: Possible association with the pathogenesis of glaucoma. Biomed. Res. Int. 2013, 2013, 202905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webber, H.C.; Bermudez, J.Y.; Millar, J.C.; Mao, W.; Clark, A.F. The role of wnt/β-catenin signaling and k-cadherin in the regulation of intraocular pressure. Investig. Ophthalmol. Vis. Sci. 2018, 59, 1454–1466. [Google Scholar] [CrossRef] [Green Version]
- Dhamodaran, K.; Baidouri, H.; Sandoval, L.; Raghunathan, V. Wnt activation after inhibition restores trabecular meshwork cells toward a normal phenotype. Investig. Ophthalmol. Vis. Sci. 2020, 61, 30. [Google Scholar] [CrossRef] [PubMed]
- Lopez de Lapuente, A.; Feliu, A.; Ugidos, N.; Mecha, M.; Mena, J.; Astobiza, I.; Riera, J.; Carrillo-Salinas, F.J.; Comabella, M.; Montalban, X.; et al. Novel insights into the multiple sclerosis risk gene ankrd55. J. Immunol. 2016, 196, 4553–4565. [Google Scholar] [CrossRef] [Green Version]
- Pham, T.T.; Angus, S.P.; Johnson, G.L. Map3k1: Genomic alterations in cancer and function in promoting cell survival or apoptosis. Genes Cancer 2013, 4, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Nimgaonkar, I.; Jamgochian, M.; Milgraum, D.M.; Pappert, A.S.; Milgraum, S.S. Ulerythema ophryogenes in association with map3k1-mutated swyer syndrome. JAAD Case Rep. 2022, 25, 43–46. [Google Scholar] [CrossRef]
- Marchini, J.; Donnelly, P.; Cardon, L.R. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat. Genet. 2005, 37, 413–417. [Google Scholar] [CrossRef]
- Pan, W. Network-based model weighting to detect multiple loci influencing complex diseases. Hum. Genet. 2008, 124, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Brossard, M.; Fang, S.; Vaysse, A.; Wei, Q.; Chen, W.V.; Mohamdi, H.; Maubec, E.; Lavielle, N.; Galan, P.; Lathrop, M.; et al. Integrated pathway and epistasis analysis reveals interactive effect of genetic variants at terf1 and afap1l2 loci on melanoma risk. Int. J. Cancer 2015, 137, 1901–1909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zakharov, S.; Wong, T.Y.; Aung, T.; Vithana, E.N.; Khor, C.C.; Salim, A.; Thalamuthu, A. Combined genotype and haplotype tests for region-based association studies. BMC Genom. 2013, 14, 569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Niu, L.; Li, L.; Song, M.; Zhang, Y.; Lei, Y.; Chen, Y.; Sun, X. Abca1 regulates iop by modulating cav1/enos/no signaling pathway. Investig. Ophthalmol. Vis. Sci. 2020, 61, 33. [Google Scholar] [CrossRef] [PubMed]
- Chai, X.; Low, K.Y.; Tham, Y.C.; Chee, M.L.; Thakur, S.; Zhang, L.; Tan, N.Y.; Khor, C.C.; Aung, T.; Wong, T.Y.; et al. Association of glaucoma risk genes with retinal nerve fiber layer in a multi-ethnic asian population: The singapore epidemiology of eye diseases study. Investig. Ophthalmol. Vis. Sci. 2020, 61, 37. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Controls (n = 246) | POAG (n = 152) | Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|---|---|
Age in years (SD) | 59.5 (7.2) | 60.9 (10.5) | - | 0.112 |
Male/Female, n | 132/114 | 84/68 | 0.81 (1.06–0.06) | 0.751 |
Minor Allele Frequency | ||||
rs2472493[G] | ||||
Total | 0.39 | 0.38 | 0.95 (0.71–1.26) | 0.700 |
Men | 0.37 | 0.37 | 1.01 (0.69–1.48) | 0.970 |
Women | 0.42 | 0.39 | 0.88 (0.57–1.35) | 0.560 |
rs7636836[T] | ||||
Total | 0.05 | 0.07 | 1.34 (0.74–2.41) | 0.330 |
Men | 0.04 | 0.07 | 1.61 (0.68–3.80) | 0.273 |
Women | 0.06 | 0.07 | 1.14 (0.52–2.51) | 0.750 |
rs61275591[A] | ||||
Total | 0.17 | 0.18 | 1.09 (0.75–1.59] | 0.629 |
Men | 0.04 | 0.07 | 1.61 (0.68–3.80) | 0.273 |
Women | 0.06 | 0.07 | 1.14 (0.52–2.51) | 0.750 |
Group | Genetic Model 1 | Genotype | Controls n (%) | Cases n (%) | OR (95% CI) | p-Value 2 | p-Value 2,3 |
---|---|---|---|---|---|---|---|
Overall | Co-dominant | A/A | 97 (39.6) | 59 (39.1) | 1.00 | 0.610 | 0.650 |
G/A | 104 (42.5) | 70 (46.4) | 1.11 (0.71–1.72) | ||||
G/G | 44 (18.0) | 22 (14.6%) | 0.82 (0.45–1.51) | ||||
Dominant | A/A | 97 (39.6) | 59 (39.1) | 1.00 | 0.920 | 0.960 | |
G/A-G/G | 148 (60.4) | 92 (60.9) | 1.02 (0.67–1.55) | ||||
Recessive | A/A-G/A | 201 (82.0) | 129 (85.4) | 1.00 | 0.380 | 0.380 | |
G/G | 44 (18.0) | 22 (14.6) | 0.78 (0.45–1.36) | ||||
Over-dominant | A/A-G/G | 141 (57.5) | 81 (53.6) | 1.00 | 0.450 | 0.540 | |
G/A | 104 (42.5) | 70 (46.4) | 1.17 (0.78–1.76) | ||||
Log-additive | --- | --- | --- | 0.95 (0.71–1.26) | 0.700 | 0.620 | |
Men | Co-dominant | A/A | 56 (42.4) | 35 (41.7) | 1.00 | 0.980 | 0.990 |
G/A | 55 (41.7) | 36 (42.9) | 1.05 (0.58–1.90) | ||||
G/G | 21 (15.9) | 13 (15.5) | 0.99 (0.44–2.23) | ||||
Dominant | A/A | 56 (42.4) | 35 (41.7) | 1.00 | 0.910 | 0.990 | |
G/A-G/G | 76 (57.6) | 49 (58.3) | 1.03 (0.59–1.80) | ||||
Recessive | A/A-G/A | 111 (84.1) | 71 (84.5) | 1.00 | 0.930 | 0.880 | |
G/G | 21 (15.9) | 13 (15.5) | 0.97 (0.46–2.06) | ||||
Over-dominant | A/A-G/G | 77 (58.3) | 48 (57.1) | 1.00 | 0.860 | 0.920 | |
G/A | 55 (41.7) | 36 (42.9) | 1.05 (0.60–1.83) | ||||
Log-additive | --- | --- | --- | 1.01 (0.69–1.48) | 0.970 | 0.930 | |
Women | Co-dominant | A/A | 41 (36.3) | 24 (35.8) | 1.00 | 0.430 | 0.530 |
G/A | 49 (43.4) | 34 (50.8) | 1.19 (0.61–2.31) | ||||
G/G | 23 (20.4) | 9 (13.4) | 0.67 (0.27–1.68) | ||||
Dominant | A/A | 41 (36.3) | 24 (35.8) | 1.00 | 0.950 | 0.970 | |
G/A-G/G | 72 (63.7) | 43 (64.2) | 1.02 (0.54–1.91) | ||||
Recessive | A/A-G/A | 90 (79.7) | 58 (86.6) | 1.00 | 0.230 | 0.280 | |
G/G | 23 (20.4) | 9 (13.4) | 0.61 (0.26–1.40) | ||||
Over-dominant | A/A-G/G | 64 (56.6) | 33 (49.2) | 1.00 | 0.340 | 0.430 | |
G/A | 49 (43.4) | 34 (50.8) | 1.35 (0.73–2.47) | ||||
Log-additive | --- | --- | --- | 0.88 (0.57–1.35) | 0.560 | 0.550 |
Group | Genetic Model 1 | Genotype | Controls n (%) | Cases n (%) | OR (95% CI) | p-Value 2 | p-Value 2,3 |
---|---|---|---|---|---|---|---|
Overall | Co-dominant | C/C | 224 (91.1) | 133 (87.5) | 1.00 | 0.480 | 0.480 |
C/T | 20 (8.1) | 18 (11.8) | 1.52 (0.77–2.97) | ||||
T/T | 2 (0.8) | 1 (0.7) | 0.84 (0.08–9.38) | ||||
Dominant | C/C | 224 (91.1) | 133 (87.5) | 1.00 | 0.260 | 0.250 | |
C/T-T/T | 22 (8.9) | 19 (12.5) | 1.45 (0.76–2.79) | ||||
Recessive | C/C-C/T | 244 (99.2) | 151 (99.3) | 1.00 | 0.860 | 0.930 | |
T/T | 2 (0.8) | 1 (0.7) | 0.81 (0.07–8.99) | ||||
Over-dominant | C/C-T/T | 226 (91.9) | 134 (88.2) | 1.00 | 0.230 | 0.220 | |
C/T | 20 (8.1) | 18 (11.8) | 1.52 (0.78–2.97) | ||||
Log-additive | --- | --- | --- | 1.34 (0.74–2.41) | 0.330 | 0.310 | |
Men | -- | C/C | 121 (91.7) | 73 (86.9) | 1.00 | 0.260 | 0.250 |
C/T | 11 (8.3) | 11 (13.1) | 1.66 (0.68–4.02) | ||||
T/T | 0 (0) | 0 (0) | - | ||||
Women | Co-dominant | C/C | 103 (90.3) | 60 (88.2) | 1.00 | 0.850 | 0.900 |
C/T | 9 (7.9) | 7 (10.3) | 1.34 (0.47–3.77) | ||||
T/T | 2 (1.8) | 1 (1.5) | 0.86 (0.08–9.67) | ||||
Dominant | C/C | 103 (90.3) | 60 (88.2) | 1.00 | 0.650 | 0.680 | |
C/T-T/T | 11 (9.7) | 8 (11.8) | 1.25 (0.48–3.28) | ||||
Recessive | C/C-C/T | 112 (98.2) | 67 (98.5) | 1.00 | 0.880 | 0.970 | |
T/T | 2 (1.8) | 1 (1.5) | 0.84 (0.07–9.39) | ||||
Over-dominant | C/C-T/T | 105 (92.1) | 61 (89.7) | 1.00 | 0.580 | 0.640 | |
C/T | 9 (7.9) | 7 (10.3) | 1.34 (0.47–3.78) | ||||
Log-additive | --- | --- | --- | 1.14 (0.52–2.51) | 0.750 | 0.740 |
Group | Genetic Model 1 | Genotype | Controls n (%) | Cases n (%) | OR (95% CI) | p-Value 2 | p-Value 2,3 |
---|---|---|---|---|---|---|---|
Overall | Co-dominant | G/G | 167 (68.7) | 101 (66.5) | 1.00 | 0.890 | 0.860 |
A/G | 69 (28.4) | 46 (30.3) | 1.10 (0.70–1.72) | ||||
A/A | 7 (2.9) | 5 (3.3) | 1.18 (0.37–3.82) | ||||
Dominant | G/G | 167 (68.7) | 101 (66.5) | 1.00 | 0.640 | 0.600 | |
A/G-A/A | 76 (31.3) | 51 (33.5) | 1.11 (0.72–1.71) | ||||
Recessive | G/G-A/G | 236 (97.1) | 147 (96.7) | 1.00 | 0.820 | 0.740 | |
A/A | 7 (2.9) | 5 (3.3) | 1.15 (0.36–3.68) | ||||
Over-dominant | G/G-A/A | 174 (71.6) | 106 (69.7) | 1.00 | 0.690 | 0.680 | |
A/G | 69 (28.4) | 46 (30.3) | 1.09 (0.70–1.71) | ||||
Log-additive | --- | --- | --- | 1.10 (0.75–1.60) | 0.630 | 0.580 | |
Men | Co-dominant | G/G | 90 (69.8) | 56 (66.7) | 1.00 | 0.790 | 0.730 |
A/G | 35 (27.1) | 24 (28.6) | 1.10 (0.59–2.04) | ||||
A/A | 4 (3.1) | 4 (4.8) | 1.61 (0.39–6.69) | ||||
Dominant | G/G | 90 (69.8) | 56 (66.7) | 1.00 | 0.630 | 0.590 | |
A/G-A/A | 39 (30.2) | 28 (33.3) | 1.15 (0.64–2.08) | ||||
Recessive | G/G-A/G | 125 (96.9) | 80 (95.2) | 1.00 | 0.540 | 0.470 | |
A/A | 4 (3.1) | 4 (4.8) | 1.56 (0.38–6.43) | ||||
Over-dominant | G/G-A/A | 94 (72.9) | 60 (71.4) | 1.00 | 0.820 | 0.80 | |
A/G | 35 (27.1) | 24 (28.6) | 1.07 (0.58–1.98) | ||||
Log-additive | --- | --- | --- | 1.17 (0.71–1.92) | 0.540 | 0.480 | |
Women | Co-dominant | G/G | 77 (67.5) | 45 (66.2) | 1.00 | 0.830 | 0.840 |
A/G | 34 (29.8) | 22 (32.4) | 1.11 (0.58–2.12) | ||||
A/A | 3 (2.6) | 1 (1.5) | 0.57 (0.06–5.65) | ||||
Dominant | G/G | 77 (67.5) | 45 (66.2) | 1.00 | 0.850 | 0.920 | |
A/G-A/A | 37 (32.5) | 23 (33.8) | 1.06 (0.56–2.01) | ||||
Recessive | G/G-A/G | 111 (97.4) | 67 (98.5) | 1.00 | 0.590 | 0.590 | |
A/A | 3 (2.6) | 1 (1.5) | 0.55 (0.06–5.42) | ||||
Over-dominant | G/G-A/A | 80 (70.2) | 46 (67.7) | 1.00 | 0.720 | 0.780 | |
A/G | 34 (29.8) | 22 (32.4) | 1.13 (0.59–2.15) | ||||
Log-additive | --- | --- | --- | 1.01 (0.57–1.79) | 0.980 | 0.960 |
Allele Combination 1 | POAG Frequency | Controls Frequency | Fisher’s p 2 | Odds Ratio (95% Confidence Interval) |
---|---|---|---|---|
A-C-G | 0.495 | 0.505 | 0.770 | 0.95 [0.71~1.28] |
A-C-A | 0.101 | 0.073 | 0.180 | 1.41 [0.84~2.36] |
A-T-G | 0.030 | 0.032 | 0.887 | 0.94 [0.40~2.17] |
A-T-A | 0.001 | 0.002 | - | - |
G-C-G | 0.268 | 0.276 | 0.786 | 0.95 [0.69~1.32] |
G-C-A | 0.069 | 0.096 | 0.186 | 0.69 [0.40~1.19] |
G-T-G | 0.024 | 0.016 | 0.414 | 1.53 [0.54~4.31] |
G-T-A | 0.013 | 0.000 | - | - |
Group Variables | B | S.E. | Wald | p-Value | Odds Ratio (95% Confidence Interval) |
---|---|---|---|---|---|
Age | 0.020 | 0.012 | 2.475 | 0.116 | 1.02 (0.99–1.04) |
Sex | 0.018 | 0.213 | 0.007 | 0.932 | 1.01 (0.67–1.54) |
Rs2472493 | 0.988 | 0.610 | - | ||
G/A | 0.053 | 0.233 | 0.052 | 0.820 | 1.05 (0.66–1.66) |
G/G | −0.255 | 0.318 | 0.641 | 0.424 | 0.77 (0.41–1.44) |
Rs7636836 | 1.709 | 0.426 | - | ||
C/T | 0.451 | 0.346 | 1.700 | 0.192 | 1.57 (0.79–3.09) |
T/T | −0.070 | 1.241 | 0.003 | 0.955 | 0.93 (0.08–10.6) |
Rs61275591 | 0.349 | 0.840 | - | ||
G/A | 0.078 | 0.235 | 0.109 | 0.741 | 1.08 (0.68–1.71) |
A/A | 0.320 | 0.608 | 0.278 | 0.598 | 1.37 (0.41–4.53) |
Constant | −1.752 | 0.770 | 5.171 | 0.023 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondkar, A.A.; Sultan, T.; Azad, T.A.; Osman, E.A.; Almobarak, F.A.; Lobo, G.P.; Al-Obeidan, S.A. Lack of Association of Polymorphism Located Upstream of ABCA1 (rs2472493), in FNDC3B (rs7636836), and Near ANKRD55–MAP3K1 Genes (rs61275591) in Primary Open-Angle Glaucoma Patients of Saudi Origin. Genes 2023, 14, 704. https://doi.org/10.3390/genes14030704
Kondkar AA, Sultan T, Azad TA, Osman EA, Almobarak FA, Lobo GP, Al-Obeidan SA. Lack of Association of Polymorphism Located Upstream of ABCA1 (rs2472493), in FNDC3B (rs7636836), and Near ANKRD55–MAP3K1 Genes (rs61275591) in Primary Open-Angle Glaucoma Patients of Saudi Origin. Genes. 2023; 14(3):704. https://doi.org/10.3390/genes14030704
Chicago/Turabian StyleKondkar, Altaf A., Tahira Sultan, Taif A. Azad, Essam A. Osman, Faisal A. Almobarak, Glenn P. Lobo, and Saleh A. Al-Obeidan. 2023. "Lack of Association of Polymorphism Located Upstream of ABCA1 (rs2472493), in FNDC3B (rs7636836), and Near ANKRD55–MAP3K1 Genes (rs61275591) in Primary Open-Angle Glaucoma Patients of Saudi Origin" Genes 14, no. 3: 704. https://doi.org/10.3390/genes14030704
APA StyleKondkar, A. A., Sultan, T., Azad, T. A., Osman, E. A., Almobarak, F. A., Lobo, G. P., & Al-Obeidan, S. A. (2023). Lack of Association of Polymorphism Located Upstream of ABCA1 (rs2472493), in FNDC3B (rs7636836), and Near ANKRD55–MAP3K1 Genes (rs61275591) in Primary Open-Angle Glaucoma Patients of Saudi Origin. Genes, 14(3), 704. https://doi.org/10.3390/genes14030704