Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Definition of Clinical Parameters
2.3. Blood Collection and DNA Extraction
2.4. Genotyping of PVR Patients
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Idrees, S.; Sridhar, J.; Kuriyan, A.E. Proliferative Vitreoretinopathy: A Review. Int. Ophthalmol. Clin. 2019, 59, 221–240. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Scott, R.A.H.; Wallace, G.; Berry, M.; Logan, A.; Blanch, R.J. Inflammatory and Fibrogenic Factors in Proliferative Vitreoretinopathy Development. Transl. Vis. Sci. Technol. 2020, 9, 23. [Google Scholar] [CrossRef]
- Kwon, O.W.; Song, J.H.; Roh, M.I. Retinal Detachment and Proliferative Vitreoretinopathy. Dev. Ophthalmol. 2016, 55, 154–162. [Google Scholar] [CrossRef]
- Wu, F.; Eliott, D. Molecular Targets for Proliferative Vitreoretinopathy. Semin. Ophthalmol. 2021, 36, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Pastor, J.C.; Rojas, J.; Pastor-Idoate, S.; Di Lauro, S.; Gonzalez-Buendia, L.; Delgado-Tirado, S. Proliferative vitreoretinopathy: A new concept of disease pathogenesis and practical consequences. Prog. Retin. Eye Res. 2016, 51, 125–155. [Google Scholar] [CrossRef]
- Machemer, R.; Aaberg, T.M.; Freeman, H.M.; Irvine, A.R.; Lean, J.S.; Michels, R.M. An updated classification of retinal detachment with proliferative vitreoretinopathy. Am. J. Ophthalmol. 1991, 112, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Dai, C.; Sun, T. Inflammatory mediators of proliferative vitreoretinopathy: Hypothesis and review. Int. Ophthalmol. 2020, 40, 1587–1601. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Fernandez, I.; Pastor, J.C.; Maclaren, R.E.; Ramkissoon, Y.; Harsum, S.; Charteris, D.G.; Van Meurs, J.C.; Amarakoon, S.; Ruiz-Moreno, J.M.; et al. A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy. Investig. Ophthalmol. Vis. Sci. 2013, 54, 1665–1678. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Fernandez, I.; Pastor, J.C.; Garcia-Gutierrez, M.-T.; Sanabria, R.-M.; Brion, M.; Sobrino, B.; Manzanas, L.; Giraldo, A.; Rodriguez-de la Rua, E.; et al. Development of predictive models of proliferative vitreoretinopathy based on genetic variables: The Retina 4 project. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2384–2390. [Google Scholar] [CrossRef] [PubMed]
- Pennock, S.; Haddock, L.J.; Eliott, D.; Mukai, S.; Kazlauskas, A. Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? Prog. Retin. Eye Res. 2014, 40, 16–34. [Google Scholar] [CrossRef]
- Lei, H.; Velez, G.; Hovland, P.; Hirose, T.; Gilbertson, D.; Kazlauskas, A. Growth factors outside the PDGF family drive experimental PVR. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3394–3403. [Google Scholar] [CrossRef] [PubMed]
- Sanabria Ruiz-Colmenares, M.R.; Pastor Jimeno, J.C.; Garrote Adrados, J.A.; Telleria Orriols, J.J.; Yugueros Fernández, M.I. Cytokine gene polymorphisms in retinal detachment patients with and without proliferative vitreoretinopathy: A preliminary study. Acta Ophthalmol. Scand. 2006, 84, 309–313. [Google Scholar] [CrossRef] [PubMed]
- Saika, S.; Yamanaka, O.; Nishikawa-Ishida, I.; Kitano, A.; Flanders, K.C.; Okada, Y.; Ohnishi, Y.; Nakajima, Y.; Ikeda, K. Effect of Smad7 gene overexpression on transforming growth factor β-induced retinal pigment fibrosis in a proliferative vitreoretinopathy mouse model. Arch. Ophthalmol. 2007, 125, 647–654. [Google Scholar] [CrossRef] [PubMed]
- Symeonidis, C.; Papakonstantinou, E.; Androudi, S.; Georgalas, I.; Rotsos, T.; Karakiulakis, G.; Diza, E.; Dimitrakos, S.A. Comparison of interleukin-6 and matrix metalloproteinase expression in the subretinal fluid and the vitreous during proliferative vitreoretinopathy: Correlations with extent, duration of RRD and PVR grade. Cytokine 2014, 67, 71–76. [Google Scholar] [CrossRef]
- Ricker, L.J.A.G.; Kijlstra, A.; Kessels, A.G.H.; de Jager, W.; Liem, A.T.A.; Hendrikse, F.; Heji, E.C.L. Interleukin and Growth Factor Levels in Subretinal Fluid in Rhegmatogenous Retinal Detachment: A Case-Control Study. PLoS ONE 2011, 6, e19141. [Google Scholar] [CrossRef]
- Kon, C.H.; Occleston, N.L.; Aylward, G.W.; Khaw, P.T. Expression of vitreous cytokines in proliferative vitreoretinopathy: A prospective study. Investig. Ophthalmol. Vis. Sci. 1999, 40, 705–712. [Google Scholar]
- Robbins, S.G.; Mixon, R.N.; Wilson, D.J.; Hart, C.E.; Robertson, J.E.; Westra, I.; Planck, S.R.; Rosenbaum, J.T. Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. Investig. Ophthalmol. Vis. Sci. 1994, 35, 3649–3663. [Google Scholar]
- Rasier, R.; Gormus, U.; Artunay, O.; Yuzbasioglu, E.; Oncel, M.; Bahcecioglu, H. Vitreous levels of VEGF, IL-8, and TNF-α in retinal detachment. Curr. Eye Res. 2010, 35, 505–509. [Google Scholar] [CrossRef]
- Limb, G.A.; Alam, A.; Earley, O.; Green, W.; Chignell, A.H.; Dumonde, D.C. Distribution of cytokine proteins within epiretinal membranes in proliferative vitreoretinopathy. Curr. Eye Res. 1994, 13, 791–798. [Google Scholar] [CrossRef]
- Sies, H. Oxidative Stress: Concept and Some Practical Aspects. Antioxidants 2020, 9, 852. [Google Scholar] [CrossRef]
- Santos, F.M.; Mesquita, J.; Castro-de-Sousa, J.P.; Ciordia, S.; Paradela, A.; Tomaz, C.T. Vitreous Humor Proteome: Targeting Oxidative Stress, Inflammation, and Neurodegeneration in Vitreoretinal Diseases. Antioxidants 2022, 11, 505. [Google Scholar] [CrossRef]
- Xu, H.; Chen, M.; Forrester, J.V. Para-inflammation in the aging retina. Prog. Retin. Eye Res. 2009, 28, 348–368. [Google Scholar] [CrossRef]
- Ruan, Y.; Jiang, S.; Musayeva, A.; Gericke, A. Oxidative Stress and Vascular Dysfunction in the Retina: Therapeutic Strategies. Antioxidants 2020, 9, 761. [Google Scholar] [CrossRef]
- Mudhar, H.S. A brief review of the histopathology of proliferative vitreoretinopathy (PVR). Eye 2020, 34, 246–250. [Google Scholar] [CrossRef]
- Roh, M.I.; Murakami, Y.; Thanos, A.; Vavvas, D.G.; Miller, J.W. Edaravone, an ROS scavenger, ameliorates photoreceptor cell death after experimental retinal detachment. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3825–3831. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Velez, G.; Cui, J.; Samad, A.; Maberley, D.; Matsubara, J.; Kazlauskas, A. N-acetylcysteine suppresses retinal detachment in an experimental model of proliferative vitreoretinopathy. Am. J. Pathol. 2010, 177, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Mantopoulos, D.; Murakami, Y.; Comander, J.; Thanos, A.; Roh, M.; Miller, J.W.; Vavvas, D.G. Tauroursodeoxycholic acid (TUDCA) protects photoreceptors from cell death after experimental retinal detachment. PLoS ONE 2011, 6, e24245. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi Falavarjani, K. Proliferative Vitreoretinopathy and Genetic Profile. J. Ophthalmic. Vis. Res. 2013, 8, 92–93. [Google Scholar]
- Rojas, J.; Fernandez, I.; Pastor, J.C.; Garcia-Gutierrez, M.T.; Sanabria, M.R.; Brion, M.; Coco, R.M.; Ruiz-Moreno, J.M.; Garcia-Arumi, J.; Elizalde, J.; et al. A strong genetic association between the tumor necrosis factor locus and proliferative vitreoretinopathy: The retina 4 project. Ophthalmology 2010, 117, e1–e2. [Google Scholar] [CrossRef] [PubMed]
- Pastor-Idoate, S.; Rodríguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutierrez, M.-T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.D.; Harsum, S.; MacLaren, R.E.; et al. BAX and BCL-2 polymorphisms, as predictors of proliferative vitreoretinopathy development in patients suffering retinal detachment: The Retina 4 project. Acta Ophthalmol. 2015, 93, e541–e549. [Google Scholar] [CrossRef]
- Pastor-Idoate, S.; Rodríguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutiérrez, M.T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.; Harsum, S.; MacLaren, R.E.; et al. The T309G MDM2 gene polymorphism is a novel risk factor for proliferative vitreoretinopathy. PLoS ONE 2013, 8, e82283. [Google Scholar] [CrossRef]
- Pastor-Idoate, S.; Rodriguez-Hernández, I.; Rojas, J.; Fernández, I.; García-Gutierrez, M.T.; Ruiz-Moreno, J.M.; Rocha-Sousa, A.; Ramkissoon, Y.; Harsum, S.; MacLaren, R.E.; et al. The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: The Retina 4 Project. Ophthalmology 2013, 120, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.; Fernandez, I.; Pastor, J.C.; MacLaren, R.A.; Ramkissoon, Y.; Harsum, S.; Charteris, D.G.; Van Meurs, J.C.; Amarakoon, S.; Garcia-Arumi, J.; et al. Predicting proliferative vitreoretinopathy: Temporal and external validation of models based on genetic and clinical variables. Br. J. Ophthalmol. 2015, 99, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Lumi, X.; Jelen, M.M.; Zupan, A.; Boštjančič, E.; Ravnik-Glavač, M.; Hawlina, M.; Glavač, D. SINGLE NUCLEOTIDE POLYMORPHISMS IN RETINAL DETACHMENT PATIENTS WITH AND WITHOUT PROLIFERATIVE VITREORETINOPATHY. Retina 2020, 40, 811–818. [Google Scholar] [CrossRef]
- Lumi, X.; Jelen, M.M.; Jevšinek Skok, D.; Boštjančič, E.; Ravnik-Glavač, M.; Hawlina, M.; Glavač, D. Comparison of SNP Genotypes Related to Proliferative Vitreoretinopathy (PVR) across Slovenian and European Subpopulations. J. Ophthalmol. 2018, 2018, 8761625. [Google Scholar] [CrossRef]
- Wong, C.W.; Cheung, N.; Ho, C.; Barathi, V.; Storm, G.; Wong, T.T. Characterisation of the inflammatory cytokine and growth factor profile in a rabbit model of proliferative vitreoretinopathy. Sci. Rep. 2019, 9, 15419. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Casian, N.; Lozano-Giral, D.; Miranda-Duarte, A.; Garcia-Montalvo, I.; Rodriguez-Loaiza, J.L.; Zenteno, J.C. Association study between polymorphisms of the p53 and lymphotoxin α (LTA) genes and the risk of proliferative vitreoretinopathy/retinal detachment in a mexican population. Retina 2018, 38, 187–191. [Google Scholar] [CrossRef]
- Becuwe, P.; Ennen, M.; Klotz, R.; Barbieux, C.; Grandemange, S. Manganese superoxide dismutase in breast cancer: From molecular mechanisms of gene regulation to biological and clinical significance. Free. Radic. Biol. Med. 2014, 77, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Chin, E.K.; Almeida, D. Antioxidants for the Treatment of Retinal Disease: Summary of Recent Evidence. Clin. Ophthalmol. 2021, 15, 1621–1628. [Google Scholar] [CrossRef] [PubMed]
- Bag, A.; Bag, N. Target sequence polymorphism of human manganese superoxide dismutase gene and its association with cancer risk: A review. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3298–3305. [Google Scholar] [CrossRef]
- Kakko, S.; Päivänsalo, M.; Koistinen, P.; Kesäniemi, Y.A.; Kinnula, V.L.; Savolainen, M.J. The signal sequence polymorphism of the MnSOD gene is associated with the degree of carotid atherosclerosis. Atherosclerosis 2003, 168, 147–152. [Google Scholar] [CrossRef]
- Giacco, F.; Brownlee, M. Oxidative stress and diabetic complications. Circ. Res. 2010, 107, 1058–1070. [Google Scholar] [CrossRef]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef] [PubMed]
- Moysidis, S.N.; Thanos, A.; Vavvas, D.G. Mechanisms of Inflammation in Proliferative Vitreoretinopathy: From Bench to Bedside. Mediat. Inflamm. 2012, 2012, 815937. [Google Scholar] [CrossRef] [PubMed]
- Greene, C.S.; Penrod, N.M.; Williams, S.M.; Moore, J.H. Failure to replicate a genetic association may provide important clues about genetic architecture. PLoS ONE 2009, 4, e5639. [Google Scholar] [CrossRef] [PubMed]
- Garner, C. Upward bias in odds ratio estimates from genome-wide association studies. Genet. Epidemiol. 2007, 31, 288–295. [Google Scholar] [CrossRef] [PubMed]
- Gorroochurn, P.; Hodge, S.E.; Heiman, G.A.; Durner, M.; Greenberg, D.A. Non-replication of association studies: “pseudo-failures” to replicate? Genet. Med. 2007, 9, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Nsengimana, J.; Bishop, D.T. Design considerations for genetic linkage and association studies. Methods Mol. Biol. 2012, 850, 237–262. [Google Scholar] [CrossRef]
- Attia, J.; Ioannidis, J.P.A.; Thakkinstian, A.; McEvoy, M.; Scott, R.J.; Minelli, C.; Thompson, J.; Infante-Rivard, C.; Guyatt, G. How to use an article about genetic association: B: Are the results of the study valid? JAMA 2009, 301, 191–197. [Google Scholar] [CrossRef]
- Ankamah, E.; Sebag, J.; Ng, E.; Nolan, J.M. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants 2019, 9, 7. [Google Scholar] [CrossRef]
Characteristic | Total Number of Patients (N = 192) | Patients without PVR (N = 80) | Patients with PVR Grade C (N = 112) | p | |
---|---|---|---|---|---|
Gender | Male, N (%) | 116 (60.4) | 55 (68.8) | 61 (54.5) | 0.052 a |
Female, N (%) | 76 (39.6) | 25 (31.3) | 51 (45.5) | ||
Age | Years, Median (25–75%) | 64 (53–72) | 60 (51–70.8) | 65 (55–74) | 0.081 b |
Eye | Right, N (%) | 109 (57.1) [1] | 47 (59.5) [1] | 62 (55.4) | 0.656 a |
Left, N (%) | 82 (42.9) | 32 (40.5) | 50 (44.6) | ||
PVR grade | A, N (%) | 32 (16.7) | 32 (40.0) | 0 (0.0) | <0.001 a |
B, N (%) | 48 (25.0) | 48 (60.0) | 0 (0.0) | ||
C, N (%) | 112 (58.3) | 0 (0.0) | 112 (100.0) | ||
Preoperative BCVA | Median (25–75%) | 0.01 (0.01–0.30) [5] | 0.10 (0.01–0.50) [4] | 0.01 (0.01–0.20) [1] | <0.001 b |
Postoperative BCVA | Median (25–75%) | 0.30 (0.10–0.70) [1] | 0.70 (0.50–1.00) [1] | 0.20 (0.01–0.40) | <0.001 b |
Macula | Off, N (%) | 138 (72.3) [1] | 50 (63.3) [1] | 88 (78.6) | 0.023 a |
On, N (%) | 53 (27.7) | 29 (36.7) | 24 (21.4) | ||
Number of surgeries | 1, N (%) | 109 (57.1) [1] | 77 (97.5) [1] | 32 (28.6) | <0.001 a |
2, N (%) | 42 (22.0) | 2 (2.5) | 40 (35.7) | ||
3, N (%) | 23 (12.0) | 0 (0.0) | 23 (20.5) | ||
4, N (%) | 14 (7.3) | 0 (0.0) | 14 (12.5) | ||
5, N (%) | 3 (1.6) | 0 (0.0) | 3 (2.7) | ||
Duration of symptoms | Days, Median (25–75%) | 14 (7–30) [2] | 8 (5–14) [2] | 14 (7–30) | <0.001 b |
OCT-CRT | µm, Median (25–75%) | 262.5 (223.3–321.5) [16] | 245 (218–286) [5] | 281 (230.5–389) [11] | 0.008 b |
Preoperative IOP | mmHg, Median (25–75%) | 13 (12–16) [23] | 14 (12–17.3) [6] | 13 (10–16) [17] | 0.028 b |
Postoperative IOP | mmHg, Median (25–75%) | 15 (12–17) [5] | 15 (13–17) [1] | 14.5 (11–18) [4] | 0.426 b |
Gene | Polymorphism | Role | Genotype | N (%) | VAF | pHWE | VAF (1000 G) | p * |
---|---|---|---|---|---|---|---|---|
SOD2 | rs4880 | p.Ala16Val | CC | 46 (24.1) [1] | 51.0 | 0.947 | 53.4 | 0.365 |
CT | 95 (49.7) | |||||||
TT | 50 (26.2) | |||||||
CAT | rs1001179 | c.-262C>T | CC | 115 (60.2) [1] | 22.5 | 0.895 | 23.5 | 0.657 |
CT | 66 (34.6) | |||||||
TT | 10 (5.2) | |||||||
GPX1 | rs1050450 | p.Pro198Leu | CC | 105 (54.7) | 26.8 | 0.422 | 33.6 | 0.006 |
CT | 71 (37.0) | |||||||
TT | 16 (8.3) | |||||||
IL1B | rs1143623 | c.-1560G>C | GG | 102 (53.1) | 28.0 | 0.499 | 28.7 | 0.770 |
GC | 74 (38.0) | |||||||
CC | 17 (8.9) | |||||||
rs16944 | c.-598T>C | TT | 30 (15.6) [1] | 64.1 | 0.087 | 65.0 | 0.722 | |
TC | 77 (40.3) | |||||||
CC | 84 (44.0) | |||||||
rs1071676 | c.*505G>C | GG | 110 (57.3) | 26.0 | 0.062 | 24.9 | 0.631 | |
GC | 64 (33.3) | |||||||
CC | 18 (9.4) | |||||||
MIR146A | rs2910164 | n.60G>C | GG | 122 (63.5) | 20.3 | 0.972 | 23.5 | 0.153 |
GC | 62 (32.3) | |||||||
CC | 8 (4.2) |
SNP | Genotype | Cases without PVR Grade C1 N (%) | Cases with PVR Grade C1 N (%) | OR (95% CI) | p | OR (95% CI)adj | padj |
---|---|---|---|---|---|---|---|
SOD2 rs4880 | CC | 25 (54.3) | 21 (45.7) | Reference | |||
CT | 38 (40) | 57 (60) | 1.79 (0.88–3.63) | 0.110 | 1.67 (0.81–3.46) | 0.165 | |
TT | 17 (34) | 33 (66) | 2.31 (1.01–5.27) | 0.046 | 2.74 (1.17–6.42) | 0.021 | |
CT + TT | 55 (37.9) | 90 (62.1) | 1.95 (1.00–3.81) | 0.051 | 1.97 (1.00–3.90) | 0.050 | |
CAT rs1001179 | CC | 44 (38.3) | 71 (61.7) | Reference | |||
CT | 30 (45.5) | 36 (54.5) | 0.74 (0.40–1.37) | 0.344 | 0.74 (0.39–1.38) | 0.337 | |
TT | 5 (50) | 5 (50) | 0.62 (0.17–2.26) | 0.469 | 0.66 (0.18–2.44) | 0.531 | |
CT + TT | 35 (46.1) | 41 (53.9) | 0.73 (0.40–1.31) | 0.285 | 0.72 (0.40–1.32) | 0.292 | |
GPX1 rs1050450 | CC | 45 (42.9) | 60 (57.1) | Reference | |||
CT | 28 (39.4) | 43 (60.6) | 1.15 (0.62–2.13) | 0.651 | 1.14 (0.61–2.13) | 0.673 | |
TT | 7 (43.8) | 9 (56.3) | 0.96 (0.33–2.79) | 0.946 | 1.07 (0.36–3.15) | 0.907 | |
CT + TT | 35 (40.2) | 52 (59.8) | 1.11 (0.63–1.98) | 0.713 | 1.13 (0.63–2.03) | 0.685 | |
IL1B rs1143623 | GG | 43 (42.2) | 59 (57.8) | Reference | |||
GC | 30 (41.1) | 43 (58.9) | 1.04 (0.57–1.92) | 0.888 | 1.09 (0.58–2.02) | 0.792 | |
CC | 7 (41.2) | 10 (58.8) | 1.04 (0.37–2.95) | 0.940 | 1.03 (0.36–2.99) | 0.950 | |
GC + CC | 37 (41.1) | 53 (58.9) | 1.04 (0.59–1.86) | 0.883 | 1.08 (0.60–1.93) | 0.804 | |
IL1B rs16944 | TT | 13 (43.3) | 17 (56.7) | Reference | |||
TC | 36 (46.8) | 41 (53.2) | 0.87 (0.37–2.04) | 0.750 | 0.86 (0.36–2.03) | 0.729 | |
CC | 30 (35.7) | 54 (64.3) | 1.38 (0.59–3.22) | 0.461 | 1.34 (0.57–3.17) | 0.502 | |
TC + CC | 66 (41) | 95 (59) | 1.10(0.50–0.42 pm) | 0.811 | 1.08 (0.49–2.40) | 0.852 | |
IL1B rs1071676 | GG | 42 (38.2) | 68 (61.8) | Reference | |||
GC | 34 (53.1) | 30 (46.9) | 0.54 (0.29–1.02) | 0.056 | 0.50 (0.26–0.95) | 0.034 | |
CC | 4 (22.2) | 14 (77.8) | 2.16 (0.67–7.01) | 0.199 | 2.47 (0.75–8.19) | 0.139 | |
GC + CC | 38 (46.3) | 44 (53.7) | 0.72 (0.40–1.28) | 0.257 | 0.69 (0.38–1.25) | 0.224 | |
MIR146A rs2910164 | GG | 56 (45.9) | 66 (54.1) | Reference | |||
GC | 21 (33.9) | 41 (66.1) | 1.66 (0.88–3.13) | 0.119 | 1.69 (0.89–3.23) | 0.110 | |
CC | 3 (37.5) | 5 (62.5) | 1.41 (0.32–6.18) | 0.645 | 1.45 (0.33–6.41) | 0.625 | |
GC + CC | 24 (34.3) | 46 (65.7) | 1.63 (0.88–2.99) | 0.117 | 1.66 (0.90–3.08) | 0.107 |
Cases without PVR | Cases with PVR Grade C1 or Higher | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SNP | Genotype | BCVA Median (25–75%) | p | OCT-CRT Median (25–75%) | p | IOP Median (25–75%) | p | BCVA Median (25–75%) | p | OCT-CRT Median (25–75%) | p | IOP Median (25–75%) | p |
SOD2 rs4880 | CC | 0.7 (0.4–1) | 0.940 a | 232.5 (200–263.5) | 0.170 a | 15 (13–17) | 0.943 a | 0.2 (0.04–0.4) | 0.192 a | 304 (238.5–516) | 0.176 a | 14 (9.5–17) | 0.600 a |
CT | 0.7 (0.55–0.95) | 262.5 (217.3–310.8) | 15 (13.5–17) | 0.2 (0.03–0.4) | 267 (205.5–366) | 14 (11–17) | |||||||
TT | 0.7 (0.4–1) | 248 (233.5–286.5) | 15 (12–18) | 0.1 (0.01–0.2) | 283 (233.5–463.3) | 15.5 (10.25–18.75) | |||||||
CT + TT | 0.7 (0.5–1) | 0.801 b | 262 (218.5–294.5) | 0.060 b | 15 (12–17.25) | 0.831 b | 0.18 (0.01–0.4) | 0.500 b | 281 (225–376) | 0.191 b | 15 (11–18) | 0.550 b | |
CAT rs1001179 | CC | 0.7 (0.4–1) | 0.474 a | 240 (211–282) | 0.248 a | 15 (13–17) | 0.999 a | 0.2 (0.02–0.4) | 0.441 a | 285.5 (222.3–373.3) | 0.796 a | 14 (11.5–17.5) | 0.757 a |
CT | 0.75 (0.6–1) | 243.5 (221–276.8) | 15 (12–17.25) | 0.13 (0.01–0.2) | 265 (231–433) | 14.5 (10.75–19) | |||||||
TT | 0.5 (0.16–0.95) | 301 (242–400.5) | 15 (12–17.5) | 0.4 (0.01–0.55) | 243 (191–457) | 15 (7–19.5) | |||||||
CT + TT | 0.7 (0.6–1) | 0.698 b | 265 (222–296) | 0.312 b | 15 (12–17) | 1.0 b | 0.15 (0.01–0.35) | 0.256 b | 264 (231–428) | 0.701 b | 15 (10–19) | 0.822 b | |
GPX1 rs1050450 | CC | 0.8 (0.4–1) | 0.147 a | 240 (219–277) | 0.874 a | 15 (13–17) | 0.215 a | 0.2 (0.01–0.4) | 0.698 a | 288.5 (231–394.8) | 0.875 a | 14.5 (11–18) | 0.583 a |
CT | 0.7 (0.43–0.9) | 252 (217–293.5) | 15 (12.5–17.75) | 0.15 (0.01–0.3) | 262 (223–376) | 15 (11–19) | |||||||
TT | 1 (0.7–1) | 246.5 (209–411.3) | 13 (12–15) | 0.2 (0.08–0.45) | 291 (244.3–389.5) | 14 (9.5–16) | |||||||
CT + TT | 0.7 (0.5–0.9) | 0.655 b | 246.5 (217–298.5) | 0.615 b | 15 (12–17) | 0.583 b | 0.15 (0.01–0.4) | 0.793 b | 267 (226–376) | 0.853 b | 14.5 (10.75–18) | 0.814 b | |
IL1B rs1143623 | GG | 0.7 (0.5–1) | 0.965 a | 252.5 (226.3–280.8) | 0.536 a | 15 (13–17) | 0.533 a | 0.2 (0.05–0.4) | 0.541 a | 294 (231–393.8) | 0.951 a | 14 (10.5–17.5) | 0.686 a |
GC | 0.7 (0.4–1) | 240 (208–286.5) | 15 (12–17) | 0.15 (0.01–0.3) | 281 (222.8–389.5) | 15 (11–18) | |||||||
CC | 0.9 (0.6–1) | 270 (210.3–378.3) | 14.5 (11.75–15.5) | 0.06 (0.01–0.45) | 259 (210.5–437.5) | 15.5 (12.25–17.5) | |||||||
GC + CC | 0.7 (0.4–1) | 0.627 b | 240 (210–298) | 0.429 b | 15 (12–17) | 0.357 b | 0.15 (0.01–0.35) | 0.366 b | 281 (223.5–385) | 0.949 b | 15 (11–18) | 0.388 b | |
IL1B rs16944 | TT | 0.85 (0.48–1) | 0.637 a | 235 (214–321.3) | 0.551 a | 14.5 (12–16.75) | 0.384 a | 0.2 (0.01–0.4) | 0.764 a | 273 (239.8–308.8) | 0.755 a | 15 (11.5–18.5) | 0.722 a |
TC | 0.7 (0.4–1) | 240 (209.8–284.3) | 15 (12–17) | 0.15 (0.01–0.3) | 286 (226.5–398) | 14 (12–18) | |||||||
CC | 0.85 (0.6–1) | 264 (224.8–285) | 15 (13.75–18) | 0.2 (0.02–0.4) | 279.5 (227–393.8) | 14.5 (10–17.75) | |||||||
TC + CC | 0.7 (0.5–1) | 0.673 b | 246.5 (218.8–283) | 0.965 b | 15 (13–17) | 0.437 b | 0.2 (0.02–0.4) | 0.909 b | 286 (228–395.5) | 0.706 b | 14 (11–18) | 0.719 b | |
IL1B rs1071676 | GG | 0.8 (0.6–1) | 0.070 a | 241 (218.3–286.5) | 0.923 a | 15 (12–17) | 0.754 a | 0.15 (0.01–0.38) | 0.468 a | 281 (230.3–399.3) | 0.513 a | 15 (11–17) | 0.535 a |
GC | 0.7 (0.475–1) | 257 (217–291) | 15 (12.75–17.25) | 0.2 (0.1–0.3) | 300 (224–406) | 14.5 (11.25–18) | |||||||
CC | 0.4 (0.18–0.55) | 244.5 (205.3–278.5) | 15 (13.5–17.25) | 0.3 (0.01–0.7) | 247.5 (231.3–310.8) | 13 (8.5–16.5) | |||||||
GC + CC | 0.65 (0.4–0.93) | 0.177 b | 257 (217–286) | 0.920 b | 15 (13–17.25) | 0.457 b | 0.2 (0.04–0.4) | 0.261 b | 286 (228.5–379.5) | 0.737 b | 14 (10.5–18) | 0.675 b | |
MIR146A rs2910164 | GG | 0.75 (0.53–1) | 0.852 a | 247 (220.8–288.8) | 0.627 a | 15 (13–17) | 0.410 a | 0.15 (0.02–0.33) | 0.377 a | 285 (231.5–389) | 0.494 a | 15 (11–18) | 0.745 a |
GC | 0.6 (0.43–1) | 244 (211.5–286.8) | 14 (12–16.5) | 0.2 (0.06–0.4) | 266 (225.3–375.8) | 14 (11.25–17) | |||||||
CC | 0.7 (0.5–0.85) | 224 (206–224) | 15 (14.5–16.0) | 0.05 (0.01–0.3) | 380.5 (252.3–556.8) | 14.5 (9–20) | |||||||
GC + CC | 0.6 (0.4–1) | 0.580 b | 240 (211–279.5) | 0.539 b | 14 (12–17) | 0.236 b | 0.2 (0.01–0.4) | 0.588 b | 274 (225.3–391.8) | 0.869 b | 14 (11–17) | 0.448 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lumi, X.; Confalonieri, F.; Ravnik-Glavač, M.; Goričar, K.; Blagus, T.; Dolžan, V.; Petrovski, G.; Hawlina, M.; Glavač, D. Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy. Genes 2023, 14, 804. https://doi.org/10.3390/genes14040804
Lumi X, Confalonieri F, Ravnik-Glavač M, Goričar K, Blagus T, Dolžan V, Petrovski G, Hawlina M, Glavač D. Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy. Genes. 2023; 14(4):804. https://doi.org/10.3390/genes14040804
Chicago/Turabian StyleLumi, Xhevat, Filippo Confalonieri, Metka Ravnik-Glavač, Katja Goričar, Tanja Blagus, Vita Dolžan, Goran Petrovski, Marko Hawlina, and Damjan Glavač. 2023. "Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy" Genes 14, no. 4: 804. https://doi.org/10.3390/genes14040804
APA StyleLumi, X., Confalonieri, F., Ravnik-Glavač, M., Goričar, K., Blagus, T., Dolžan, V., Petrovski, G., Hawlina, M., & Glavač, D. (2023). Inflammation and Oxidative Stress Gene Variability in Retinal Detachment Patients with and without Proliferative Vitreoretinopathy. Genes, 14(4), 804. https://doi.org/10.3390/genes14040804