Population Structure and Genetic Diversity in the Natural Distribution of Neolamarckia cadamba in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Sampling and DNA Extraction
2.2. Primer Screening, PCR Amplification, and Sequencing
2.3. Analysis of Genetic Diversity
2.4. Analysis of Population Genetic Structure
2.5. Analysis of Population Demography
3. Results
3.1. Genetic Diversity
3.2. Population Genetic Structure
3.3. Population Demography
4. Discussion
4.1. Genetic Diversity
4.2. Population Genetic Structure
4.3. Implications for Genetic Resource Management
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lo, H.S.; Ko, W.C.; Chen, W.C.; Hsue, H.H.; Wu, H. Flora Reipublicae Popularis Sinicae: Tomus 71(1): Angiospermae Dictotyledoneae, Rubiaceae (1); Science Press: Beijing, China, 1999; pp. 260–261. [Google Scholar]
- Mojiol, A.R.; Lintangah, W.; Maid, M.; Julius, K. Neolamarckia cadamba (Roxb.) Bosser, 1984. In Enzyklopädie der Holzgewächse: Handbuch und Atlas der Dendrologie; Wiley Online Library: Hoboken, NJ, USA, 2018; pp. 1–12. [Google Scholar]
- Kasim, J.; Misfar, S.N.; Mohamed Tamat, N.S.; Abd Latib, N. Effect of tree portion and distance from pith on specific gravity, fiber properties and mechanical properties of Kelampayan (Neolamarckia cadamba) Wood. In Regional Conference on Science, Technology and Social Sciences (RCSTSS 2014); Yacob, N., Mohamed, M., Megat Hanafiah, M., Eds.; Springer: Singapore, 2016; pp. 367–375. [Google Scholar]
- Pertiwi, Y.A.B.; Aiso, H.; Ishiguri, F.; Wedatama, S.; Marsoem, S.N.; Ohshima, J.; Iizuka, K.; Yokota, S.L. Effect of radial growth rate on wood properties of Neolamarckia cadamba. J. Trop. For. Sci. 2017, 29, 30–36. [Google Scholar]
- Ho, W.S.; Pang, S.L.; Tchin, B.L.; Lai, P.S.; Tiong, S.Y.; Phui, S.L.; Liew, K.S.; Ismail, J.; Julaihi, A. Applications of genomics to plantation forestry with kelampayan in Sarawak. In Sustaining Tropical Natural Resources Through Innovations, Technologies and Practices. Proceedings of the 4th Regional Conference on Natural Resources in the Tropics, Kota Samarahan, Malaysia, 19–20 September 2012; Wasli, M.E., Sani, H., Ahmad, F.B., Mohamad, S., Teen, L.P., Soon, L.K., Sidi, M., Eds.; Faculty of Resource Science and Technology: Kota Samarahan, Malaysia, 2012. [Google Scholar]
- Pang, S.L.; Ho, W.S.; Mat-Isa, M.N.; Abdullah, J. Gene discovery in the developing xylem tissue of a tropical timber tree species: Neolamarckia cadamba (Roxb.) Bosser (kelampayan). Tree Genet. Genomes 2015, 11, 47. [Google Scholar] [CrossRef]
- He, L.; Zhou, W.; Wang, Y.; Wang, C.; Chen, X.; Zhang, Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1429–1436. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.; Kumar, V. Pharmacognostical studies of Neolamarckia cadamba (roxb.) Bosser leaf. Int. J. Green Pharm. 2008, 2, 26. [Google Scholar] [CrossRef]
- Pandey, A.; Chauhan, A.S.; Haware, D.J.; Negi, P.S. Proximate and mineral composition of Kadamba (Neolamarckia cadamba) fruit and its use in the development of nutraceutical enriched beverage. J. Food Sci. Technol. 2018, 55, 4330–4336. [Google Scholar] [CrossRef]
- Dubey, A.; Nayak, S.; Goupale, D. A review on phytochemical, pharmacological and toxicological studies on Neolamarckia cadamba. Pharm. Lett. 2011, 3, 45–54. [Google Scholar]
- Dwevedi, A.; Sharma, K.; Sharma, Y.K. Cadamba: A miraculous tree having enormous pharmacological implications. Phcog. Rev. 2014, 9, 107. [Google Scholar] [CrossRef]
- Pandey, A.; Negi, P.S. Traditional uses, phytochemistry and pharmacological properties of Neolamarckia cadamba: A review. J. Ethnopharmacol. 2016, 181, 118–135. [Google Scholar] [CrossRef]
- Chandel, M.; Kumar, M.; Sharma, U.; Kumar, N.; Singh, B.; Kaur, S. Isolation and characterization of flavanols from Anthocephalus cadamba and evaluation of their antioxidant, antigenotoxic, cytotoxic and COX-2 inhibitory activities. Rev. Bras. Farmacogn. 2016, 26, 474–483. [Google Scholar] [CrossRef]
- Santiarworn, D.; Liawruangrath, S.; Baramee, A.; Takayama, H.; Liawruangrath, B. Bioactivity screening of crude alkaloidal extracts from some Rubiaceae. Chiang Mai Univ. J. 2005, 4, 59–64. [Google Scholar]
- Hung, G.F.; Wei, Y.; Hung, H.; Bai, L.H.; Zhang, Z.J.; Ouyang, K.X.; Chen, X.Y. Research progress of fast-growing native tree Neolamarckia cadamba in South China. Chin. J. Trop. Agr. 2021, 41, 37–43. [Google Scholar]
- Que, Q.; Li, C.; Li, B.; Song, H.; Li, P.; Pian, R.; Li, H.; Chen, X.; Ouyang, K. Multi-level genetic variation and selection strategy of Neolamarckia cadamba in successive years. Forests 2021, 12, 1455. [Google Scholar] [CrossRef]
- Que, Q.M.; Li, P.; Ouyang, K.X.; Li, J.C.; Zhang, J.J.; Chen, X.Y. Genetic variation of young forest growth traits of Neolamarckia cadamba. Subtrop. Plant Sci. 2017, 46, 248–253. [Google Scholar]
- Parthiban, K.T.; Thirunirai-Selvan, R.; Palanikumaran, B.; Krishnakumar, N. Variability and genetic diversity studies on Neolamarckia cadamba genetic resources. J. Trop. For. Sci. 2019, 31, 90–98. [Google Scholar] [CrossRef]
- Li, J.J.; Zhang, D.; Ouyang, K.X.; Chen, X.Y. High frequency plant regeneration from leaf culture of Neolamarckia cadamba. Plant Biotechnol. 2019, 36, 13–19. [Google Scholar] [CrossRef]
- Mok, P.K.; Ho, W.S. Rapid in vitro propagation and efficient acclimatisation protocols of Neolamarckia cadamba. Asian J. Plant Sci. 2019, 18, 153–163. [Google Scholar] [CrossRef]
- Ouyang, K.; Li, J.; Zhao, X.; Que, Q.; Li, P.; Huang, H.; Deng, X.; Singh, S.; Wu, A.; Chen, X.Y. Transcriptomic analysis of multipurpose timber yielding tree Neolamarckia cadamba during xylogenesis using RNA-seq. PLoS ONE 2016, 11, e159407. [Google Scholar] [CrossRef]
- Huang, T.; Long, J.M.; Liu, S.W.; Yang, Z.W.; Zhu, Q.J.; Zhao, X.L.; Peng, C.C. Selection and validation of reference genes for mRNA expression by quantitative real-time PCR analysis in Neolamarckia cadamba. Sci. Rep. 2018, 8, 9311. [Google Scholar] [CrossRef]
- Ho, W.S.; Pang, S.-L.; Abdullah, J. Identification and analysis of expressed sequence tags present in xylem tissues of kelampayan (Neolamarckia cadamba (Roxb.) Bosser). Physiol. Mol. Biol. Plants 2014, 20, 393–397. [Google Scholar] [CrossRef]
- Que, Q.; Liang, X.; Song, H.; Li, C.; Li, P.; Pian, R.; Chen, X.; Zhou, W.; Ouyang, K. Evolution and expression patterns of the fructose 1,6-bisphosptase gene family in a miracle tree (Neolamarckia cadamba). Genes 2022, 13, 2349. [Google Scholar] [CrossRef]
- Zhang, S.H.; Gu, M.; Zhou, W.; Li, C.M.; Zou, J.T.; Zhang, J.J.; Chen, X.Y.; Ouyang, K.X. In vitro induction of polyploid and its traits variation of Neolamarckia cadamba. Mol. Plant Breed. 2022, 20, 2372–2383. [Google Scholar]
- Tiong, S.Y.; Chew, S.F.; Seng, H.W.; Pang, S.L. Genetic diversity of Neolamarckia cadamba using dominant DNA markers based on inter-simple sequence repeats (ISSRs) in Sarawak. Adv. Appl. Sci. Res. 2014, 5, 458–463. [Google Scholar]
- Wang, X.; Li, L.-L.; Xiao, Y.; Chen, X.-Y.; Chen, J.-H.; Hu, X.-S. A complete sequence of mitochondrial genome of Neolamarckia cadamba and its use for systematic analysis. Sci. Rep. 2021, 11, 21452. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, X.; OuYang, K.; Yang, J.; Que, Q.; Long, J.; Zhang, J.; Zhang, T.; Wang, X.; Gao, J.; et al. Chromosome-level assembly of the Neolamarckia cadamba genome provides insights into the evolution of cadambine biosynthesis. Plant J. 2022, 109, 891–908. [Google Scholar] [CrossRef] [PubMed]
- Mahandran, V.; Murugan, C.M.; Anisha, P.S.; Wang, G.; Chen, J.; Nathan, P.T. Chemical components change along the ontogeny of a bat fruit (Neolamarckia cadamba) with ripening asynchrony in favour of its fruit selection and seed dispersal. Sci. Nat. 2021, 108, 46. [Google Scholar] [CrossRef]
- Li, J.; Zhang, D.; Ouyang, K.; Chen, X. The complete chloroplast genome of the miracle tree Neolamarckia cadamba and its comparison in Rubiaceae family. Biotechnol. Biotechnol. Equip. 2018, 32, 1087–1097. [Google Scholar] [CrossRef]
- Ennos, R.A. Estimating the relative rates of pollen and seed migration among plant populations. Heredity 1994, 72, 250–259. [Google Scholar] [CrossRef]
- Hu, X.S.; Ennos, R.A. Impacts of seed and pollen flow on population genetic structure for plant genomes with three contrasting modes of inheritance. Genetics 1999, 152, 441–450. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemistry 1987, 19, 11–15. [Google Scholar]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP V5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [PubMed]
- Watterson, G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 1975, 7, 188–193. [Google Scholar] [CrossRef]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 117693430500100. [Google Scholar] [CrossRef]
- Wright, S. The genetical structure of populations. Ann. Eugen. 1951, 15, 323–354. [Google Scholar] [CrossRef]
- Pons, O.; Petitt, R.J. Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 1996, 144, 1237–1245. [Google Scholar] [CrossRef]
- Grivet, D.; Petit, R.J. Chloroplast DNA phylogeography of the hornbeam in Europe: Evidence for a bottleneck at the outset of postglacial colonization. Conserv. Genet. 2002, 4, 47–56. [Google Scholar] [CrossRef]
- Meirmans, P.G. Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evolution 2006, 60, 2399–2402. [Google Scholar] [CrossRef]
- Rousset, F. Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 1997, 145, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution and the Genetics of Populations Vol. 2: Theory of Gene Frequencies; University Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Xiao, Y.; Zhang, X.X.; Hu, Y.; Wang, X.; Li, P.; He, Z.H.; Lv, Y.W.; Chen, X.Y.; Hu, X.S. Phylogeography of Toona ciliata (Meliaceae) complex in China inferred from cytonuclear markers. Genes 2023, 14, 116. [Google Scholar] [CrossRef] [PubMed]
- Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 1995, 86, 485–486. [Google Scholar] [CrossRef]
- Fu, Y.X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147, 915–925. [Google Scholar] [CrossRef]
- Rogers, A.R.; Harpending, H. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 1992, 9, 552–569. [Google Scholar]
- Freeland, J.R.; Kirk, H.; Petersen, S.D. Molecular Ecology; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Li, Y.; Li, Y.; Yang, P.; He, S. Population genetic structure and gene flow of Forsythia suspensa (Oleaceae) in Henan revealed by nuclear and chloroplast DNA. Afr. J. Biotech. 2011, 10, 5109–5117. [Google Scholar]
- Chen, L.J.; Yu, Z.; Jin, H.P. Comparison of ribosomal DNA ITS regions among Hippophae rhamnoides ssp. sinensis from different geographic areas in China. Plant Mol. Biol. Rep. 2010, 28, 635–645. [Google Scholar] [CrossRef]
- Yan, H.F.; Zhang, C.Y.; Wang, F.Y.; Hu, C.M.; Ge, X.J.; Hao, G. Population expanding with the phalanx model and lineages split by environmental heterogeneity: A case study of Primula obconica in subtropical China. PLoS ONE 2012, 7, e41315. [Google Scholar] [CrossRef]
- Sun, L.; Liu, G.; Lu, Y.; Zhang, B.; Zhang, G. Molecular data and ecological niche modelling reveal the phylogeographic pattern of the widespread shrub Tamarix chinensis Lour. (Tamaricaceae) in China. Kew Bull. 2020, 75, 41. [Google Scholar] [CrossRef]
- Hern, G.; Zhang, F.; Gao, Q.; Fu, P.C.; Xing, R.; Wang, J.; Liu, H.; Chen, S. Molecular phylogeography and intraspecific divergence of Spiraea alpina (Rosaceae) distributed in the Qinghai-Tibetan Plateau and adjacent regions inferred from nrDNA. Biochem. Syst. Ecol. 2014, 57, 278–286. [Google Scholar]
- Kyoda, S.; Setoguchi, H. Phylogeography of Cycas revoluta Thunb. (Cycadaceae) on the Ryukyu Islands: Very low genetic diversity and geographical structure. Plant Syst. Evol. 2010, 288, 177–189. [Google Scholar] [CrossRef]
- Miao, C.Y.; Yang, J.; Mao, R.L.; Li, Y. Phylogeography of Achyranthes bidentata (Amaranthaceae) in China’s warm-temperate zone inferred from chloroplast and nuclear DNA: Insights into population dynamics in response to climate change during the Pleistocene. Plant Mol. Biol. Rep. 2017, 35, 166–176. [Google Scholar] [CrossRef]
- Qiu, Z.M.; Hong, X.L.; Li, H.P.; Shi, X.D.; Yue, C.L.; Zhu, H. Genetic Diversity of Introduced Populations of Kandelia obovate in Coastal Zhejiang Province Based on nrDNA ITS Sequences. Mol. Plant Breed. 2022, 20, 5364–5370. [Google Scholar]
- Yan, J.W.; Bai, W.F.; Li, J.H.; Yu, L.; Nie, D.L.; Xiong, Y.; Wu, S.Z. Genetic Structure and Diversity of Cerasus conradinae in Hunan Province. J. Plant Genet. Resour. 2022, 23, 376–384. [Google Scholar]
- Hernández-Rosales, H.S.; Castellanos-Morales, G.; Sánchez-de la Vega, G.; Aguirre-Planter, E.; Montes-Hernández, S.; Lira-Saade, R.; Eguiarte, L.E. Phylogeographic and population genetic analyses of Cucurbita moschata reveal divergence of two mitochondrial lineages linked to an elevational gradient. Am. J. Bot. 2020, 107, 510–525. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.H.; Prosoeri, M.; Santoni, S.; Ronfort, J. Inferences from mitochondrial DNA patterns on the domestication history of alfalfa (Medicago sativa). Mol. Ecol. 2003, 12, 2187–2199. [Google Scholar] [CrossRef]
- Tomaru, N.; Takahashi, M.; Tsumura, Y.; Takahashi, M.; Ohba, K. Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae) mitochondrial DNA. Am. J. Bot. 1998, 85, 629–636. [Google Scholar] [CrossRef]
- Naydenov, K.D.; Naydenov, M.K.; Alexandrov, A. Speciation and historical migration pattern interaction: Examples from P. nigra and P. sylvestris phylogeography. Eur. J. For. Res. 2023, 142, 1–26. [Google Scholar] [CrossRef]
- Ennos, R.A.; Sinclair, W.T.; Hu, X.S.; Langdon, A. Using organelle markers to elucidate the history, ecology and evolution of plant populations. In Molecular Systematics and Plant Evolution; Hollingsworth, P.M., Bateman, R.M., Gornall, R.J., Eds.; Taylor & Francis: London, UK, 1999; pp. 1–19. [Google Scholar]
- Hu, X.S.; Zhang, X.X.; Zhou, W.; Hu, Y.; Wang, X.; Chen, X.Y. Mating system shifts a species’ range. Evolution 2019, 73, 158–174. [Google Scholar] [CrossRef]
- Trapnell, D.W.; Hamrick, J.L. Partitioning nuclear and chloroplast variation at multiple spatial scales in the neotropical epiphytic orchid, Laelia rubescens. Mol. Ecol. 2004, 13, 2655–2666. [Google Scholar] [CrossRef]
- Hedrén, M.; Birkedal, S.; Boer, H.; Ghorbani, A.; Gravendeel, B.; Hansson, S.; Svensson, Å.; Zarre, S. Asymmetric contributions of seed and pollen to gene dispersal in the marsh orchid Dactylorhiza umbrosa in Asia Minor. Mol. Ecol. 2021, 30, 1791–1805. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.S.; Wu, R.L.; Han, Y.F. An approach to sustainable management of population genetic resources of trees: (II) Management analyses of plantation and natural population of some autochthonous tree species in China. For. Res. 2001, 14, 1–7. [Google Scholar]
- He, Z.H.; Xiao, Y.; Lv, Y.W.; Yeh, F.C.; Wang, X.; Hu, X.S. Predication of genetic gains from selection in tree breeding. Forests 2023, 14, 520. [Google Scholar] [CrossRef]
- Arenas, S.; Cortes, A.J.; Mastretta-Yanes, A.; Jaramillo-Correa, J.P. Evaluating the accuracy of genomic prediction from the management and conservation of relictual natural tree populations. Tree Genet. Genomes 2021, 17, 12. [Google Scholar] [CrossRef]
Location | Code | Sample size | Longitude (E) | Latitude (N) | Elevation (m) | AAP # (mm) | AAT # (°C) |
---|---|---|---|---|---|---|---|
Longzhou, Guangxi | LZ | 22 | 106.86 | 22.35 | 269 | 1260 | 22.2 |
Fangchenggang, Guangxi | FS | 19 | 108.35 | 21.70 | 235 | 2512 | 21.8 |
Nanning, Guangxi | NN | 22 | 108.37 | 22.82 | 80 | 1304.2 | 21.7 |
Guangzhou, Guangdong | GZ | 26 | 113.27 | 23.13 | 10 | 1696.5 | 22.1 |
Yunfu, Guangdong | YF | 15 | 112.05 | 22.92 | 346 | 1670.5 | 21.5 |
Baoshan, Yunnan | BS | 33 | 99.17 | 25.14 | 1670 | 1710 | 17.4 |
Dehong, Yunnan | DH | 29 | 98.61 | 24.44 | 780 | 1544 | 18.9 |
Jinghong, Yunnan | JH | 32 | 100.81 | 22.03 | 552 | 1197 | 21.0 |
Mangshi, Yunnan | MS | 23 | 98.59 | 24.43 | 913 | 1650 | 19.6 |
Mengla, Yunnan | ML | 18 | 101.57 | 21.46 | 631 | 1540 | 21.0 |
Population | mtDNA Marker | Haploid nrDNA ITS | Tajima’s D # | Fu’s F # | ||
---|---|---|---|---|---|---|
h | π | π | θ | |||
LZ | 0.0000 | 0.0000 | 0.1313 | 0.1543 | −0.6107 | −0.4676 |
FS | 0.0000 | 0.0000 | 0.0806 | 0.1101 | −1.1253 | −1.0625 |
NN | 0.5000 | 0.0013 | 0.1311 | 0.1416 | −0.3029 | 0.1430 |
GZ | 0.0000 | 0.0000 | 0.1128 | 0.1397 | −0.7651 | −0.1203 |
YF | 0.0000 | 0.0000 | 0.0969 | 0.0985 | −0.0728 | 0.2672 |
BS | 0.0000 | 0.0000 | 0.1616 | 0.1532 | 0.0204 | −0.0730 |
DH | 0.5140 | 0.0007 | 0.0921 | 0.1313 | −1.1649 | −0.8674 |
JH | 0.0000 | 0.0000 | 0.1391 | 0.1391 | −0.4845 | 0.0783 |
MS | 0.4250 | 0.0011 | 0.1229 | 0.1469 | −0.6528 | 0.0964 |
ML | 0.5130 | 0.0007 | 0.1164 | 0.1298 | −0.4206 | −0.0352 |
Marker | Source of Variation | d.f. | Sum of Square | Variance Component | Percentage of Variance (%) | ϕst | p-Value |
---|---|---|---|---|---|---|---|
mtDNA F1-R1 and F2-R2 | Among populations | 9 | 40.533 | 0.2750 | 67.55 | 0.6755 | 0.00 |
Within populations | 151 | 19.951 | 0.1321 | 32.45 | |||
Total | 160 | 60.484 | 0.4071 | ||||
nrDNA ITS | Among populations | 9 | 542.301 | 0.9507 | 2.46 | 0.0246 | 0.0009 |
Within populations | 229 | 8628.302 | 37.6782 | 97.54 | |||
Total | 238 | 9170.603 | 38.6289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Y.-W.; He, Z.-H.; Xiao, Y.; Ouyang, K.-X.; Wang, X.; Hu, X.-S. Population Structure and Genetic Diversity in the Natural Distribution of Neolamarckia cadamba in China. Genes 2023, 14, 855. https://doi.org/10.3390/genes14040855
Lv Y-W, He Z-H, Xiao Y, Ouyang K-X, Wang X, Hu X-S. Population Structure and Genetic Diversity in the Natural Distribution of Neolamarckia cadamba in China. Genes. 2023; 14(4):855. https://doi.org/10.3390/genes14040855
Chicago/Turabian StyleLv, Yan-Wen, Zi-Han He, Yu Xiao, Kun-Xi Ouyang, Xi Wang, and Xin-Sheng Hu. 2023. "Population Structure and Genetic Diversity in the Natural Distribution of Neolamarckia cadamba in China" Genes 14, no. 4: 855. https://doi.org/10.3390/genes14040855
APA StyleLv, Y. -W., He, Z. -H., Xiao, Y., Ouyang, K. -X., Wang, X., & Hu, X. -S. (2023). Population Structure and Genetic Diversity in the Natural Distribution of Neolamarckia cadamba in China. Genes, 14(4), 855. https://doi.org/10.3390/genes14040855