The Influence of FAM13A and PPAR-γ2 Gene Polymorphisms on the Metabolic State of Postmenopausal Women
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection Criteria and Ethical Aspects
2.2. Data Collection
2.3. Blood Pressure Measurement
2.4. Basic Anthropometric Measurements
2.5. Bioimpedance
2.6. Genetic Methods
2.6.1. DNA Isolation
2.6.2. SNP Genotyping
2.7. Statistical Analysis
3. Results
3.1. Characteristics of the Analyzed Group
3.2. Genotypes Prevalence
3.3. Genotypes’ Co-Existence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khan, S.; Chan, Y.T.; WHO. World Health Organization—Obesity and Overweight—Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 23 January 2023).
- Gregg, E.W.; Shaw, J.E. Global Health Effects of Overweight and Obesity. N. Engl. J. Med. 2017, 377, 80–81. [Google Scholar] [CrossRef] [PubMed]
- Ward, Z.J.; Bleich, S.N.; Cradock, A.L.; Barrett, J.L.; Giles, C.M.; Flax, C.; Long, M.W.; Gortmaker, S.L. Projected U.S. state-level prevalence of adult obesity and severe obesity. N. Engl. J. Med. 2019, 381, 2440–2450. [Google Scholar] [CrossRef] [PubMed]
- IHME. Institute for Health Metrics and Evaluation. High Systolic Blood Pressure—Level 2 Risk. IHME, University of Wash-ington, 2019. 2019. Available online: http://www.healthdata.org/results/gbd_summaries/2019/high-systolic-blood-pressure-level-2-risk (accessed on 23 January 2023).
- Gutiérrez-Fisac, J.L.; López, E.; Banegas, J.R.; Graciani, A.; Rodríguez-Artalejo, F. Prevalence of Overweight and Obesity in Elderly People in Spain. Obes. Res. 2004, 12, 710–715. [Google Scholar] [CrossRef]
- Schuster, S.; Cabrera, D.; Arrese, M.; Feldstein, A.E. Triggering and resolution of inflammation in NASH. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 349–364. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Chan, Y.T.; Revelo, X.; Winer, D.A. The Immune Landscape of Visceral Adipose Tissue during Obesity and Aging. Front. Endocrinol. 2020, 11, 267. [Google Scholar] [CrossRef]
- Esser, N.; Legrand-Poels, S.; Piette, J.; Scheen, A.J.; Paquot, N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res. Clin. Pract. 2014, 105, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Guarner, V.; Rubio-Ruiz, M.E. Low-grade systemic inflammation connects aging, metabolic syndrome and cardiovascular disease. Interdiscip. Top. Gerontol. 2015, 40, 99–106. [Google Scholar]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef]
- Jeong, H.G.; Park, H. Metabolic Disorders in Menopause. Metabolites 2022, 12, 954. [Google Scholar] [CrossRef]
- Mumusoglu, S.; Yildiz, B.O. Metabolic Syndrome During Menopause. Curr. Vasc. Pharmacol. 2019, 17, 595–603. [Google Scholar] [CrossRef]
- Hyvarinen, M. Metabolic health, menopause, and physical activity-a 4-year follow-up study. Int. J. Obes. 2022, 46, 544. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Mouton, A.J.; da Silva, A.A.; Omoto, A.C.M.; Wang, Z.; Li, X.; Carmo, J.M.D. Obesity, kidney dysfunction, and inflammation: Interactions in hypertension. Cardiovasc. Res. 2021, 117, 1859–1876. [Google Scholar] [CrossRef]
- Ivanova, M.; Creary, L.E.; Al Hadra, B.; Lukanov, T.; Mazzocco, M.; Sacchi, N.; Ameen, R.; Al-Shemmari, S.; Moise, A.; Ursu, L.D.; et al. 17th IHIW component “Immunogenetics of Ageing”—New NGS data. Hum. Immunol. 2019, 80, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Masud, S.; Ye, S.; Group SAS. Effect of the peroxisome proliferator activated receptor-gamma gene Pro12Ala variant on body mass index: A meta-analysis. J. Med. Genet. 2003, 40, 773–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S.; Choi, S.M.; Shin, S.U.; Yang, H.S.; Yoon, Y. Effects of peroxisome proliferator-activated receptor-gamma 2 Pro12Ala polymorphism on body fat distribution in female Korean subjects. Metabolism 2004, 53, 1538–1543. [Google Scholar] [CrossRef] [PubMed]
- Evans, D.; de Heer, J.; Hagemann, C.; Wendt, D.; Wolf, A.; Beisiegel, U.; Mann, W. Association between the P12A and c1431t polymorphisms in the peroxisome proliferator activated receptor γ (PPARγ) gene and type 2 diabetes. Exp. Clin. Endocrinol. Diabetes 2001, 109, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Grygiel-Górniak, B. Peroxisome proliferator-activated receptors and their ligands: Nutritional and clinical implications—A review. Nutr. J. 2014, 13, 17. [Google Scholar] [CrossRef] [Green Version]
- Leibovitz, E.; Schiffrin, E.L. The many faces of PPARgamma. Cell 2005, 123, 993–999. [Google Scholar]
- Leibovitz, E.; Schiffrin, E.L. PPAR Activation: A New Target for the Treatment of Hypertension. J. Cardiovasc. Pharmacol. 2007, 50, 120–125. [Google Scholar] [CrossRef]
- Fathzadeh, M.; Li, J.; Rao, A.; Cook, N.; Chennamsetty, I.; Seldin, M.; Zhou, X.; Sangwung, P.; Gloudemans, M.J.; Keller, M.; et al. FAM13A affects body fat distribution and adipocyte function. Nat. Commun. 2020, 11, 1465. [Google Scholar] [CrossRef] [Green Version]
- Fagerberg, L.; Hallström, B.M.; Oksvold, P.; Kampf, C.; Djureinovic, D.; Odeberg, J.; Habuka, M.; Tahmasebpoor, S.; Danielsson, A.; Edlund, K.; et al. Analysis of the Human Tissue-specific Expression by Genome-wide Integration of Transcriptomics and Antibody-based Proteomics. Mol. Cell. Proteom. 2014, 13, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Sjöstedt, E.; Zhong, W.; Fagerberg, L.; Karlsson, M.; Mitsios, N.; Adori, C.; Oksvold, P.; Edfors, F.; Limiszewska, A.; Hikmet, F.; et al. An atlas of the protein-coding genes in the human, pig, and mouse brain. Science 2020, 367, eaay5947. [Google Scholar] [CrossRef] [PubMed]
- Cho, M.H.; Boutaoui, N.; Klanderman, B.J.; Sylvia, J.S.; Ziniti, J.P.; Hersh, C.P.; DeMeo, D.L.; Hunninghake, G.M.; Litonjua, A.A.; Sparrow, D.; et al. Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat. Genet. 2010, 42, 200–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, R.P.; Whittington, C.F.; Hopkins, R.J.; Hay, B.A.; Epton, M.J.; Gamble, G.D. FAM13A locus in COPD is independently associated with lung cancer—Evidence of a molecular genetic link between COPD and lung cancer. Appl. Clin. Genet. 2010, 4, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhut, F.; Heim, L.; Trump, S.; Mittler, S.; Sopel, N.; Andreev, K.; Ferrazzi, F.; Ekici, A.B.; Rieker, R.; Springel, R.; et al. FAM13A is associated with non-small cell lung cancer (NSCLC) progression and controls tumor cell proliferation and survival. OncoImmunology 2016, 6, e1256526. [Google Scholar] [CrossRef] [Green Version]
- Ziółkowska-Suchanek, I.; Mosor, M.; Gabryel, P.; Grabicki, M.; Zurawek, M.; Fichna, M.; Strauss, E.; Batura-Gabryel, H.; Dyszkiewicz, W.; Nowak, J. Susceptibility loci in lung cancer and COPD: Association of IREB2 and FAM13A with pulmonary diseases. Sci. Rep. 2015, 5, srep13502. [Google Scholar] [CrossRef] [Green Version]
- Ziółkowska-Suchanek, I.; Podralska, M.; Żurawek, M.; Łaczmańska, J.; Iżykowska, K.; Dzikiewicz-Krawczyk, A.; Rozwadowska, N. Hypoxia-Induced FAM13A Regulates the Proliferation and Metastasis of Non-Small Cell Lung Cancer Cells. Int. J. Mol. Sci. 2021, 22, 4302. [Google Scholar] [CrossRef]
- Corvol, H.; Rousselet, N.; Thompson, K.E.; Berdah, L.; Cottin, G.; Foussigniere, T.; Longchampt, E.; Fiette, L.; Sage, E.; Prunier, C.; et al. FAM13A is a modifier gene of cystic fibrosis lung phenotype regulating rhoa activity, actin cytoskeleton dynamics and epithelial-mesenchymal transition. J. Cyst. Fibros. 2018, 17, 190–203. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Liou, Y.-H.; Li, Y.; Gong, L.; Li, Y.; Hao, Y.; Pham, B.; Xu, S.; Jiang, Z.; Li, L.; et al. FAM13A Represses AMPK Activity and Regulates Hepatic Glucose and Lipid Metabolism. iScience 2020, 23, 100928. [Google Scholar] [CrossRef] [Green Version]
- Grygiel-Górniak, B.; Kaczmarek, E.; Mosor, M.; Przysławski, J.; Bogacz, A. Genetic Background, Adipocytokines, and Meta-bolic Disorders in Postmenopausal Overweight and Obese Women. Biochem. Genet. 2016, 54, 636–652. [Google Scholar] [CrossRef] [Green Version]
- Ogedegbe, G.; Pickering, T. Principles and Techniques of Blood Pressure Measurement. Cardiol. Clin. 2010, 28, 571–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickering, T.G.; Hall, J.E.; Appel, L.J.; Falkner, B.E.; Graves, J.; Hill, M.N.; Jones, D.W.; Kurtz, T.; Sheps, S.G.; Roccella, E.J. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: Blood pressure measurement in humans: A statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association. Council on High Blood Pressure Research. Hypertension 2005, 45, 142. [Google Scholar] [PubMed]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; De Simone, G.; Dominiczak, A.; et al. 2018 Practice guidelines for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. Blood Press. 2018, 27, 314–340. [Google Scholar] [CrossRef] [PubMed]
- Organization World Health. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000.
- Ness-Abramof, R.; Apovian, C.M. Waist circumference measurement in clinical practice. Nutr. Clin. Pract. 2008, 23, 397–404. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, S.; O’Driscoll, L. Metabolic syndrome: A closer look at the growing epidemic and its associated pathologies. Obes. Rev. 2015, 16, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Nikolajczyk, B.S. Tissue Immune Cells Fuel Obesity-Associated Inflammation in Adipose Tissue and Beyond. Front. Immunol. 2019, 10, 1587. [Google Scholar] [CrossRef] [Green Version]
- Srikakulapu, P.; McNamara, C.A. B Lymphocytes and Adipose Tissue Inflammation. Arter. Thromb. Vasc. Biol. 2020, 40, 1110–1122. [Google Scholar] [CrossRef]
- DeFuria, J.; Belkina, A.C.; Jagannathan-Bogdan, M.; Snyder-Cappione, J.; Carr, J.D.; Nersesova, Y.R.; Markham, D.; Strissel, K.J.; Watkins, A.A.; Zhu, M.; et al. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an inflammatory cytokine profile. Proc. Natl. Acad. Sci. USA 2013, 110, 5133–5138. [Google Scholar] [CrossRef] [Green Version]
- Molofsky, A.B.; Nussbaum, J.C.; Liang, H.-E.; Van Dyken, S.J.; Cheng, L.E.; Mohapatra, A.; Chawla, A.; Locksley, R.M. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 2013, 210, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Magnuson, A.M.; Fouts, J.K.; Regan, D.; Booth, A.D.; Dow, S.W.; Foster, M.T. Adipose tissue extrinsic factor: Obesity-induced inflammation and the role of the visceral lymph node. Physiol. Behav. 2018, 190, 71–81. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.; Shaw, J. Metabolic syndrome—A new world-wide definition. A Consensus Statement from the International Diabetes Federation. Diabet. Med. 2006, 23, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Neeland, I.J.; Poirier, P.; Despres, J.P. Cardiovascular and metabolic heterogeneity of obesity: Clinical challenges and implications for management. Circulation 2018, 137, 1391–1406. [Google Scholar] [CrossRef] [PubMed]
- Tchernof, A.; Després, J.-P. Pathophysiology of Human Visceral Obesity: An Update. Physiol. Rev. 2013, 93, 359–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bays, H.E.; Agarwala, A.; German, C.; Satish, P.; Iluyomade, A.; Dudum, R.; Thakkar, A.; Al Rifai, M.; Mehta, A.; Thobani, A.; et al. Ten things to know about ten cardiovascular disease risk factors—2022. Am. J. Prev. Cardiol. 2022, 10, 100342. [Google Scholar] [CrossRef]
- Thomas, M. The clustering of Cardiovascular, Renal, Adipo-Metabolic Eye and Liver disease with type 2 diabetes. Metabolism 2022, 128, 154961. [Google Scholar] [CrossRef]
- Wu, L.-D.; Kong, C.-H.; Shi, Y.; Zhang, J.-X.; Chen, S.-L. Associations between novel anthropometric measures and the prevalence of hypertension among 45,853 adults: A cross-sectional study. Front. Cardiovasc. Med. 2022, 9, 1050654. [Google Scholar] [CrossRef]
- NCEP. Executive Summary of the Third Report of The National Cholesterol Education Program. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef] [PubMed]
- Meirhaeghe, A.; Fajas, L.; Helbecque, N.; Cottel, D.; Auwerx, J.; Deeb, S.S.; Amouyel, P. Impact of the Peroxisome proliferator activated receptor gamma2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Obes. Relat. Metab. Disord. 2000, 24, 195–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doney, A.; Fischer, B.; Frew, D.; Cumming, A.; Flavell, D.M.; World, M.; Montgomery, H.E.; Boyle, D.; Morris, A.; Palmer, C.N.A. Haplotype analysis of the PPARγ Pro12Ala and C1431T variants reveals opposing associations with body weight. BMC Genet. 2002, 3, 21. [Google Scholar] [CrossRef]
- Malik, S.G.; Saraswati, M.R.; Suastika, K.; Trimarsanto, H.; Oktavianthi, S.; Sudoyo, H. Association of beta3-adrenergic receptor (ADRB3) Trp64Arg gene polymorphism with obesity and metabolic syndrome in the Balinese: A pilot study. BMC Res. Notes 2011, 4, 167. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Lin, H.; Gao, K.; Xu, H.; Deng, X.; Zhang, Q.; Luo, Z.; Sun, S.; Deng, H. Genetic analysis of IREB2, FAM13A and XRCC5 variants in Chinese Han patients with chronic obstructive pulmonary disease. Biochem. Biophys. Res. Commun. 2011, 415, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Liang, B.; Yang, J.; Xiao, J.; Ma, C.; Xu, S.; Lei, J.; Xu, X.; Liao, Z.; Liu, H.; et al. Association of FAM13A polymorphisms with COPD and COPD-related phenotypes in Han Chinese. Clin. Biochem. 2013, 46, 1683–1688. [Google Scholar] [CrossRef] [PubMed]
- Lundback, V.; Kulyte, A.; Strawbridge, R.J.; Ryden, M.; Arner, P.; Marcus, C.; Dahlman, I. FAM13A and POM121C are can-didate genes for fasting insulin: Functional follow-up analysis of a genome-wide association study. Diabetologia 2018, 61, 1112–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar]
- Shungin, D.; Winkler, T.W.; Croteau-Chonka, D.C.; Ferreira, T.; Locke, A.E.; Magi, R.; Strawbridge, R.J.; Pers, T.H.; Fischer, K.; Justice, A.E. New genetic loci link adipose and insulin biolNew genetic loci link adipose and insulin biology to body fat distribution. Nature 2015, 518, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.S.; Li, J.; Jin, Y.L.; Chen, Y.; He, L.P. Association between PPAR-c2 Pro12Ala polymorphism and obesity: A meta-analysis. Mol. Biol. Rep. 2015, 42, 1029–1103. [Google Scholar] [CrossRef]
- Hsueh, W.C.; Cole, S.A.; Shuldiner, A.R.; Beamer, B.A.; Blangero, J.; Hixson, J.E.; MacCluer, J.W.; Mitchell, B.D. Interactions between variants in the beta3-adrenergic receptor and peroxisome proliferator-activated receptor-gamma2 genes and obesity. Diabetes. Care 2001, 24, 672–677. [Google Scholar]
- Oladi, M.; Nohtani, M.; Avan, A.; Mirhafez, S.R.; Tajbakhsh, A.; Ghasemi, F.; Asadi, A.; Salmani, M.E.; Mohammadi, A.; Hoseinzadeh, L.; et al. Impact of the C1431T Polymorphism of the Peroxisome Proliferator Activated Receptor-Gamma (PPAR-γ) Gene on Fasted Serum Lipid Levels in Patients with Coronary Artery Disease. Ann. Nutr. Metab. 2015, 66, 149–154. [Google Scholar] [CrossRef]
- Yang, L.L.; Hua, Q.; Liu, R.K.; Yang, Z. Association between two common polymorphisms of PPARgamma gene and metabolic syndrome families in a Chinese population. Arch. Med. Res. 2009, 40, 89–96. [Google Scholar] [CrossRef]
- Grygiel-Górniak, B.; Kaczmarek, E.; Mosor, M.; Przysławski, J.; Nowak, J. Association of PPAR-γ2 and β3-AR Polymorphisms with Postmenopausal Hypertension. J. Clin. Hypertens. 2015, 17, 549–556. [Google Scholar] [CrossRef]
- Wang, X.L.; Oosterhof, J.; Duarte, N.; Sherwood, N. Peroxisome proliferator-activated receptor γ C161→T polymorphism and coronary artery disease. Cardiovasc. Res. 1999, 44, 588–594. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Rouault, C.; Clément, K.; Zhu, W.; Degrelle, S.A.; Charles, M.-A.; Heude, B.; Fournier, T. C1431T Variant of PPARγ Is Associated with Preeclampsia in Pregnant Women. Life 2021, 11, 1052. [Google Scholar] [CrossRef] [PubMed]
- Doney, A.S.F.; Fischer, B.; Cecil, J.E.; Boylan, K.; McGuigan, F.E.; Ralston, S.H.; Morris, A.D.; Palmer, C.N.A. Association of the Pro12Ala and C1431T variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. Diabetologia 2004, 47, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yuan, Z.; Liu, Y.; Zhang, J.; Yin, P.; Wang, D.; Wang, Y.; Kishimoto, C.; Ma, A. PPARgamma gene C161T substitution is associated with reduced risk of coronary artery disease and decreased pro-inflammatory cytokine expression. Am. Heart J. 2007, 154, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Chen, J.; Xu, W. Association between C1431T polymorphism in peroxisome proliferator-activated receptor-γ gene and coronary artery disease in Chinese Han population. Mol. Biol. Rep. 2012, 39, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Burguete-Garcia, A.I.; Martinez-Nava, G.A.; Valladares-Salgado, A.; Bermudez Morales, V.H.; Estrada-Velasco, B.; Wacher, N.; Peralta-Romero, J.; Garcia-Mena, J.; Parra, E.; Cruz, M. Association of b1 and b3 adrenergic receptors gene polymorphisms with insulin resistance and high lipid profiles related to type 2 diabetes and metabolic syndrome. Nutr. Hosp. 2014, 29, 1327–1334. [Google Scholar]
- Yang, H.; Cai, D.; Zhu, Q.; Wu, D.; Wang, Q.; Wang, Z. The mutation of Trp64Arg in β3-adrenoreceptor-encoding gene is significantly associated with increased hypertension risk and elevated blood pressure: A meta-analysis. Oncotarget 2017, 8, 46480–46490. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.O.; Rauch, A.; Mazzaferro, E.; Preuss, M.; Carobbio, S.; Bayrak, C.S.; Chami, N.; Wang, Z.; Schick, U.M.; Yang, N.; et al. Genome-wide discovery of genetic loci that uncouple excess adiposity from its comorbidities. Nat. Metab. 2021, 3, 228–243. [Google Scholar] [CrossRef]
Characteristics of Analyzed Groups | |||
---|---|---|---|
Analyzed Parameters | Normal Body Mass n = 105 | Obesity n = 124 | |
X ± SD | X ± SD | p-Value | |
Age [years] | 58.91 ± 5.65 | 59.57 ± 5.01 | 0.3444 |
Height [cm] | 161.80 ± 5.84 | 160.26 ± 6.01 | 0.0507 |
Body mass [kg] | 62.10 ± 6.91 | 87.27 ± 11.91 | 0.00001 |
Waist circumference [cm] | 77.67 ± 7.85 | 100.15 ± 9.21 | 0.00001 |
Hip circumference [cm] | 97.62 ± 5.40 | 115.19 ± 8.45 | 0.00001 |
WHR | 0.80 ± 0.07 | 0.87 ± 0.06 | 0.00001 |
FBM [% body mass] | 37.62 ± 4.02 | 47.73 ± 4.14 | 0.00001 |
LBM [% body mass] | 62.44 ± 3.89 | 52.23 ± 4.14 | 0.00001 |
BMR [kcal/day] | 1277.34 ± 103.10 | 1431.23 ± 114.33 | 0.00001 |
SBP [mmHg] | 137.06 ± 21.35 | 145.27 ± 23.68 | 0.0068 |
DBP [mmHg] | 84.38 ± 12.71 | 91.27 ± 13.57 | 0.0001 |
Gene SNPs | Name | Frequency (%) | OR (95% CI) | p Value | |
---|---|---|---|---|---|
Lean n = 105 | Obese n = 124 | ||||
PAPR-γ2 | |||||
rs1801282 | Pro12Ala | ||||
Genotypes | |||||
CC | Pro12Pro | 74 (70.5) | 93 (75) | 1 1 | |
CG | Pro12Ala | 30 (28.5) | 27 (21.8) | 0.7161 [0.3918–1.309] | 0.2768 |
GG | Ala12Ala | 1 (1) | 4 (3.2) | 3.183 [0.348–29.11] | 0.2801 |
Alleles | |||||
C | Pro | 178 (84.7) | 213 (85.9) | 1 1 | |
G | Ala | 32 (15.3) | 35 (14.1) | 0.9140 [0.5439–1.536] | 0.7342 |
rs3856806 | C1431T | ||||
Genotypes | |||||
CC | C1431C | 71 (67.6) | 84 (67.7) | 1 1 | |
CT | C1431T | 33 (31.4) | 35 (28.2) | 0.8965 [0.5064–1.587] | 0.7075 |
TT | T1431T | 1(1) | 5 (4.1) | 4.226 [0.4822–37.0] | 0.1590 |
Alleles | |||||
C | C1431 | 175 (83.3) | 203 (81.9) | 1 1 | |
T | T1431 | 35 (16.7) | 45 (18.1) | 1.108 [0.6818–1.802] | 0.6780 |
β3-AR | |||||
rs4994 | Trp12Arg | ||||
Genotypes | |||||
TT | Trp12Trp | 84 (80) | 102 (82.2) | 1 1 | |
TC | Trp12Arg | 20 (19) | 21 (17) | 0.8647 [0.4393–1.702] | 0.6737 |
CC | Arg12Arg | 1 (1) | 1 (0.8) | 0.8235 [0.05071–13.3] | 0.8912 |
Alleles | |||||
T | Trp | 188 (89.5) | 225 (90.7) | 1 1 | |
G | Arg | 22 (10.5) | 23 (9.3) | 0.8735 [0.4718–1.617] | 0.6667 |
FAM13A | |||||
rs7671167 | |||||
Genotypes | |||||
TT | 33 (31.4) | 32 (25.8) | 1 1 | ||
TC | 52 (49.5) | 66 (53.2) | 1.309 [0.7132–2.402] | 0.3844 | |
CC | 20 (19.1) | 26 (21) | 1.341 [0.6274–2.865] | 0.4487 | |
Alleles | |||||
T | 118 (56.2) | 130 (52.4) | 1 1 | ||
C | 92 (43.8) | 118 (47.6) | 1.164 [0.8046–1.685] | 0.4196 | |
rs1903003 | |||||
Genotypes | |||||
TT | 17 (16.2) | 37 (29.8) | 1 1 | ||
CT | 51 (48.6) | 65 (52.5) | 0.5856 [0.2962–1.158] | 0.1219 | |
CC | 37 (35.2) | 22 (17.7) | 0.2732 [0.1252–0.5960] | 0.0009 * | |
Alleles | |||||
T | 85 (40.5) | 139 (56) | 1 1 | ||
C | 125 (59.5) | 109 (44) | 0.5332 [0.3673–0.7740] | 0.0009 * | |
rs2869967 | |||||
Genotypes | |||||
TT | 27 (25.8) | 34 (27.4) | 1 1 | ||
CT | 52 (49.5) | 65 (52.4) | 0.9926 [0.5323–1.851] | 0.9815 | |
CC | 26 (24.7) | 25 (20.2) | 0.7636 [0.3620–1.610] | 0.4782 | |
Alleles | |||||
T | 106 (50.5) | 133 (53.6) | 1 1 | ||
C | 104 (49.5) | 115 (46.4) | 0.8813 [0.6099–1.274] | 0.5009 |
Anthropometric and Blood Pressure Parameters [Mean ± SD] | |||||
---|---|---|---|---|---|
FAM13A rs1903003 (CT) | |||||
PPAR-γ2 | BMI [kg/m2] | Body Mass [kg] | FBM [% Body Mass] | LBM [% Body Mass] | |
C1431T (n = 32) | 29.7 ± 8.3 | 77.8 ± 21.2 | 43.5 ± 7.8 | 56.5 ± 7.8 | |
C1431C (n = 81) | 29.4 ± 6.0 | 75.8 ± 16.3 | 43.2 ± 6.4 | 56.8 ± 6.4 | |
T1431T (n = 3) | 31.8 ± 1.5 | 85.6 ± 5.9 | 46.8 ± 2.1 | 53.2 ± 2.1 | |
BMR [kcal] | SBP [mmHg] | DBP [mmHg] | |||
C1431T (n = 32) | 1371 ± 146 | 87 ± 15 | 142 ± 27 | 0.83 ± 0.09 | |
C1431C (n = 81) | 1363 ± 136 | 90 ± 14 | 142 ± 22 | 0.84 ± 0.08 | |
T1431T (n = 3) | 1436 ± 108 | 114 ± 10 | 181 ± 12 | 0.90 ± 0.02 | |
FAM13A rs1903003 (TT) | |||||
BMI [kg/m2] | Body mass [kg] | FBM [% body mass] | LBM | ||
C1431T (n = 17) | 26.4 ± 6.09 | 69.3 ± 11.1 | 40.9 ± 6.9 | 59.1 ± 6.7 | |
C1431C (n = 57) | 29.3 ± 5.61 | 76.9 ± 15.1 | 43.6 ± 5.8 | 56.5 ± 5.8 | |
T1431T (n = 0) | p = 0.0173 | ||||
BMR [kcal] | SBP [mmHg] | DBP [mmHg] | WHR | ||
C1431T (n = 17) | 1317 ± 102 | 87 ± 11 | 147 ± 19 | 0.7 ± 0.06 | |
C1431C (n = 57) | 1367 ± 153 | 86 ± 14 | 138 ± 23 | 0.8 ± 0.07 | |
T1431T (n = 0) | p = 0.0068 | ||||
FAM13A rs1903003 (CC) | |||||
BMI [kg/m2] | Body mass [kg] | FBM [% body mass] | LBM [% body mass] | ||
C1431T (n = 17) | 27.3 ± 6.4 | 70.9 ± 16.9 | 40.7 ± 8.0 | 59.3 ± 8.0 | |
C1431C (n = 57) | 29.5 ± 5.3 | 75.7 ± 12.5 | 43.6 ± 6.3 | 56.4 ± 6.3 | |
T1431T (n = 0) | 27.5 ± 3.6 | 73.2 ± 16.8 | 41.8 ± 3.0 | 58.3 ± 3.0 | |
BMR [kcal] | SBP [mmHg] | WHR | |||
C1431T (n = 17) | 1334 ± 104 | 149 ± 16 | 90 ± 9 | 0.84 ± 0.08 | |
C1431C (n = 57) | 1360 ± 96 | 135 ± 22 | 86 ± 13 | 0.83 ± 0.08 | |
T1431T (n = 0) | 1365 ± 166 | 129 ± 30 | 86 ± 21 | 0.91 ± 0.09 | |
p = 0.0279 | |||||
FAM13A rs2869967 (CC) | FAM13A rs1903003 (CC) | ||||
BMI [kg/m2] | WHR | SBP [mmHg] | DBP [mmHg] | ||
C1431T (n = 16) | 26.9 ± 6.37 | 0.80 ± 0.07 | Trp64Trp (61) | 142.1 ± 21.3 | 89.6 ± 11.9 |
C1431C (n = 35) | 29.3 ± 5.73 | 0.86 ± 0.06 | Trp64Arg (12) | 125 ± 15.6 | 79 ± 6.53 |
T1431T (n = 0) | - | - | Arg64Arg (0) | - | - |
p = 0.0494 | p = 0.0076 | p = 0.0275 | p = 0.0480 |
Analysis of Fat Distribution (WHR) According to BMI [kg/m2] Value in the Co-Existence of Selected Polymorphisms | ||||
---|---|---|---|---|
FAM13A Polymorphisms | ||||
rs1903003 (CT) | rs1903003 (TT) | rs1903003 (CC) | ||
PPAR-γ2 polymorphism | WHR [Mean ± SD] | |||
BMI < 25 kg/m2 | C1431T (n = 15) | 0.77 ± 0.08 | 0.76 ± 0.03 | 0.82 ± 0.06 |
C1431C (n = 36) | 0.8 ± 0.08 | 0.81 ± 0.08 | 0.81 ± 0.07 | |
p-value | ns | ns | ns | |
BMI > 30 kg/m2 | C1431T (n = 17) | 0.88 ± 0.06 | 0.87 ± 0.03 | 0.87 ± 0.09 |
C1431C (n = 45) | 0.87 ± 0.06 | 0.87 ± 0.04 | 0.84 ± 0.08 | |
p-value | ns | ns | ns | |
rs7671167 (CT) | rs7671167 (TT) | rs7671167 (CC) | ||
BMI < 25 kg/m2 | C1431T (n = 12) | 0.77 ± 0.08 | 0.76 ± 0.03 | 0.82 ± 0.06 |
C1431C (n = 25) | 0.8 ± 0.08 | 0.82 ± 0.08 | 0.805 ± 0.07 | |
p-value | ns | ns | ns | |
BMI > 30 kg/m2 | C1431T (n = 5) | 0.88 ± 0.06 | 0.87 ± 0.03 | 0.87 ± 0.09 |
C1431C (n = 32) | 0.87 ± 0.05 | 0.87 ± 0.04 | 0.84 ± 0.08 | |
p-value | ns | ns | ns | |
rs2869967 (CT) | rs2869967 (TT) | rs2869967 (CC) | ||
BMI < 25 kg/m2 | C1431T (n = 10) | 0.77 ± 0.07 | 0.81 ± 0.06 | 0.76 ± 0.03 |
C1431C (n = 16) | 0.80 ± 0.08 | 0.78 ± 0.06 | 0.84 ± 0.07 | |
p value | ns | ns | p < 0.0481 | |
BMI > 30 kg/m2 | C1431T (n = 6) | 0.88 ± 0.07 | 0.88 ± 0.08 | 0.87 ± 0.03 |
C1431C (n = 19) | 0.87 ± 0.05 | 0.86 ± 0.08 | 0.87 ± 0.05 | |
p-value | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grygiel-Górniak, B.; Ziółkowska-Suchanek, I.; Szymkowiak, L.; Rozwadowska, N.; Kaczmarek, E. The Influence of FAM13A and PPAR-γ2 Gene Polymorphisms on the Metabolic State of Postmenopausal Women. Genes 2023, 14, 914. https://doi.org/10.3390/genes14040914
Grygiel-Górniak B, Ziółkowska-Suchanek I, Szymkowiak L, Rozwadowska N, Kaczmarek E. The Influence of FAM13A and PPAR-γ2 Gene Polymorphisms on the Metabolic State of Postmenopausal Women. Genes. 2023; 14(4):914. https://doi.org/10.3390/genes14040914
Chicago/Turabian StyleGrygiel-Górniak, Bogna, Iwona Ziółkowska-Suchanek, Lidia Szymkowiak, Natalia Rozwadowska, and Elżbieta Kaczmarek. 2023. "The Influence of FAM13A and PPAR-γ2 Gene Polymorphisms on the Metabolic State of Postmenopausal Women" Genes 14, no. 4: 914. https://doi.org/10.3390/genes14040914
APA StyleGrygiel-Górniak, B., Ziółkowska-Suchanek, I., Szymkowiak, L., Rozwadowska, N., & Kaczmarek, E. (2023). The Influence of FAM13A and PPAR-γ2 Gene Polymorphisms on the Metabolic State of Postmenopausal Women. Genes, 14(4), 914. https://doi.org/10.3390/genes14040914