Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeqTM DNA Signature Prep
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Sample
2.2. Eye and Hair Color Phenotype Observed
2.3. DNA Extraction Method
2.4. Massive Parallel Sequencing (MPS) Method
2.5. Data Analysis
3. Results
3.1. Genetic Population Data
3.2. Eye color Prediction Performance
3.3. Hair Color Prediction Performance
4. Discussion
4.1. Data Quality
4.2. Population Characteristics
4.3. Eye Color Prediction
4.4. Hair Color Prediction
4.5. Predictor’s Performance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kayser, M.; de Knijff, P. Improving human forensics through advances in genetics, genomics and molecular biology. Nat. Rev. Genet. 2011, 12, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Biesecker, L.G.; Bailey-Wilson, J.E.; Ballantyne, J.; Baum, H.; Bieber, F.R.; Brenner, C.; Budowle, B.; Butler, J.M.; Carmody, G.; Conneally, P.M.; et al. DNA Identifications After the 9/11 World Trade Center Attack. Science 2005, 310, 1122–1123. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.M.; Coble, M.; Vallone, P. STRs vs. SNPs: Thoughts on the future of forensic DNA testing. Forensic Sci. Med. Pathol. 2007, 3, 200–205. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Liu, F.; Ballantyne, K.N.; van Oven, M.; Lao, O.; Kayser, M. IrisPlex: A sensitive DNA tool for accurate prediction of blue and brown eye colour in the absence of ancestry information. Forensic Sci. Int. Genet. 2011, 5, 170–180. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.; Liu, F.; Wollstein, A.; Kovatsi, L.; Ralf, A.; Kosiniak-Kamysz, A.; Branicki, W.; Kayser, M. The HIrisPlex system for simultaneous prediction of hair and eye colour from DNA. Forensic Sci. Int. Genet. 2013, 7, 98–115. [Google Scholar] [CrossRef]
- de Knijff, P. From next generation sequencing to now generation sequencing in forensics. Forensic Sci. Int. Genet. 2019, 38, 175–180. [Google Scholar] [CrossRef]
- Børsting, C.; Morling, N. Next generation sequencing and its applications in forensic genetics. Forensic Sci. Int. Genet. 2015, 18, 78–89. [Google Scholar] [CrossRef]
- Jäger, A.C.; Alvarez, M.L.; Davis, C.P.; Guzmán, E.; Han, Y.; Way, L.; Walichiewicz, P.; Silva, D.; Pham, N.; Caves, G.; et al. Developmental validation of the MiSeq FGx Forensic Genomics System for Targeted Next Generation Sequencing in Forensic DNA Casework and Database Laboratories. Forensic Sci. Int. Genet. 2017, 28, 52–70. [Google Scholar] [CrossRef]
- Phillips, C. Forensic genetic analysis of bio-geographical ancestry. Forensic Sci. Int. Genet. 2015, 18, 49–65. [Google Scholar] [CrossRef]
- Strobl, C.; Eduardoff, M.; Bus, M.; Allen, M.; Parson, W. Evaluation of the precision ID whole MtDNA genome panel for forensic analyses. Forensic Sci. Int. Genet. 2018, 35, 21–25. [Google Scholar] [CrossRef]
- Holt, C.L.; Stephens, K.M.; Walichiewicz, P.; Fleming, K.D.; Forouzmand, E.; Wu, S.-F. Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software. Genes 2017, 12, 599. [Google Scholar] [CrossRef] [PubMed]
- Verogene. ForenSeq™ DNA Signature Prep Reference Guide. 2020. D2018005 Rev. C.; QIAGEN: San Diego, CA, USA, 2020. [Google Scholar]
- Wendt, F.R.; King, J.L.; Novroski, N.M.; Churchill, J.D.; Ng, J.; Oldt, R.F.; McCulloh, K.L.; Weise, J.A.; Smith, D.G.; Kanthaswamy, S.; et al. Flanking region variation of ForenSeq™ DNA Signature Prep Kit STR and SNP loci in Yavapai Native Americans. Forensic Sci. Int. Genet. 2017, 28, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Devesse, L.; Ballard, D.; Davenport, L.; Riethorst, I.; Mason-Buck, G.; Court, D.S. Concordance of the ForenSeq™ system and characterisation of sequence-specific autosomal STR alleles across two major population groups. Forensic Sci. Int. Genet. 2018, 34, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Phillips, C.; Devesse, L.; Ballard, D.; van Weert, L.; de la Puente, M.; Melis, S.; Iglesias, V.; Freire-Aradas, A.; Oldroyd, N.; Holt, C.; et al. Global patterns of STR sequence variation: Sequencing the CEPH human genome diversity panel for 58 forensic STRs using the Illumina ForenSeq DNA Signature Prep Kit. Electrophoresis 2018, 39, 2708–2724. [Google Scholar] [CrossRef]
- Hussing, C.; Bytyci, R.; Huber, C.; Morling, N.; Børsting, C. The Danish STR sequence database: Duplicate typing of 363 Danes with the ForenSeq™ DNA Signature Prep Kit. Int. J. Leg. Med. 2019, 133, 325–334. [Google Scholar] [CrossRef]
- Delest, A.; Godfrin, D.; Chantrel, Y.; Ulus, A.; Vannier, J.; Faivre, M.; Hollard, C.; Laurent, F.-X. Sequenced-based French population data from 169 unrelated individuals with Verogen’s ForenSeq DNA signature prep kit. Forensic Sci. Int. Genet. 2020, 47, 102304. [Google Scholar] [CrossRef]
- Guevara, E.K.; Palo, J.U.; King, J.L.; Buś, M.M.; Guillén, S.; Budowle, B.; Sajantila, A. Autosomal STR and SNP characterization of populations from the Northeastern Peruvian Andes with the ForenSeqTM DNA Signature Prep Kit. Forensic Sci. Int. Genet. 2021, 52, 102487. [Google Scholar] [CrossRef]
- Aguilar-Velázquez, J.A.; Duran-Salazar, M.; Córdoba-Mercado, M.F.; Coronado-Avila, C.E.; Salas-Salas, O.; Martinez-Cortés, G.; Casals, F.; Calafell, F.; Ramos-González, B.; Rangel-Villalobos, H. Characterization of 58 STRs and 94 SNPs with the ForenSeq™ DNA signature prep kit in Mexican-Mestizos from the Monterrey city (Northeast, Mexico). Mol. Biol. Rep. 2020, 49, 7601–7609. [Google Scholar] [CrossRef]
- Casals, F.; Rasal, R.; Anglada, R.; Tormo, M.; Bonet, N.; Rivas, N.; Vásquez, P.; Calafell, F. A forensic population database in El Salvador: 58 STRs and 94 SNPs. Forensic Sci. Int. Genet. 2022, 57, 102646. [Google Scholar] [CrossRef]
- Salvo, N.M.; Janssen, K.; Kirsebom, M.K.; Meyer, O.S.; Berg, T.; Olsen, G.-H. Predicting eye and hair colour in a Norwegian population using Verogen’s ForenSeq™ DNA signature prep kit. Forensic Sci. Int. Genet. 2022, 56, 102620. [Google Scholar] [CrossRef]
- Wendt, F.R.; Churchill, J.D.; Novroski, N.M.; King, J.L.; Ng, J.; Oldt, R.F.; McCulloh, K.L.; Weise, J.A.; Smith, D.G.; Kanthaswamy, S.; et al. Genetic analysis of the Yavapai Native Americans from West-Central Arizona using the Illumina MiSeq FGx™ forensic genomics system. Forensic Sci. Int. Genet. 2016, 24, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Churchill, J.D.; Novroski, N.M.; King, J.L.; Seah, L.H.; Budowle, B. Population and performance analyses of four major populations with Illumina’s FGx Forensic Genomics System. Forensic Sci. Int. Genet. 2017, 30, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Rubi-Castellanos, R.; Martínez-Cortés, G.; Muñoz-Valle, J.F.; González-Martín, A.; Cerda-Flores, R.M.; Anaya-Palafox, M.; Rangel-Villalobos, H. Pre-Hispanic Mesoamerican demography approximates the present-day ancestry of Mestizos throughout the territory of Mexico. Am. J. Phys. Anthr. 2009, 139, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Freire-Aradas, A.; Ruiz, Y.; Phillips, C.; Maroñas, O.; Söchtig, J.; Tato, A.G.; Dios, J.; de Cal, M.C.; Silbiger, V.; Luchessi, A.; et al. Exploring iris colour prediction and ancestry inference in admixed populations of South America. Forensic Sci. Int. Genet. 2014, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Lewis, P.O.; Zaykin, D. Genetic Data Analysis (GDA): Computer Program for the Analysis of Allelic Data; Version 1.1; Free Program Distributed by the Authors over the Internet; 2001; Available online: https://plewis.github.io/software/ (accessed on 1 May 2023).
- Chaitanya, L.; Breslin, K.; Zuñiga, S.; Wirken, L.; Pośpiech, E.; Kukla-Bartoszek, M.; Sijen, T.; de Knijff, P.; Liu, F.; Branicki, W.; et al. The HIrisPlex-S system for eye, hair and skin colour prediction from DNA: Introduction and forensic developmental validation. Forensic Sci. Int. Genet. 2018, 35, 123–135. [Google Scholar] [CrossRef]
- Hohl, D.M.; González, R.; Meztler, G.P.D.S.; Patiño-Rico, J.; Dejean, C.; Avena, S.; Gutiérrez, M.D.L.; Catanesi, C.I. Applicability of the IrisPlex system for eye color prediction in an admixed population from Argentina. Ann. Hum. Genet. 2022, 86, 297–327. [Google Scholar] [CrossRef]
- Sari, O.I.; Simsek, S.Z.; Filoglu, G.; Bulbul, O. Predicting Eye and Hair Color in a Turkish Population Using the HIrisPlex System. Genes 2022, 13, 2094. [Google Scholar] [CrossRef]
- Alghamdi, J.; Amoudi, M.; Kassab, A.C.; Al Mufarrej, M.; Al Ghamdi, S. Eye color prediction using single nucleotide polymorphisms in Saudi population. Saudi J. Biol. Sci. 2018, 26, 1607–1612. [Google Scholar] [CrossRef]
- Salvoro, C.; Faccinetto, C.; Zucchelli, L.; Porto, M.; Marino, A.; Occhi, G.; de Los Campos, G.; Vazza, G. Performance of four models for eye color prediction in an Italian population sample. Forensic Sci. Int. Genet. 2019, 40, 192–200. [Google Scholar] [CrossRef]
- Sharma, V.; Jani, K.; Khosla, P.; Butler, E.; Siegel, D.; Wurmbach, E. Evaluation of ForenSeq™ Signature Prep Kit B on predicting eye and hair coloration as well as biogeographical ancestry by using Universal Analysis Software (UAS) and available web-tools. Electrophoresis 2019, 40, 1353–1364. [Google Scholar] [CrossRef]
- Weisz, N.A.; Roberts, K.A.; Hardy, W.R. Reliability of phenotype estimation and extended classification of ancestry using decedent samples. Int. J. Leg. Med. 2021, 135, 2221–2233. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Estrada, A.; Gignoux, C.R.; Fernández-López, J.C.; Zakharia, F.; Sikora, M.; Contreras, A.V.; Acuña-Alonzo, V.; Sandoval, K.; Eng, C.; Romero-Hidalgo, S.; et al. The genetics of Mexico recapitulates Native American substructure and affects biomedical traits. Science 2014, 344, 1280–1285. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Velázquez, J.A.; Martínez-Cortés, G.; Inclán-Sánchez, A.; Favela-Mendoza, A.F.; Velarde-Félix, J.S.; Rangel-Villalobos, H. Forensic parameters and admixture in Mestizos from five geographic regions of Mexico based on 20 autosomal STRs (Powerplex 21 system). Int. J. Leg. Med. 2018, 132, 1293–1296. [Google Scholar] [CrossRef] [PubMed]
- Grunberg, B. El universo de los conquistadores: Resultado de una investigación prosopográfica. Signos Históricos 2004, 012, 94–118. [Google Scholar]
- Palmal, S.; Adhikari, K.; Mendoza-Revilla, J.; Fuentes-Guajardo, M.; Silva de Cerqueira, C.C.; Bonfante, B.; Chacón-Duque, J.C.; Sohail, A.; Hurtado, M.; Villegas, V.; et al. Prediction of eye, hair and skin colour in Latin Americans. Forensic Sci. Int. Genet. 2021, 53, 102517. [Google Scholar] [CrossRef]
- Hurst, C. On the inheritance of eye-colour in man. Proc. R. Soc. London—Ser. B Contain. Pap. A Biol. Character 1908, 80, 85–96. [Google Scholar] [CrossRef]
- White, D.; Rabago-Smith, M. Genotype–phenotype associations and human eye color. J. Hum. Genet. 2011, 56, 5–7. [Google Scholar] [CrossRef]
- Walsh, S.; Chaitanya, L.; Clarisse, L.; Wirken, L.; Draus-Barini, J.; Kovatsi, L.; Maeda, H.; Ishikawa, T.; Sijen, T.; de Knijff, P.; et al. Developmental validation of the HIrisPlex system: DNA-based eye and hair colour prediction for forensic and anthropological usage. Forensic Sci. Int. Genet. 2014, 9, 150–161. [Google Scholar] [CrossRef]
- Kukla-Bartoszek, M.; Pośpiech, E.; Spólnicka, M.; Karłowska-Pik, J.; Strapagiel, D.; Żądzińska, E.; Rosset, I.; Sobalska-Kwapis, M.; Słomka, M.; Walsh, S.; et al. Investigating the impact of age-depended hair colour darkening during childhood on DNA-based hair colour prediction with the HIrisPlex system. Forensic Sci. Int. Genet. 2018, 36, 26–33. [Google Scholar] [CrossRef]
Gene | SNP | Allele Frequencies | Ho | He | HWE p-Value | |||
---|---|---|---|---|---|---|---|---|
A | T | G | C | |||||
SLC45A2 | rs28777 | 0.3636 | - | - | 0.6364 | 0.4318 | 0.4655 | 0.3663 |
IRF4 | rs12203592 | - | 0.0284 | - | 0.9716 | 0.0341 | 0.0555 | 0.0584 |
LOC105374875 | rs4959270 | 0.4830 | - | - | 0.5171 | 0.4205 | 0.5023 | 0.1428 |
TYRP1 | rs683 | 0.4546 | - | - | 0.5455 | 0.4773 | 0.4987 | 0.8225 |
TYR | rs1042602 | 0.2273 | - | - | 0.7727 | 0.2500 | 0.3532 | 0.0100 * |
TYR | rs1393350 | 0.1023 | - | 0.8977 | - | 0.1818 | 0.1847 | 1 |
KITLG | rs12821256 | - | 0.9943 | - | 0.0057 | 0.0114 | 0.0114 | 1 |
LOC105370627 | rs12896399 | - | 0.2841 | 0.7159 | - | 0.3864 | 0.4091 | 0.6025 |
SLC24A4 | rs2402130 | 0.8409 | - | 0.1591 | - | 0.2500 | 0.2691 | 0.4478 |
OCA2 | rs1800407 | 0.0398 | - | 0.9602 | - | 0.0568 | 0.0768 | 0.0047 * |
MC1R | rs312262906 | - | - | 1.0000 | 0 | 0 | 1 | |
MC1R | rs1805005 | - | 0.0739 | 0.9261 | - | 0.1250 | 0.1376 | 0.3759 |
MC1R | rs1805006 | - | - | - | 1.0000 | 0 | 0 | 1 |
MC1R | rs2228479 | 0.0341 | - | 0.9659 | - | 0.0682 | 0.0662 | 1 |
MC1R | rs11547464 | - | - | 1.0000 | - | 0 | 0 | 1 |
MC1R | rs1805007 | - | 0.0114 | - | 0.9886 | 0.0227 | 0.0226 | 1 |
MC1R | rs201326893 | - | - | 1.0000 | 0 | 0 | 1 | |
MC1R | rs1110400 | - | 0.9886 | - | 0.0114 | 0.0227 | 0.0226 | 1 |
MC1R | rs1805008 | - | - | - | 1.0000 | 0 | 0 | 1 |
MC1R | rs885479 | 0.3864 | - | 0.6136 | - | 0.5227 | 0.4769 | 0.4991 |
TUBB3 | rs1805009 | - | - | 0.9886 | 0.0114 | 0.0227 | 0.0226 | 1 |
PIGU | rs2378249 | 0.9489 | - | 0.0511 | - | 0.1023 | 0.0976 | 1 |
SLC45A2 | rs16891982 | - | - | 0.3466 | 0.6534 | 0.4432 | 0.4555 | 0.8178 |
HERC2 | rs12913832 | 0.8693 | - | 0.1307 | - | 0.2386 | 0.2285 | 1 |
(a) Eye Color Prediction | |||||
---|---|---|---|---|---|
Without Restriction Threshold | Threshold > 70% | ||||
Color | Observed Color | UAS Prediction (CA) | EMC Prediction (CA) | UAS Prediction (CA) | EMC Prediction (CA) |
Brown | 85 | 86 (85) | 86 (85) | 85 (84) | 85 (84) |
Intermediate | 3 | 0 | 0 | 0 | 0 |
Blue | 0 | 1 (0) | 1 (0) | 1 (0) | 0 |
Inconclusive | - | 1 | 1 | 0 | 0 |
Excluded | - | 0 | 0 | 3 | 3 |
Correct/ Incorrect | - | 85/2 | 85/2 | 84/1 | 84/1 |
Percentage accuracy | - | 96.6% | 96.6% | 98.8% | 98.8% |
(b) Hair Color Prediction | |||||
Without Restriction Threshold | Threshold > 70% | ||||
Color | Observed Color |
UAS Prediction
(CA) |
EMC Prediction
(CA) |
UAS Prediction
(CA) | EMC Prediction (CA) |
Black | 66 | 70 (57) | 54 (46) | 50 (42) | 21 (20) |
Brown | 22 | 6 (3) | 19 (10) | 0 | 1 (0) |
Blond | 0 | 0 | 0 | 0 | 0 |
Red | 0 | 0 | 0 | 0 | 0 |
Inconclusive * | - | 11 | 14 | 0 | 0 |
Excluded ** | - | 0 | 0 | 38 | 66 |
Correct/ Incorrect | - | 60/17 | 56/18 | 42/8 | 20/2 |
Percentage accuracy *** | - | 68.2% | 63.6% | 84% | 91% |
Color | Observed Color | EMC Prediction (CA) | Accuracy (%) |
---|---|---|---|
Black | 61 | 59 (48) | 78.6 |
D. Brown/Black | 24 | 25 (13) | 54.2 |
Brown | 0 | 0 | - |
Brown/D. Brown | 2 | 4 (2) | 50 |
Blond/D. Brown | 1 | 0 | 0 |
Blond | 0 | 0 | - |
Red | 0 | 0 | - |
Correct/Incorrect | - | 63/25 | - |
Percentage accuracy * | - | 71.5% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Velázquez, J.A.; Llamas-de-Dios, B.J.; Córdova-Mercado, M.F.; Coronado-Ávila, C.E.; Salas-Salas, O.; López-Quintero, A.; Ramos-González, B.; Rangel-Villalobos, H. Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeqTM DNA Signature Prep. Genes 2023, 14, 1120. https://doi.org/10.3390/genes14051120
Aguilar-Velázquez JA, Llamas-de-Dios BJ, Córdova-Mercado MF, Coronado-Ávila CE, Salas-Salas O, López-Quintero A, Ramos-González B, Rangel-Villalobos H. Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeqTM DNA Signature Prep. Genes. 2023; 14(5):1120. https://doi.org/10.3390/genes14051120
Chicago/Turabian StyleAguilar-Velázquez, José Alonso, Blanca Jeannete Llamas-de-Dios, Miranda Fabiola Córdova-Mercado, Carolina Elena Coronado-Ávila, Orlando Salas-Salas, Andrés López-Quintero, Benito Ramos-González, and Héctor Rangel-Villalobos. 2023. "Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeqTM DNA Signature Prep" Genes 14, no. 5: 1120. https://doi.org/10.3390/genes14051120
APA StyleAguilar-Velázquez, J. A., Llamas-de-Dios, B. J., Córdova-Mercado, M. F., Coronado-Ávila, C. E., Salas-Salas, O., López-Quintero, A., Ramos-González, B., & Rangel-Villalobos, H. (2023). Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeqTM DNA Signature Prep. Genes, 14(5), 1120. https://doi.org/10.3390/genes14051120