PCSK3 Overexpression in Sjögren’s Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chivasso, C.; Sarrand, J.; Perret, J.; Delporte, C.; Soyfoo, M.S. The Involvement of Innate and Adaptive Immunity in the Initiation and Perpetuation of Sjögren’s Syndrome. Int. J. Mol. Sci. 2021, 22, 658. [Google Scholar] [CrossRef]
- Imgenberg-Kreuz, J.; Rasmussen, A.; Sivils, K.; Nordmark, G. Genetics and epigenetics in primary Sjögren’s syndrome. Rheumatology 2021, 60, 2085–2098. [Google Scholar] [CrossRef]
- Turpeinen, H.; Raitoharju, E.; Oksanen, A.; Oksala, N.; Levula, M.; Lyytikäinen, L.P.; Järvinen, O.; Creemers, J.W.; Kähönen, M.; Laaksonen, R.; et al. Proprotein convertases in human atherosclerotic plaques: The overexpression of FURIN and its substrate cytokines BAFF and APRIL. Atherosclerosis 2011, 219, 799–806. [Google Scholar] [CrossRef]
- Lin, H.; Ah Kioon, M.D.; Lalou, C.; Larghero, J.; Launay, J.M.; Khatib, A.M.; Cohen-Solal, M. Protective role of systemic furin in immune response-induced arthritis. Arthritis Rheum. 2012, 64, 2878–2886. [Google Scholar] [CrossRef]
- Wu, T.; Ding, H.; Han, J.; Arriens, C.; Wei, C.; Han, W.; Pedroza, C.; Jiang, S.; Anolik, J.; Petri, M.; et al. Antibody-Array-Based Proteomic Screening of Serum Markers in Systemic Lupus Erythematosus: A Discovery Study. J. Proteome Res. 2016, 15, 2102–2114. [Google Scholar] [CrossRef]
- Garten, W. Characterization of Proprotein Convertases and Their Involvement in Virus Propagation. In Activation of Viruses by Host Proteases; Springer: Berlin/Heidelberg, Germany, 2018; pp. 205–248. [Google Scholar]
- Braun, E.; Sauter, D. Furin-mediated protein processing in infectious diseases and cancer. Clin. Transl. Immunol. 2019, 8, e1073. [Google Scholar] [CrossRef]
- Cordova, Z.M.; Grönholm, A.; Kytölä, V.; Taverniti, V.; Hämäläinen, S.; Aittomäki, S.; Niininen, W.; Junttila, I.; Ylipää, A.; Nykter, M.; et al. Myeloid cell expressed proprotein convertase FURIN attenuates inflammation. Oncotarget 2016, 7, 54392–54404. [Google Scholar] [CrossRef]
- Ortutay, Z.; Oksanen, A.; Aittomäki, S.; Ortutay, C.; Pesu, M. Proprotein convertase FURIN regulates T cell receptor-induced transactivation. J. Leukoc. Biol. 2015, 98, 73–83. [Google Scholar] [CrossRef]
- Pesu, M.; Watford, W.T.; Wei, L.; Xu, L.; Fuss, I.; Strober, W.; Andersson, J.; Shevach, E.M.; Quezado, M.; Bouladoux, N.; et al. T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature 2008, 455, 246–250. [Google Scholar] [CrossRef]
- Psianou, K.; Panagoulias, I.; Papanastasiou, A.D.; de Lastic, A.L.; Rodi, M.; Spantidea, P.I.; Degn, S.E.; Georgiou, P.; Mouzaki, A. Clinical and immunological parameters of Sjögren’s syndrome. Autoimmun. Rev. 2018, 17, 1053–1064. [Google Scholar] [CrossRef] [PubMed]
- Sisto, M.; Lisi, S.; Lofrumento, D.D.; Ingravallo, G.; Mitolo, V.; D’Amore, M. Expression of pro-inflammatory TACE-TNF-α-amphiregulin axis in Sjögren’s syndrome salivary glands. Histochem. Cell. Biol. 2010, 134, 345–353. [Google Scholar] [CrossRef]
- Ranta, N.; Valli, A.; Grönholm, A.; Silvennoinen, O.; Isomäki, P.; Pesu, M.; Pertovaara, M. Proprotein convertase enzyme FURIN is upregulated in primary Sjögren’s syndrome. Clin. Exp. Rheumatol. 2018, 36 (Suppl. S112), 47–50. [Google Scholar] [PubMed]
- Ortutay, Z.; Grönholm, A.; Laitinen, M.; Keresztes-Andrei, M.; Hermelo, I.; Pesu, M. Identification of Novel Genetic Regulatory Region for Proprotein Convertase FURIN and Interferon Gamma in T Cells. Front. Immunol. 2021, 12, 630389. [Google Scholar] [CrossRef]
- Ivashkiv, L.B. IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef]
- Sebastian, A.; Madej, M.; Sebastian, M.; Łuczak, A.; Gajdanowicz, P.; Zemelka-Wiącek, M.; Wiland, P. The Clinical and Immunological Activity Depending on the Presence of Interferon γ in Primary Sjögren’s Syndrome-A Pilot Study. J. Clin. Med. 2021, 11, 3. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Arakaki, R.; Tawara, H.; Nagao, R.; Tanaka, H.; Tamura, K.; Kawahito, Y.; Otsuka, K.; Ushio, A.; Tsunematsu, T.; et al. Disturbed natural killer cell homeostasis in the salivary gland enhances autoimmune pathology via IFN-γ in a mouse model of primary Sjögren’s syndrome. Front. Med. 2022, 9, 1036787. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Shi, X.; Liu, Y.; Cheng, D.; Tian, Q.; Lin, N.; Wei, W.; Wu, H. CXCL9, 10, 11/CXCR3 Axis Contributes to the Progress of Primary Sjogren’s Syndrome by Activating GRK2 to Promote T Lymphocyte Migration. Inflammation 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Lei, R.X.; Shi, H.; Peng, X.M.; Zhu, Y.H.; Cheng, J.; Chen, G.H. Influence of a single nucleotide polymorphism in the P1 promoter of the furin gene on transcription activity and hepatitis B virus infection. Hepatology 2009, 50, 763–771. [Google Scholar] [CrossRef]
- Yang, S.; Fu, Z.Z.; Zhang, Y.Q.; Fu, B.H.; Dong, L. The G to A transformation of rs4702 polymorphism in 3’UTR of FURIN reduced the risk of radiotherapy-induced cognitive impairment in glioma patients. J. Cell. Mol. Med. 2022, 26, 684–692. [Google Scholar] [CrossRef]
- Hou, Y.; Liang, W.; Zhang, J.; Li, Q.; Ou, H.; Wang, Z.; Li, S.; Huang, X.; Zhao, C. Schizophrenia-associated rs4702 G allele-specific downregulation of FURIN expression by miR-338-3p reduces BDNF production. Schizophr. Res. 2018, 199, 176–180. [Google Scholar] [CrossRef]
- Shiboski, C.H.; Shiboski, S.C.; Seror, R.; Criswell, L.A.; Labetoulle, M.; Lietman, T.M.; Rasmussen, A.; Scofield, H.; Vitali, C.; Bowman, S.J.; et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren’s Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts. Arthritis Rheumatol. 2017, 69, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Colafrancesco, S.; Ciccacci, C.; Priori, R.; Latini, A.; Picarelli, G.; Arienzo, F.; Novelli, G.; Valesini, G.; Perricone, C.; Borgiani, P. STAT4, TRAF3IP2, IL10, and HCP5 Polymorphisms in Sjögren’s Syndrome: Association with Disease Susceptibility and Clinical Aspects. J. Immunol. Res. 2019, 2019, 7682827. [Google Scholar] [CrossRef] [PubMed]
- Valli, A.; Ranta, N.; Grönholm, A.; Silvennoinen, O.; Pesu, M.; Isomäki, P. Increased expression of the proprotein convertase enzyme FURIN in rheumatoid arthritis. Scand. J. Rheumatol. 2019, 48, 173–177. [Google Scholar] [CrossRef]
- Nocturne, G.; Mariette, X. Advances in understanding the pathogenesis of primary Sjögren’s syndrome. Nat. Rev. Rheumatol. 2013, 9, 544–556. [Google Scholar] [CrossRef] [PubMed]
- Pesu, M.; Muul, L.; Kanno, Y.; O’Shea, J.J. Proprotein convertase furin is preferentially expressed in T helper 1 cells and regulates interferon gamma. Blood 2006, 108, 983–985. [Google Scholar] [CrossRef] [PubMed]
- Coutard, B.; Valle, C.; de Lamballerie, X.; Canard, B.; Seidah, N.G.; Decroly, E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res. 2020, 176, 104742. [Google Scholar] [CrossRef] [PubMed]
- Latini, A.; Agolini, E.; Novelli, A.; Borgiani, P.; Giannini, R.; Gravina, P.; Smarrazzo, A.; Dauri, M.; Andreoni, M.; Rogliani, P.; et al. COVID-19 and Genetic Variants of Protein Involved in the SARS-CoV-2 Entry into the Host Cells. Genes 2020, 11, 1010. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Sawalha, A.H.; Lu, Q. COVID-19 and autoimmune diseases. Curr. Opin. Rheumatol. 2021, 33, 155–162. [Google Scholar] [CrossRef]
- Novelli, L.; Motta, F.; De Santis, M.; Ansari, A.A.; Gershwin, M.E.; Selmi, C. The JANUS of chronic inflammatory and autoimmune diseases onset during COVID-19-A systematic review of the literature. J. Autoimmun. 2021, 117, 102592. [Google Scholar] [CrossRef]
- Li, P.; Ke, Y.; Shen, W.; Shi, S.; Wang, Y.; Lin, K.; Guo, X.; Wang, C.; Zhang, Y.; Zhao, Z. Targeted screening of genetic associations with COVID-19 susceptibility and severity. Front. Genet. 2022, 13, 1073880. [Google Scholar] [CrossRef]
- Zhang, Q.; Bastard, P.; COVID Human Genetic Effort; Cobat, A.; Casanova, J.L. Human genetic and immunological determinants of critical COVID-19 pneumonia. Nature 2022, 603, 587–598. [Google Scholar] [CrossRef] [PubMed]
SS Patients (n = 27) | Healthy Control (n = 18) | |
---|---|---|
Sex (% of famales) | 88.5 | 83.3 |
Age (mean ± SD) | 58.79 ± 10.33 | 59.3 ± 10.21 |
Age at diagnosis (mean ± SD) | 54.14 ± 9.76 | |
Disease duration (means ± SD) | 4.64 ± 5.01 | |
Xerophthalmia (%) | 96.4 | |
Xerostomia (%) | 85.7 | |
Salivary gland swelling (%) | 3.6 | |
Arthritis (%) | 14.3 | |
Lymphoma (%) | 7.1 | |
ANA (%) | 82.1 | |
Anti-SSA (%) | 64.3 | |
Anti-SSB (%) | 53.6 | |
Hypergammaglobulinemia (%) | 39.3 | |
Rheumatoid factor (%) | 23.1 | |
Leukopenia (%) | 28.6 | |
Hypocomplementemia (%) | 14.3 | |
Monoclonal component (%) | 14.8 | |
Cryoglobulins (%) | 0 |
PCSK3 rs4932178 | Recessive Model (CC + CT vs. TT) | ||||
---|---|---|---|---|---|
CC | CT | TT | p | OR (95%CI) | |
Sjögren Syndrome | 78 (40.4%) | 77 (39.9%) | 38 (19.7%) | 0.016 | 1.71 (1.10−2.66) |
European 1000 Genomes project | 208 (41.4%) | 232 (46.1%) | 63 (12.5%) | ||
PCSK3 rs4702 | Recessive Model (AG +GG vs. AA) | ||||
AA | AG | GG | p | OR (95%CI) | |
Sjögren Syndrome | 56 (28.7%) | 97 (49.7%) | 42 (21.5%) | 0.75 | 1.06 (0.71−1.60) |
European 1000 Genomes project | 166 (33%) | 234 (46.5%) | 103 (20.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latini, A.; De Benedittis, G.; Colafrancesco, S.; Perricone, C.; Novelli, G.; Novelli, L.; Priori, R.; Ciccacci, C.; Borgiani, P. PCSK3 Overexpression in Sjögren’s Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression. Genes 2023, 14, 981. https://doi.org/10.3390/genes14050981
Latini A, De Benedittis G, Colafrancesco S, Perricone C, Novelli G, Novelli L, Priori R, Ciccacci C, Borgiani P. PCSK3 Overexpression in Sjögren’s Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression. Genes. 2023; 14(5):981. https://doi.org/10.3390/genes14050981
Chicago/Turabian StyleLatini, Andrea, Giada De Benedittis, Serena Colafrancesco, Carlo Perricone, Giuseppe Novelli, Lucia Novelli, Roberta Priori, Cinzia Ciccacci, and Paola Borgiani. 2023. "PCSK3 Overexpression in Sjögren’s Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression" Genes 14, no. 5: 981. https://doi.org/10.3390/genes14050981
APA StyleLatini, A., De Benedittis, G., Colafrancesco, S., Perricone, C., Novelli, G., Novelli, L., Priori, R., Ciccacci, C., & Borgiani, P. (2023). PCSK3 Overexpression in Sjögren’s Syndrome Patients May Be Regulated by rs4932178 SNP in Its Promoter Region and Correlates with IFN-γ Gene Expression. Genes, 14(5), 981. https://doi.org/10.3390/genes14050981