Association of FAAH rs324420 (C385A) Polymorphism with High-Level Performance in Volleyball Players
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enroled Players’ Description and Data Collection
2.1.1. Biological Sample Processing
2.1.2. SNP Selection and Genotyping
2.2. Statistical Analysis
3. Results
3.1. High-Level Performance Volleyball Players
3.2. SNP Genotype Frequencies
3.3. Univariable and Multivariable Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmetov, I.I.; Egorova, E.S.; Gabdrakhmanova, L.J.; Fedotovskaya, O.N. Genes and athletic performance: An Update. Med. Sport Sci. 2016, 61, 41–54. [Google Scholar] [CrossRef]
- Silva, H.H.; Silva, M.G.; Cerqueira, F.; Tavares, V.; Medeiros, R. Genomic profile in association with sport-type, sex, ethnicity, psychological traits and sport injuries of elite athletes. J. Sports Med. Phys. Fit. 2021, 62, 418–434. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.H.; Tavares, V.; Silva, M.G.; Neto, B.V.; Cerqueira, F.; Medeiros, R. FAAH rs324420 Polymorphism Is Associated with Performance in Elite Rink-Hockey Players. Biology 2022, 11, 1076. [Google Scholar] [CrossRef]
- Silva, M.-R.G.; Paiva, T.; Silva, H.-H. The elite athlete as a special risk traveller and the jet lag’s effect: Lessons learned from the past and how to be prepared for the next Olympic Games 2020 Tokyo? J. Sports. Med. Phys. Fitness. 2019, 59, 1420–1429. [Google Scholar] [CrossRef]
- Silva, M.G.; Silva, H.H. Comparison of body composition and nutrients’ deficiencies between Portuguese rink-hockey players. Eur. J. Pediatr. 2017, 176, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.-R.G.; Silva, H.-H.; Paiva, T. Sleep duration, body composition, dietary profile and eating behaviours among children and adolescents: A comparison between Portuguese acrobatic gymnasts. Eur. J. Pediatr. 2018, 177, 815–825. [Google Scholar] [CrossRef] [PubMed]
- Peplonska, B.; Safranow, K.; Adamczyk, J.; Boguszewski, D.; Szymański, K.; Soltyszewski, I.; Barczak, A.; Siewierski, M.; PLoSki, R.; Sozanski, H.; et al. Association of serotoninergic pathway gene variants with elite athletic status in the Polish population. J. Sports Sci. 2019, 37, 1655–1662. [Google Scholar] [CrossRef]
- Peplonska, B.; Adamczyk, J.G.; Siewierski, M.; Safranow, K.; Maruszak, A.; Sozanski, H.; Gajewski, A.K.; Zekanowski, C. Genetic variants associated with physical and mental characteristics of the elite athletes in the Polish population. Scand. J. Med. Sci. Sports 2017, 27, 788–800. [Google Scholar] [CrossRef]
- Woodhams, S.G.; Chapman, V.; Finn, D.P.; Hohmann, A.G.; Neugebauer, V. The cannabinoid system and pain. Neuropharmacology 2017, 124, 105–120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podgórski, R.; Cieśla, M.; Podgórska, D.; Bajorek, W.; Płonka, A.; Czarny, W.; Trybulski, R.; Król, P. Plasma microRNA-320a as a Potential Biomarker of Physiological Changes during Training in Professional Volleyball Players. J. Clin. Med. 2022, 11, 263. [Google Scholar] [CrossRef]
- Fédération Internationale de Volleyball. Official Volleyball Rules 2021–2024; Fédération Internationale de Volleyball: Lausanne, Switzerland, 2021. [Google Scholar]
- Cece, V.; Guillet-Descas, E.; Brenas, M.; Martinent, G. The role of dispositional emotion regulation strategies on the longitudinal emotional process and subjective performance during a competitive season. Eur. J. Sport. Sci. 2021, 21, 1448–1458. [Google Scholar] [CrossRef] [PubMed]
- Cauci, S.; Migliozzi, F.; Trombetta, C.S.; Venuto, I.; Saccheri, P.; Travan, L.; Chiriacò, G. Low back pain and FokI (rs2228570) polymorphism of vitamin D receptor in athletes. BMC Sports Sci. Med. Rehabil. 2017, 9, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marfell-Jones, M. International Standards for Anthropometric Assessment; ISAK: Potchefsroom, South Africa, 2006. [Google Scholar]
- Küchler, E.C.; Tannure, P.N.; Falagan-Lotsch, P.; Lopes, T.S.; Granjeiro, J.M.; Amorim, L.M. Buccal cells DNA extraction to obtain high quality human genomic DNA suitable for polymorphism genotyping by PCR-RFLP and Real-Time PCR. J. Appl. Oral Sci. 2012, 20, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assis, J.; Pereira, D.; Gomes, M.; Marques, D.; Marques, I.; Nogueira, A.; Catarino, R.; Medeiros, R. Influence of CYP3A4 genotypes in the outcome of serous ovarian cancer patients treated with first-line chemotherapy: Implication of a CYP3A4 activity profile. Int. J. Clin. Exp. Med. 2013, 1, 552–561. [Google Scholar]
- Ensembl Database. Available online: https://www.ensembl.org/index.html (accessed on 5 May 2022).
- GeneCards Database. Available online: https://www.genecards.org/ (accessed on 5 May 2022).
- UniProt Database. Available online: https://www.uniprot.org/ (accessed on 7 May 2022).
- Kang, H. Sample size determination and power analysis using the G*Power software. J. Educ. Eval. Health Prof. 2021, 18, 17. [Google Scholar] [CrossRef]
- Dogan, M.; Tacal Aslan, B.; Ulucan, K. Comparison of potential biomarker, ACTN3 rs1815739 polymorphism, for athletic performance of Turkish athletes. Cell. Mol. Biol. 2022, 68, 54–59. [Google Scholar] [CrossRef]
- Durmic, T.S.; Zdravkovic, M.D.; Djelic, M.N.; Gavrilovic, T.D.; Djordjevic Saranovic, S.A.; Plavsic, J.N.; Mirkovic, S.V.; Batinic, D.V.; Antic, M.N.; Mihailovic, Z.R.; et al. Polymorphisms in ACE and ACTN3 Genes and blood pressure response to acute exercise in elite male athletes from Serbia. Tohoku. J. Exp. Med. 2017, 243, 311–320. [Google Scholar]
- Saber-Ayad, M.M.; Nassar, Y.S.; Latif, I.A. Angiotensin-converting enzyme I/D gene polymorphism affects early cardiac response to professional training in young footballers. J. Renin. Angiotensin. Aldosterone. Syst. 2014, 15, 236–242. [Google Scholar] [CrossRef]
- Orysiak, J.; Mazur-Różycka, J.; Busko, K.; Gajewski, J.; Szczepanska, B.; Malczewska-Lenczowska, J. Individual and combined influence of ACE and ACTN3 genes on muscle phenotypes in Polish athletes. J. Strength Cond. Res. 2018, 32, 2776–2782. [Google Scholar] [CrossRef]
- Orysiak, J.; Busko, K.; Michalski, R.; Mazur-Różycka, J.; Gajewski, J.; Malczewska-Lenczowska, J.; Sitkowski, D.; Pokrywka, A. Relationship between ACTN3 R577X polymorphism and maximal power output in elite Polish athletes. Medicina 2014, 50, 303–308. [Google Scholar] [CrossRef]
- Ruiz, J.R.; Fernández del Valle, M.; Verde, Z.; Díez-Vega, I.; Santiago, C.; Yvert, T.; Rodríguez-Romo, G.; Gómez-Gallego, F.; Molina, J.J.; Lucia, A. ACTN3 R577X polymorphism does not influence explosive leg muscle power in elite volleyball players. Scand. J. Med. Sci. Sports. 2011, 21, e34–e41. [Google Scholar] [CrossRef] [PubMed]
- Sessa, F.; Chetta, M.; Petito, A.; Franzetti, M.; Bafunno, V.; Pisanelli, D.; Sarno, M.; Iuso, S.; Margaglione, M. Gene polymorphisms and sport attitude in Italian athletes. Genet. Test. Mol. Biomark. 2011, 15, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Filonzi, L.; Franchini, N.; Vaghi, M.; Chiesa, S.; Marzano, F.N. The potential role of myostatin and neurotransmission genes in elite sport performances. J. Biosci. 2015, 40, 531–537. [Google Scholar] [CrossRef]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Kassem, E.; Eliakim, A. The combined frequencies of the IL-6 G-174C and IGFBP3 A-202C polymorphisms among swimmers and runners. Growth Horm. IGF Res. 2020, 51, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Ben-Zaken, S.; Meckel, Y.; Nemet, D.; Kassem, E.; Eliakim, A. Genetic basis for the dominance of Israeli long-distance runners of Ethiopian origin. J. Strength Cond. Res. 2019, 35, 1885–1896. [Google Scholar] [CrossRef]
- Amorim, T.; Durães, C.; Machado, J.C.; Metsios, G.S.; Wyon, M.; Maia, J.; Flouris, A.D.; Marques, F.; Nogueira, L.; Adubeiro, N.; et al. Genetic variation in Wnt/β-catenin and ER signalling pathways in female and male elite dancers and its associations with low bone mineral density: A cross-section and longitudinal study. Osteoporos. Int. 2018, 29, 2261–2274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salles, J.I.; Lopes, L.R.; Duarte, M.; Morrissey, D.; Martins, M.B.; Machado, D.E.; Guimarães, J.; Perini, J.A. Fc receptor-like 3 (-169T>C) polymorphism increases the risk of tendinopathy in volleyball athletes: A case control study. BMC Med. Genet. 2018, 19, 119. [Google Scholar] [CrossRef]
- Lutz, B.; Marsicano, G.; Maldonado, R.; Hillard, C.J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 2015, 16, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Hill, M.N.; Karacabeyli, E.S.; Gorzalka, B.B. Estrogen recruits the endocannabinoid system to modulate emotionality. Psychoneuroendocrinology 2007, 32, 350–357. [Google Scholar] [CrossRef]
- Dongdem, J.T.; Helegbe, G.K.; Opare-Asamoah, K.; Wezena, C.A.; Ocloo, A. Assessment of NSAIDs as potential inhibitors of the fatty acid amide hydrolase I (FAAH-1) using three different primary fatty acid amide substrates in vitro. BMC Pharmacol. Toxicol. 2022, 23, 1. [Google Scholar] [CrossRef]
- Ensembl Home. rs324420 (SNP)—Population Genetics—Homo Sapiens—Ensembl Genome Browser 89. Available online: http://www.ensembl.org/Homo_sapiens/Variation/Population?db=core;r=1:46404589-46405589;v=rs324420;vdb=variation;vf=200953 (accessed on 7 May 2022).
- Gunduz-Cinar, O.; MacPherson, K.P.; Cinar, R.; Gamble-George, J.; Sugden, K.; Williams, B.; Godlewski, G.; Ramikie, T.S.; Gorka, A.X.; Alapafuja, S.O.; et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol. Psychiatry 2013, 18, 813–823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medeiros, D.C.; Cota, V.R.; Oliveira, A.C.P.; Moreira, F.A.; Moraes, M.F.D. The Endocannabinoid System Activation as a Neural Network Desynchronizing Mediator for Seizure Suppression. Front. Behav. Neurosci. 2020, 14, 603245. [Google Scholar] [CrossRef] [PubMed]
- Ginevičienė, V.; Utkus, A.; Pranckevičienė, E.; Semenova, E.A.; Hall, E.; Ahmetov, I.I. Perspectives in Sports Genomics. Biomedicines 2022, 10, 298. [Google Scholar] [CrossRef] [PubMed]
- Wolfarth, B.; Rankinen, T.; Muhlbauer, S.; Scherr, J.; Boulay, M.R.; Pérusse, L.; Rauramaa, R.; Bouchard, C. Association between a beta2-adrenergic receptor polymorphism and elite endurance performance. Metab. Clin. Exp. 2007, 56, 1649–1651. [Google Scholar] [CrossRef]
- Pickering, C.; Suraci, B.; Semenova, E.A.; Boulygina, E.A.; Kostryukova, E.S.; Kulemin, N.A.; Borisov, O.V.; Khabibova, S.A.; Larin, A.K.; Pavlenko, A.V.; et al. A Genome-Wide Association Study of Sprint Performance in Elite Youth Football Players. J. Strength Cond. Res. 2019, 33, 2344–2351. [Google Scholar] [CrossRef]
- Akhmetov, I.I.; Popov, D.V.; Mozhaĭskaia, I.A.; Missina, S.S.; Astratenkova, I.V.; Vinogradova, O.L.; Rogozkin, V.A. Association of regulatory genes polymorphisms with aerobic and anaerobic performance of athletes. Ross. Fiziol. Zh. Im. I. M. Sechenov. 2007, 93, 837–843. [Google Scholar]
- Tsianos, G.I.; Evangelou, E.; Boot, A.; Zillikens, M.C.; van Meurs, J.B.; Uitterlinden, A.G.; Ioannidis, J.P. Associations of polymorphisms of eight muscle- or metabolism-related genes with performance in Mount Olympus marathon runners. J. Appl. Physiol. 1985, 108, 567–574. [Google Scholar] [CrossRef]
- Kumagai, H.; Miller, B.; Kim, S.J.; Leelaprachakul, N.; Kikuchi, N.; Yen, K.; Cohen, P. Novel Insights into Mitochondrial DNA: Mitochondrial Microproteins and mtDNA Variants Modulate Athletic Performance and Age-Related Diseases. Genes 2023, 14, 286. [Google Scholar] [CrossRef]
- Szelid, Z.; Lux, Á.; Kolossváry, M.; Tóth, A.; Vágó, H.; Lendvai, Z.; Kiss, L.; Maurovich-Horvat, P.; Bagyura, Z.; Merkely, B. Right Ventricular Adaptation Is Associated with the Glu298Asp Variant of the NOS3 Gene in Elite Athletes. PLoS ONE 2015, 10, e0141680. [Google Scholar] [CrossRef]
Variables | Total (n = 228) | Females (n = 66) | Males (n = 162) | p-Value |
---|---|---|---|---|
Age (years) * | 26.7 ± 8.1 | 24.9 ± 6.1 | 27.5 ± 8.7 | 0.026 |
Body mass (kg) * | 81.4 ± 12.2 | 69.4 ± 7.5 | 86.3 ± 10.2 | <0.001 |
Height (m) * | 1.86 ± 0.10 | 1.77 ±0.07 | 1.90 ± 0.09 | <0.001 |
BMI (kg/m2) * | 23.4 ± 2.1 | 22.2 ± 1.6 | 23.9 ± 2.0 | <0.001 |
Waist circumference (cm) * | 80.3 ± 6.0 | 75.4 ± 5.2 | 82.2 ± 5.1 | <0.001 |
Hip circumference (cm) * | 91.5 ± 10.0 | 83.4 ± 9.6 | 94.8 ± 7.5 | <0.001 |
WHR * | 0.88 ± 0.05 | 0.85 ± 0.04 | 0.91 ± 0.05 | <0.001 |
Hand length (cm) * | 25.0 ± 1.4 | 24.2 ± 1.5 | 25.3 ± 1.2 | <0.001 |
Shoe size * | 44.0 ± 3.1 | 40.2 ± 1.7 | 45.6 ± 2.1 | <0.001 |
Age at first sports lesion (years) * | 12.1 ± 9.1 | 11.8 ± 9.5 | 12.2 ± 9.0 | 0.803 |
Month of the first sports lesion * | 5.8 ± 4.2 | 6.5 ± 4.1 | 5.5 ± 4.2 | 0.202 |
Beginning at high-level performance (years) * | 16.9 ± 2.0 | 16.2 ± 1.4 | 17.2 ± 2.0 | <0.001 |
Training experience (years) * | 16.3 ± 8.4 | 14.8 ±6.6 | 17.0 ± 9.0 | 0.936 |
Training frequency * | ||||
Days/week | 6.5 ± 1.5 | 6.8 ± 1.6 | 6.4 ± 1.5 | <0.001 |
Hours/day | 3.3 ± 1.0 | 3.2 ± 1.0 | 3.3 ± 1.0 | 0.004 |
Hours/week | 22.0 ± 10.5 | 23.0 ± 12.9 | 21.6 ± 9.3 | <0.001 |
Participations in regional and national teams * | 27.4 ± 39.2 | 25.5 ± 37.9 | 28.2 ± 39.8 | 0.778 |
Sport lesion | ||||
No | 85 (37.1) | 26 (39.4) | 59 (36.2) | 0.381 |
Yes | 144 (62.9) | 40 (60.6) | 104 (63.8) | |
Nationality | ||||
Portuguese | 172 (75.1) | 50 (75.8) | 122 (74.8) | 0.356 |
Others | 57 (24.9) | 16 (24.2) | 41 (25.2) | |
Ethnicity | ||||
Caucasian | 208 (90.8) | 63 (95.5) | 145 (89.0) | 0.094 |
Others | 21 (9.2) | 3 (4.5) | 18 (11.0) | |
Other occupation/profession | ||||
Athletes | 69 (30.1) | 20 (30.3) | 49 (30.1) | 0.471 |
Student | 99 (43.2) | 30 (45.5) | 69 (42.3) | |
Teacher | 22 (9.6) | 4 (6.1) | 18 (11.0) | |
Physical therapist | 8 (3.5) | 3 (4.5) | 5 (3.1) | |
Sport coordinator | 1 (0.4) | -- | 1 (0.6) | |
Coach | 3 (1.3) | -- | 3 (1.8) | |
Podiatrist | 3 (1.3) | 2 (3.0) | 1 (0.6) | |
Architect | 1 (0.4) | 1 (1.5) | -- | |
Engineer | 7 (3.1) | 3 (4.5) | 4 (2.5) | |
Market trader | 8 (3.5) | 1 (1.5) | 7 (4.3) | |
Other | 8 (3.5) | 2 (3.0) | 6 (3.7) |
SNP | Functional Consequence | Biological Functions | TaqMan® SNP Genotyping Assays ID |
---|---|---|---|
ADRB2 rs1042713 | Missense | Catecholaminergic system | C___2084764_20 |
FAAH rs324420 | Missense | Neural functions, including nerve plasticity | C___1897306_10 |
NOS3 rs1799983 | Missense | Neurotransmission, antimicrobial, and antitumoral activities | C___3219460_20 |
Genotype Frequencies | Females (n = 66) | Males (n = 162) | Total (n = 219) * | p-Value |
---|---|---|---|---|
ADRB2 rs1042713 | ||||
AA | 13 (21.7) | 30 (18.9) | 43 (19.6) | 0.127 |
AG | 19 (31.7) | 74 (46.5) | 93 (42.5) | |
GG | 28 (46.7) | 55 (34.6) | 83 (37.9) | |
FAAH rs324420 | ||||
AA | 3 (5.0) | 8 (5.0) | 11 (5.0) | 0.996 |
AC | 20 (33.3) | 54 (34.0) | 74 (33.8) | |
CC | 37 (61.7) | 97 (61.0) | 134 (61.2) | |
NOS3 rs1799983 | ||||
TT | 10 (16.7) | 24 (15.1) | 34 (15.5) | 0.196 |
GT | 30 (50.0) | 61 (38.4) | 91 (41.6) | |
GG | 20 (33.3) | 74 (46.5) | 94 (42.9) |
Factors | aOR | 95% CI | p-Value |
---|---|---|---|
FAAH rs324420 | 2.00 | 1.04–3.82 | 0.037 |
(AA/AC vs. CC1) | |||
Age | 2.96 | 1.55–5.66 | 0.001 |
(≥ 26 vs. < 26 years 1) | |||
Sex | 0.82 | 0.37–1.82 | 0.620 |
(Male vs. female1) | |||
BMI | 1.16 | 0.51–2.64 | 0.725 |
(≥ 25 vs. < 25 kg/m2 1) | |||
Hand length | 5.51 | 1.14–26.59 | 0.034 |
(≥ 23 vs. < 23 cm 1) | |||
History of sport lesions | 1.34 | 0.68–2.63 | 0.400 |
(Yes vs. no 1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.-H.; Tavares, V.; Silva, M.-R.G.; Neto, B.V.; Cerqueira, F.; Medeiros, R. Association of FAAH rs324420 (C385A) Polymorphism with High-Level Performance in Volleyball Players. Genes 2023, 14, 1164. https://doi.org/10.3390/genes14061164
Silva H-H, Tavares V, Silva M-RG, Neto BV, Cerqueira F, Medeiros R. Association of FAAH rs324420 (C385A) Polymorphism with High-Level Performance in Volleyball Players. Genes. 2023; 14(6):1164. https://doi.org/10.3390/genes14061164
Chicago/Turabian StyleSilva, Hugo-Henrique, Valéria Tavares, Maria-Raquel G. Silva, Beatriz Vieira Neto, Fátima Cerqueira, and Rui Medeiros. 2023. "Association of FAAH rs324420 (C385A) Polymorphism with High-Level Performance in Volleyball Players" Genes 14, no. 6: 1164. https://doi.org/10.3390/genes14061164
APA StyleSilva, H. -H., Tavares, V., Silva, M. -R. G., Neto, B. V., Cerqueira, F., & Medeiros, R. (2023). Association of FAAH rs324420 (C385A) Polymorphism with High-Level Performance in Volleyball Players. Genes, 14(6), 1164. https://doi.org/10.3390/genes14061164