Methylation Levels in the Promoter Region of FHIT and PIAS1 Genes Associated with Mastitis Resistance in Xinjiang Brown Cattle
Abstract
:1. Background
2. Materials and Methods
2.1. Sample Collection
2.2. DNA and RNA Extraction
2.3. GWAS
2.4. CpG Island Prediction and Primer Design in Gene Promoter Region
2.5. Pyrosequencing
2.6. Quantitative Real-Time PCR
2.7. Statistical Methods
3. Results
3.1. Quality Control of DNA Samples
3.2. GWAS of Mastitis Resistance Traits in Xinjiang Brown Cattle
3.3. Prediction of CpGs in the Promoter Regions of FHIT and PIAS1 Genes
3.4. Detection of Methylation Modifications in the Promoter Regions of FHIT and PIAS1 Genes
3.5. Analysis of Relative Expression of Genes Related to Mastitis Resistance in Xinjiang Brown Cattle
3.6. Correlation Analysis between the Expression Levels of FHIT and PIAS1 Genes and Methylation Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miles, A.M.; Huson, H.J. Graduate student literature review: Understanding the genetic mechanisms underlying mastitis. J. Dairy Sci. 2020, 104, 1183–1191. [Google Scholar] [CrossRef] [PubMed]
- Ogorevc, J.; Kunej, T.; Razpet, A.; Dovc, P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet. 2009, 40, 832–851. [Google Scholar] [CrossRef] [PubMed]
- Zadoks, R.N.; Middleton, J.R.; McDougall, S.; Katholm, J.; Schukken, Y.H. Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans. J. Mammary Gland. Biol. Neoplasia 2011, 16, 357–372. [Google Scholar] [CrossRef] [PubMed]
- Heringstad, B.; Rekaya, R.; Gianola, D.; Klemetsdal, G.; Weigel, K. Genetic change for clinical mastitis in Norwegian cattle: A threshold model analysis. J. Dairy Sci. 2003, 86, 369–375. [Google Scholar] [CrossRef]
- Fonseca, I.; Silva, P.V.; Lange, C.C.; Guimarães, M.F.M.; Weller, M.M.D.C.A.; Sousa, K.R.S.; Lopes, P.S.; Guimarães, J.D.; Guimarães, S.E.F. Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol. 2009, 32, 776–781. [Google Scholar] [CrossRef]
- Cai, Z.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genom. 2018, 19, 656. [Google Scholar] [CrossRef]
- Moore, L.D.; Le, T.; Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 2013, 38, 23–38. [Google Scholar] [CrossRef]
- Robertson, K.D.; Wolffe, A.P. DNA methylation in health and disease. Nat. Rev. Genet. 2000, 1, 11–19. [Google Scholar] [CrossRef]
- Smith, Z.D.; Meissner, A. DNA methylation: Roles in mammalian development. Nat. Rev. Genet. 2013, 14, 204–220. [Google Scholar] [CrossRef]
- Wang, M.; Liang, Y.; Ibeagha-Awemu, E.M.; Li, M.; Zhang, H.; Chen, Z.; Sun, Y.; Karrow, N.A.; Yang, Z.; Mao, Y. Genome-Wide DNA methylation analysis of mammary gland tissues from Chinese Holstein cows with Staphylococcus aureus induced mastitis. Front. Genet. 2020, 11, 550515. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jiang, Q.; Hao, H.; Ju, Z.; Yang, C.; Sun, Y.; Wang, C.; Zhong, J.; Huang, J.; et al. DNA methylation rather than single nucleotide polymorphisms regulates the production of an aberrant splice variant of IL6R in mastitic cows. Cell Stress Chaperones 2018, 23, 617–628. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, S.; Ma, L.; Jiang, E.; Xu, H.; Chen, R.; Yang, Q.; Chen, H.; Li, Z.; Lan, X. Reduced representation bisulfite sequencing (RRBS) of dairy goat mammary glands reveals DNA methylation profiles of integrated genome-wide and critical milk-related genes. Oncotarget 2017, 8, 115–326. [Google Scholar] [CrossRef]
- Wan, D. The Regulation of Genome-Wide DNA Methylation and Key Genes Analysis of Xinjiang Brown Cattle Mastitis Resistance. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2018. [Google Scholar]
- Wang, X.S.; Zhang, Y.; He, Y.H.; Ma, P.; Fan, L.; Wang, Y.; Sun, D.; Zhang, S.; Wang, C.; Song, J.; et al. Aberrant promoter methylation of the CD4 gene in peripheral blood cells of mastitic dairy cows. Genet. Mol. Res. 2013, 12, 6228–6239. [Google Scholar] [CrossRef]
- Ivanova, E.; Le Guillou, S.; Hue-Beauvais, C.; Le Provost, F. Epigenetics: New insights into mammary gland biology. Genes 2021, 12, 231–266. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, L.; Chen, C.J.; Zhang, M.; Lu, X.; Zhang, Z.; Huang, X.; Shi, Y. Genome-wide association study of milk and reproductive traits in dual-purpose Xinjiang Brown cattle. BMC Genom. 2019, 20, 827. [Google Scholar] [CrossRef]
- Kchl, S.; Niedersttter, H.; Parson, W. DNA extraction and quantitation of forensic samples using the phenol-chloroform method and real-time PCR. Forensic DNA Typing Protoc. 2005, 297, 13–29. [Google Scholar] [CrossRef]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.; Zhang, Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Li, L.C.; Dahiya, R. MethPrimer: Designing primers for methylation PCRs. Bioinformatics 2002, 18, 1427–1431. [Google Scholar] [CrossRef]
- Puccetti, M.V.; Adams, C.M.; Kushinsky, S.; Eischen, C.M. Smarcal1 and Zranb3 protect replication forks from Myc-induced DNA replication stress. Cancer Res. 2019, 79, 1612–1623. [Google Scholar] [CrossRef]
- Long, M.J.; Zhao, Y.; Aye, Y. Clofarabine Commandeers the RNR-α-ZRANB3 Nuclear Signaling Axis. Cell Chem. Biol. 2020, 27, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Chanda, A.; Chan, A.; Deng, L.; Kornaga, E.N.; Enwere, E.K.; Morris, D.G.; Bonni, S. Identification of the SUMO E3 ligase PIAS1 as a potential survival biomarker in breast cancer. PLoS ONE 2017, 12, e0177639. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Tahk, S.; Yee, K.M.; Yang, R.; Yang, Y.; Mackie, R.; Hsu, C.; Chernishof, V.; O’Brien, N.; Jin, Y.; et al. PIAS1 regulates breast tumorigenesis through selective epigenetic gene silencing. PLoS ONE 2014, 9, e89464. [Google Scholar] [CrossRef] [PubMed]
- Malinen, M.; Toropainen, S.; Jskelinen, T.; Sahu, B.; Jänne, O.A.; Palvimo, J.J. Androgen receptor-and PIAS1-regulated gene programs in molecular apocrine breast cancer cells. Mol. Cell. Endocrinol. 2015, 414, 91–98. [Google Scholar] [CrossRef]
- McConnel, C.S.; Crisp, S.A.; Biggs, T.D.; Ficklin, S.P.; Parrish, L.M.; Trombetta, S.C.; Sischo, W.M.; Adams-Progar, A. A fixed cohort field study of gene expression in circulating leukocytes from dairy cows with and without mastitis. Front. Vet. Sci. 2020, 7, 559279. [Google Scholar] [CrossRef]
- Chen, X.; Cheng, Z.; Zhang, S.; Werling, D.; Wathes, D.C. Combining genome wide association studies and differential gene expression data analyses identifies candidate genes affecting mastitis caused by two different pathogens in the dairy cow. Open J. Anim. Sci. 2015, 5, 358–393. [Google Scholar] [CrossRef]
- Williams, K.A.; Lee, M.; Hu, Y.; Andreas, J.; Patel, S.J.; Zhang, S.; Chines, P.; Elkahloun, A.; Chandrasekharappa, S.; Gutkind, J.S.; et al. A systems genetics approach identifies CXCL14, ITGAX, and LPCAT2 as novel aggressive prostate cancer susceptibility genes. PLoS Genet. 2014, 10, e1004809. [Google Scholar] [CrossRef]
- Yan, G.; Li, Y.; Zhan, L.; Sun, S.; Yuan, J.; Wang, T.; Yin, Y.; Dai, Z.; Zhu, Y.; Jiang, Z.; et al. Decreased miR-124-3p promoted breast cancer proliferation and metastasis by targeting MGAT5. Am. J. Cancer Res. 2019, 9, 585–596. [Google Scholar]
- Li, D.; Li, Y.; Wu, X.; Li, Q.; Yu, J.; Gen, J.; Zhang, X.-L. Knockdown of Mgat5 inhibits breast cancer cell growth with activation of CD4+ T cells and macrophages. J. Immunol. 2008, 180, 3158–3165. [Google Scholar] [CrossRef]
- Shaheen, S.; Fawaz, F.; Shah, S.; Bsselberg, D. Differential expression and pathway analysis in drug-resistant triple-negative breast cancer cell lines using RNASeq analysis. Int. J. Mol. Sci. 2018, 19, 1810. [Google Scholar] [CrossRef]
- Liu, B.; Yang, R.; Wong, K.A. Negative regulation of NF-κB signaling by PIAS1. Mol. Cell. Biol. 2005, 25, 1113–1123. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, Y.; Wang, Y.; Wang, B.; Yan, Y.; Qu, Y.; Ke, X. Tanshinones induce tumor cell apoptosis via directly targeting FHIT. Sci. Rep. 2021, 11, 12217. [Google Scholar] [CrossRef]
- Herzog, D.; Jansen, J.; Missun, M.; Diederichs, K.; Stengel, F.; Marx, A. Chemical Proteomics of the Tumor Suppressor Fhit Covalently Bound to the Cofactor Ap3A Elucidates Its Inhibitory Action on Translation. J. Am. Chem. Soc. 2022, 144, 8613–8623. [Google Scholar] [CrossRef]
- Ju, X. Study on Genetic Variations of Xinjiang Brown Cattle’s Lactation-Related Genes and Their Association with Milk Traits. Master’s Thesis, Xinjiang Agricultural University, Urumqi, China, 2021. [Google Scholar]
- Ju, X.; Huang, X.; Zhang, M.; Lan, X.; Wang, D.; Wei, C.; Jiang, H. Effects of eight InDel variants in FHIT on milk traits in Xinjiang brown cattle. Anim. Biotechnol. 2021, 32, 486–494. [Google Scholar] [CrossRef]
- Zaki, S.M.; Abdel-Azeez, H.A.; El Nagar, M.R.; Metwally, K.A.-A.; Ahmed, M.M.S.S. Analysis of FHIT gene methylation in egyptian breast cancer women: Association with clinicopathological features. Asian Pac. J. Cancer Prev. 2015, 16, 1235–1239. [Google Scholar] [CrossRef]
- Syeed, N.; Husain, S.A.; Sameer, A.S.; Chowdhri, N.A.; Siddiqi, M.A. Mutational and promoter hypermethylation status of FHIT gene in breast cancer patients of Kashmir. Mutat. Res. Mol. Mech. Mutagen. 2011, 707, 1–8. [Google Scholar] [CrossRef]
- Raish, M.; Dhillon, V.S.; Ahmad, A.; Ansari, M.A.; Mudassar, S.; Shahid, M.; Batra, V.; Gupta, P.; Das, B.C.; Shukla, N.; et al. Promoter hypermethylation in tumor suppressing genes p16 and FHIT and their relations estrogen receptor status in breast cancer patients from Northern India. Transl. Oncol. 2009, 2, 264–270. [Google Scholar] [CrossRef]
- Liu, B.; Yee, K.M.; Tahk, S.; Mackie, R.; Hsu, C.; Shuai, K. PIAS 1 SUMO ligase regulates the self-renewal and differentiation of hematopoietic stem cells. EMBO J. 2014, 33, 101–113. [Google Scholar] [CrossRef]
SNP Name | Chromosome | Position | p-Value | Candidate Genes | |
---|---|---|---|---|---|
Name | Distance (kb) | ||||
BovineHD1800006960 | 18 | 22647995 | 2.91 × 10−12 | LPCAT2 | 1246 |
BovineHD0200018606 | 2 | 64455540 | 1.32 × 10−8 | MGAT5 | 1146 |
ZRANB3 | 2172 | ||||
ACTR3 | 1433 | ||||
Hapmap54158-rs29026721 | 29 | 28559588 | 2.04 × 10−7 | SLC37A2 | 319 |
BovineHD1000004910 | 10 | 14760795 | 3.49 × 10−7 | PIAS1 | 182 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Ma, S.; Wang, D.; Zhang, M.; Tian, Y.; He, J.; Zhang, X.; Xu, L.; Wu, C.; Dong, M.; et al. Methylation Levels in the Promoter Region of FHIT and PIAS1 Genes Associated with Mastitis Resistance in Xinjiang Brown Cattle. Genes 2023, 14, 1189. https://doi.org/10.3390/genes14061189
Zhong L, Ma S, Wang D, Zhang M, Tian Y, He J, Zhang X, Xu L, Wu C, Dong M, et al. Methylation Levels in the Promoter Region of FHIT and PIAS1 Genes Associated with Mastitis Resistance in Xinjiang Brown Cattle. Genes. 2023; 14(6):1189. https://doi.org/10.3390/genes14061189
Chicago/Turabian StyleZhong, Liwei, Shengchao Ma, Dan Wang, Menghua Zhang, Yuezhen Tian, Junmin He, Xiaoxue Zhang, Lei Xu, Cuiling Wu, Mingming Dong, and et al. 2023. "Methylation Levels in the Promoter Region of FHIT and PIAS1 Genes Associated with Mastitis Resistance in Xinjiang Brown Cattle" Genes 14, no. 6: 1189. https://doi.org/10.3390/genes14061189
APA StyleZhong, L., Ma, S., Wang, D., Zhang, M., Tian, Y., He, J., Zhang, X., Xu, L., Wu, C., Dong, M., Gou, M., Huang, X., & Tian, K. (2023). Methylation Levels in the Promoter Region of FHIT and PIAS1 Genes Associated with Mastitis Resistance in Xinjiang Brown Cattle. Genes, 14(6), 1189. https://doi.org/10.3390/genes14061189