Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Bacteria
2.2. Whole Genome Sequencing, De Novo Assembly, and Functional Annotation
2.3. Comparative, Phylogenetic, and Core Orthologues Analysis
2.4. Functional Annotation of Core Orthologues
2.5. Comparative O-Antigen Gene Cluster (O-AGC) Analysis
3. Results
3.1. Bacterial Identification, and Antibiogram Study
3.2. Genome Sequencing of UM869
3.3. Resistance Genes, Virulence Factors, and Mobile Genetic Elements of UM869
3.4. Comparative Phylogenomic Analysis of M. morganii Strains
3.5. M. morganii Phylogeny and Genetic Diversity
3.6. Identification and Analysis of Orthologues Genes
3.7. Functional Annotation of Core Genomes
3.8. Identification of AMR and Virulence Genes
3.9. Serotype
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adeolu, M.; Alnajar, S.; Naushad, S.; Gupta, R.S. Genome-Based Phylogeny and Taxonomy of the ‘Enterobacteriales’: Proposal for Enterobacterales Ord. Nov. Divided into the Families Enterobacteriaceae, Erwiniaceae Fam. Nov., Pectobacteriaceae Fam. Nov., Yersiniaceae Fam. Nov., Hafniaceae Fam. Nov., Morgane. Int. J. Syst. Evol. Microbiol. 2016, 66, 5575–5599. [Google Scholar] [CrossRef]
- O’Hara, C.M.; Brenner, F.W.; Miller, J.M. Classification, Identification, and Clinical Significance of Proteus, Providencia, and Morganella. Clin. Microbiol. Rev. 2000, 13, 534–546. [Google Scholar] [CrossRef]
- Minnullina, L.; Pudova, D.; Shagimardanova, E.; Shigapova, L.; Sharipova, M.; Mardanova, A. Comparative Genome Analysis of Uropathogenic Morganella Morganii Strains. Front. Cell. Infect. Microbiol. 2019, 9, 167. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, J.; Hu, Q.; Rao, X. Morganella Morganii, a Non-Negligent Opportunistic Pathogen. Int. J. Infect. Dis. 2016, 50, 10–17. [Google Scholar] [CrossRef] [Green Version]
- van Bentum, J.S.; Sijbrandij, M.; Kerkhof, A.J.F.M.; Huisman, A.; Arntz, A.R.; Holmes, E.A.; Franx, G.; Mokkenstorm, J.; Huibers, M.J.H. Treating Repetitive Suicidal Intrusions Using Eye Movements: Study Protocol for a Multicenter Randomized Clinical Trial. BMC Psychiatry 2019, 19, 143. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Pan, F.; Zhu, K. Bilateral Morganella Morganii Keratitis in a Patient with Facial Topical Corticosteroid-Induced Rosacea-like Dermatitis: A Case Report. BMC Ophthalmol. 2017, 17, 106. [Google Scholar] [CrossRef] [Green Version]
- Erlanger, D.; Assous, M.V.; Wiener-Well, Y.; Yinnon, A.M.; Ben-Chetrit, E. Clinical Manifestations, Risk Factors and Prognosis of Patients with Morganella Morganii Sepsis. J. Microbiol. Immunol. Infect. 2019, 52, 443–448. [Google Scholar] [CrossRef]
- van Bentum, R.; Nieken, J.; de Waal, E.; Hoogendoorn, M. Native Aortic Valve Endocarditis with Morganella Morganii in a Patient with Multiple Myeloma and Valvular Amyloidosis: A Case Report. BMC Infect. Dis. 2019, 19, 957. [Google Scholar] [CrossRef] [Green Version]
- Kohlmann, R.; Bähr, T.; Gatermann, S.G. Species-Specific Mutation Rates for AmpC Derepression in Enterobacterales with Chromosomally Encoded Inducible AmpC β-Lactamase. J. Antimicrob. Chemother. 2018, 73, 1530–1536. [Google Scholar] [CrossRef] [Green Version]
- Ryser, L.T.; Arias-Roth, E.; Perreten, V.; Irmler, S.; Bruggmann, R. Genetic and Phenotypic Diversity of Morganella Morganii Isolated From Cheese. Front. Microbiol. 2021, 12, 738492. [Google Scholar] [CrossRef]
- Karaiskos, I.; Giamarellou, H. Multidrug-Resistant and Extensively Drug-Resistant Gram-Negative Pathogens: Current and Emerging Therapeutic Approaches. Expert Opin. Pharmacother. 2014, 15, 1351–1370. [Google Scholar] [CrossRef]
- Luo, X.; Zhai, Y.; He, D.; Cui, X.; Yang, Y.; Yuan, L.; Liu, J.; Hu, G. Molecular Characterization of a Novel Bla CTX-M-3-Carrying Tn6741 Transposon in Morganella Morganii Isolated from Swine. J. Med. Microbiol. 2020, 69, 1089–1094. [Google Scholar] [CrossRef]
- Moura, Q.; Cerdeira, L.; Fernandes, M.R.; Vianello, M.A.; Lincopan, N. Novel Class 1 Integron (In 1390) Harboring Bla GES-5 in a Morganella Morganii Strain Recovered from a Remote Community. Diagn. Microbiol. Infect. Dis. 2018, 91, 345–347. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, C.; Zuo, L.; Kong, L.; Kang, Z.; Zeng, J.; Zhang, X.; Wang, H. A Novel Cfr-Carrying Tn7 Transposon Derivative Characterized in Morganella Morganii of Swine Origin in China. J. Antimicrob. Chemother. 2019, 74, 603–606. [Google Scholar] [CrossRef]
- Xiang, G.; Lan, K.; Cai, Y.; Liao, K.; Zhao, M.; Tao, J.; Ma, Y.; Zeng, J.; Zhang, W.; Wu, Z.; et al. Clinical Molecular and Genomic Epidemiology of Morganella Morganii in China. Front. Microbiol. 2021, 12, 744291. [Google Scholar] [CrossRef]
- Mikheyev, A.S.; Tin, M.M.Y. A First Look at the Oxford Nanopore MinION Sequencer. Mol. Ecol. Resour. 2014, 14, 1097–1102. [Google Scholar] [CrossRef]
- Jain, M.; Olsen, H.E.; Paten, B.; Akeson, M. The Oxford Nanopore MinION: Delivery of Nanopore Sequencing to the Genomics Community. Genome Biol. 2016, 17, 239. [Google Scholar] [CrossRef] [Green Version]
- Quick, J.; Ashton, P.; Calus, S.; Chatt, C.; Gossain, S.; Hawker, J.; Nair, S.; Neal, K.; Nye, K.; Peters, T.; et al. Rapid Draft Sequencing and Real-Time Nanopore Sequencing in a Hospital Outbreak of Salmonella. Genome Biol. 2015, 16, 114. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Standard, Approval CDM-A. In M07 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; p. 91. [Google Scholar]
- Sahoo, R.K.; Subudhi, E.; Kumar, M. Quantitative Approach to Track Lipase Producing Pseudomonas Sp. S1 in Nonsterilized Solid State Fermentation. Lett. Appl. Microbiol. 2014, 58, 610–616. [Google Scholar] [CrossRef]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S Ribosomal DNA Amplification for Phylogenetic Study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Jain, M.; Koren, S.; Miga, K.H.; Quick, J.; Rand, A.C.; Sasani, T.A.; Tyson, J.R.; Beggs, A.D.; Dilthey, A.T.; Fiddes, I.T.; et al. Nanopore Sequencing and Assembly of a Human Genome with Ultra-Long Reads. Nat. Biotechnol. 2018, 36, 338–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, R.R.; Judd, L.M.; Holt, K.E. Performance of Neural Network Basecalling Tools for Oxford Nanopore Sequencing. Genome Biol. 2019, 20, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loman, N.J.; Quinlan, A.R. Poretools: A Toolkit for Analyzing Nanopore Sequence Data. Bioinformatics 2014, 30, 3399–3401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLOS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and Processing Long-Read Sequencing Data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of Long, Error-Prone Reads Using Repeat Graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality Assessment Tool for Genome Assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [Green Version]
- Tatusova, T.; Dicuccio, M.; Badretdin, A.; Chetvernin, V.; Nawrocki, E.P.; Zaslavsky, L.; Lomsadze, A.; Pruitt, K.D.; Borodovsky, M.; Ostell, J. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res. 2016, 44, 6614–6624. [Google Scholar] [CrossRef]
- Siguier, P.; Perochon, J.; Lestrade, L.; Mahillon, J.; Chandler, M. ISfinder: The Reference Centre for Bacterial Insertion Sequences. Nucleic Acids Res. 2006, 34, D32-6. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.; Varani, A.M.; Snesrud, E.; Huang, H.; Alvarenga, D.O.; Zhang, J.; Wu, C.; McGann, P.; Chandlere, M. TnCentral: A Prokaryotic Transposable Element Database and Web Portal for Transposon Analysis. MBio 2021, 12, e0206021. [Google Scholar] [CrossRef]
- Rozwandowicz, M.; Brouwer, M.S.M.; Fischer, J.; Wagenaar, J.A.; Gonzalez-Zorn, B.; Guerra, B.; Mevius, D.J.; Hordijk, J.; Lefebvre, B.; Lévesque, S.; et al. In Silico Detection and Typing of Plasmids Using Plasmidfinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2018, 10, 1–14. [Google Scholar]
- Arndt, D.; Grant, J.R.; Marcu, A.; Sajed, T.; Pon, A.; Liang, Y.; Wishart, D.S. PHASTER: A Better, Faster Version of the PHAST Phage Search Tool. Nucleic Acids Res. 2016, 44, W16–W21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parks, D.H.; Imelfort, M.; Skennerton, C.T.; Hugenholtz, P.; Tyson, G.W. CheckM: Assessing the Quality of Microbial Genomes Recovered from Isolates, Single Cells, and Metagenomes. Genome Res. 2015, 25, 1043–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manni, M.; Berkeley, M.R.; Seppey, M.; Zdobnov, E.M. BUSCO: Assessing Genomic Data Quality and Beyond. Curr. Protoc. 2021, 1, e323. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xin, B.; Zheng, J.; Zhong, H.; Yu, Y.; Peng, D.; Sun, M. Build a Bioinformatic Analysis Platform and Apply It to Routine Analysis of Microbial Genomics and Comparative Genomics. Protoc. Exch. 2022, 4, 88–100. [Google Scholar]
- Warnes, G.R.; Bolker, B.; Bonebakker, L.; Gentleman, R.; Liaw, W.H.A.; Lumley, T.; Maechler, M.; Magnusson, A.; Moeller, S.; Schwartz, M.; et al. Package “Gplots”: Various R Programming Tools for Plotting Data. R Package. Version 2.17.0. 2016, pp. 1–68. Available online: https://rdrr.io/cran/gplots/ (accessed on 5 March 2023).
- Emms, D.M.; Kelly, S. OrthoFinder: Solving Fundamental Biases in Whole Genome Comparisons Dramatically Improves Orthogroup Inference Accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [Green Version]
- Mikita, S.; David, T.; Peer, B. PAL2NAL: Robust Conversion of Protein Sequence Alignments into the Corresponding Codon Alignments. Nucleic Acids Res. 2006, 34, W609–W612. [Google Scholar]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-Sites: Rapid Efficient Extraction of SNPs from Multi-FASTA Alignments. Microb. Genom. 2016, 2, e000056. [Google Scholar] [CrossRef] [Green Version]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; Von Haeseler, A.; Lanfear, R.; Teeling, E. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emms, D.M.; Kelly, S. OrthoFinder: Phylogenetic Orthology Inference for Comparative Genomics. Genome Biol. 2019, 20, 238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tumescheit, C.; Firth, A.E.; Brown, K. CIAlign: A Highly Customisable Command Line Tool to Clean, Interpret and Visualise Multiple Sequence Alignments. PeerJ 2022, 10, e12983. [Google Scholar] [CrossRef]
- Aramaki, T.; Blanc-Mathieu, R.; Endo, H.; Ohkubo, K.; Kanehisa, M.; Goto, S.; Ogata, H. KofamKOALA: KEGG Ortholog Assignment Based on Profile HMM and Adaptive Score Threshold. Bioinformatics 2020, 36, 2251–2252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantalapiedra, C.P.; Hernández-Plaza, A.; Letunic, I.; Bork, P.; Huerta-Cepas, J. EggNOG-Mapper v2: Functional Annotation, Orthology Assignments, and Domain Prediction at the Metagenomic Scale. Mol. Biol. Evol. 2021, 38, 5825–5829. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. EggNOG 5.0: A Hierarchical, Functionally and Phylogenetically Annotated Orthology Resource Based on 5090 Organisms and 2502 Viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef] [Green Version]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef]
- Liu, B.; Zheng, D.; Jin, Q.; Chen, L.; Yang, J. VFDB 2019: A Comparative Pathogenomic Platform with an Interactive Web Interface. Nucleic Acids Res. 2019, 47, D687–D692. [Google Scholar] [CrossRef]
- Liu, B.; Guo, X.; Wang, J.; Wu, P.; Li, S.; Feng, L.; Liu, B.; Wang, L. Development of a Molecular Serotyping Scheme for Morganella Morganii. Front. Microbiol. 2021, 12, 791165. [Google Scholar] [CrossRef]
- Li, W.; Godzik, A. Cd-Hit: A Fast Program for Clustering and Comparing Large Sets of Protein or Nucleotide Sequences. Bioinformatics 2006, 22, 1658–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boratyn, G.M.; Camacho, C.; Cooper, P.S.; Coulouris, G.; Fong, A.; Ma, N.; Madden, T.L.; Matten, W.T.; McGinnis, S.D.; Merezhuk, Y.; et al. BLAST: A More Efficient Report with Usability Improvements. Nucleic Acids Res. 2013, 41, W29–W33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, S.; Roth, J.R. IS200: A Salmonella-Specific Insertion Sequence. Cell 1983, 34, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, N.; Hess, C.; Hess, M.; Alispahic, M. Sequencing of Five Poultry Strains Elucidates Phylogenetic Relationships and Divergence in Virulence Genes in Morganella Morganii. BMC Genom. 2020, 21, 579. [Google Scholar] [CrossRef]
- Sahoo, R.K.; Gaur, M.; Dey, S.; Sahoo, S.; Das, A.; Subudhi, E. Genomic Insight of Extremely Drug-Resistant Klebsiella Pneumoniae ST5378 from a Pediatric Bloodstream Infection. J. Glob. Antimicrob. Resist. 2023, 33, 227–230. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.-K.; Liu, J.-W. Clinical Characteristics and Risk Factors for Mortality in Morganella Morganii Bacteremia. J. Microbiol. Immunol. Infect. 2006, 39, 328–334. [Google Scholar] [PubMed]
- Gebhart-Mueller, E.Y.; Mueller, P.; Nixon, B. Unusual Case of Postoperative Infection Caused by Morganella Morganii. J. Foot Ankle Surg. 1998, 37, 145–147. [Google Scholar] [CrossRef]
- Kim, J.H.; Cho, C.R.; Um, T.H.; Rhu, J.Y.; Kim, E.S.; Jeong, J.W.; Lee, H.R. Morganella Morganii Sepsis with Massive Hemolysis. J. Korean Med. Sci. 2007, 22, 1082. [Google Scholar] [CrossRef] [Green Version]
- Sinha, A.K.; Kempley, S.T.; Price, E.; Sharma, B.K.; Livermore, D.M. Early onset morganella morganii sepsis in a newborn infant with emergence of cephalosporin resistance caused by derepression of ampc?-lactamase production. Pediatr. Infect. Dis. J. 2006, 25, 376–377. [Google Scholar] [CrossRef]
- Falagas, M.E.; Kavvadia, P.K.; Mantadakis, E.; Kofteridis, D.P.; Bliziotis, I.A.; Saloustros, E.; Maraki, S.; Samonis, G. Morganella Morganii Infections in a General Tertiary Hospital. Infection 2006, 34, 315–321. [Google Scholar] [CrossRef]
- Guo, X.; Rao, Y.; Guo, L.; Xu, H.; Lv, T.; Yu, X.; Chen, Y.; Liu, N.; Han, H.; Zheng, B. Detection and Genomic Characterization of a Morganella Morganii Isolate From China That Produces NDM-5. Front. Microbiol. 2019, 10, 1156. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Peng, H.L.; Shia, W.C.; Hsu, F.R.; Ken, C.F.; Tsao, Y.M.; Chen, C.H.; Liu, C.E.; Hsieh, M.F.; Chen, H.C.; et al. Whole-Genome Sequencing and Identification of Morganella Morganii KT Pathogenicity-Related Genes. BMC Genom. 2012, 13 (Suppl. S7), S4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tekaia, F. Inferring Orthologs: Open Questions and Perspectives. Genom. Insights 2016, 9, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Kahlke, T.; Goesmann, A.; Hjerde, E.; Willassen, N.; Haugen, P. Unique Core Genomes of the Bacterial Family Vibrionaceae: Insights into Niche Adaptation and Speciation. BMC Genom. 2012, 13, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drew, D.; North, R.A.; Nagarathinam, K.; Tanabe, M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem. Rev. 2021, 121, 5289–5335. [Google Scholar] [CrossRef] [PubMed]
- Sarathy, J.P.; Dartois, V.; Lee, E.J.D. The Role of Transport Mechanisms in Mycobacterium Tuberculosis Drug Resistance and Tolerance. Pharmaceuticals 2012, 5, 1210–1235. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Zhang, L. The Hierarchy Quorum Sensing Network in Pseudomonas Aeruginosa. Protein Cell 2015, 6, 26–41. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Nikaido, H. Efflux-Mediated Drug Resistance in Bacteria: An Update. Drugs 2009, 69, 1555–1623. [Google Scholar] [CrossRef] [Green Version]
- Soberón-Chávez, G.; Alcaraz, L.D.; Morales, E.; Ponce-Soto, G.Y.; Servín-González, L. The Transcriptional Regulators of the CRP Family Regulate Different Essential Bacterial Functions and Can Be Inherited Vertically and Horizontally. Front. Microbiol. 2017, 8, 959. [Google Scholar] [CrossRef]
- Dashtbani-Roozbehani, A.; Brown, M.H. Efflux Pump Mediated Antimicrobial Resistance by Staphylococci in Health-Related Environments: Challenges and the Quest for Inhibition. Antibiotics 2021, 10, 1502. [Google Scholar] [CrossRef]
- Han, J.; Wang, Y.; Sahin, O.; Shen, Z.; Guo, B.; Shen, J.; Zhang, Q. A Fluoroquinolone Resistance Associated Mutation in GyrA Affects DNA Supercoiling in Campylobacter Jejuni. Front. Cell. Infect. Microbiol. 2012, 2, 21. [Google Scholar] [CrossRef] [Green Version]
- Macheboeuf, P.; Contreras-Martel, C.; Job, V.; Dideberg, O.; Dessen, A. Penicillin Binding Proteins: Key Players in Bacterial Cell Cycle and Drug Resistance Processes. FEMS Microbiol. Rev. 2006, 30, 673–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papp-Wallace, K.M.; Endimiani, A.; Taracila, M.A.; Bonomo, R.A. Carbapenems: Past, Present, and Future. Antimicrob. Agents Chemother. 2011, 55, 4943–4960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zurfluh, K.; Treier, A.; Schmitt, K.; Stephan, R. Mobile Fosfomycin Resistance Genes in Enterobacteriaceae—An Increasing Threat. Microbiologyopen 2020, 9, e1135. [Google Scholar] [CrossRef] [PubMed]
- Tavares-Carreón, F.; Fathy Mohamed, Y.; Andrade, A.; Valvano, M.A. ArnT Proteins That Catalyze the Glycosylation of Lipopolysaccharide Share Common Features with Bacterial N -Oligosaccharyltransferases. Glycobiology 2016, 26, 286–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielubowicz, G.R.; Mobley, H.L.T. Host–Pathogen Interactions in Urinary Tract Infection. Nat. Rev. Urol. 2010, 7, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Coburn, B.; Sekirov, I.; Finlay, B.B. Type III Secretion Systems and Disease. Clin. Microbiol. Rev. 2007, 20, 535–549. [Google Scholar] [CrossRef] [Green Version]
- Nunes, P.H.S.; Valiatti, T.B.; Santos, A.C.M.; Nascimento, J.A.D.S.; Santos-Neto, J.F.; Rocchetti, T.T.; Yu, M.C.Z.; Hofling-Lima, A.L.; Gomes, T.A.T. Evaluation of the Pathogenic Potential of Escherichia Coli Strains Isolated from Eye Infections. Microorganisms 2022, 10, 1084. [Google Scholar] [CrossRef]
- Vandenesch, F.; Lina, G.; Henry, T. Staphylococcus Aureus Hemolysins, Bi-Component Leukocidins, and Cytolytic Peptides: A Redundant Arsenal of Membrane-Damaging Virulence Factors? Front. Cell. Infect. Microbiol. 2012, 2, 12. [Google Scholar] [CrossRef] [Green Version]
- Nikaido, H.; Pagès, J.-M. Broad-Specificity Efflux Pumps and Their Role in Multidrug Resistance of Gram-Negative Bacteria. FEMS Microbiol. Rev. 2012, 36, 340–363. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Z.; Plésiat, P.; Nikaido, H. The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria. Clin. Microbiol. Rev. 2015, 28, 337–418. [Google Scholar] [CrossRef] [Green Version]
- Poole, K. Stress Responses as Determinants of Antimicrobial Resistance in Gram-Negative Bacteria. Trends Microbiol. 2012, 20, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Sadler, M.; Mormile, M.R.; Frank, R.L. Characterization of the IS200/IS605 Insertion Sequence Family in Halanaerobium Hydrogeniformans. Genes 2020, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Morcilla, V.A.; Liu, M.A.; Russell, E.L.M.; Reeves, P.R. Three Wzy Polymerases Are Specific for Particular Forms of an Internal Linkage in Otherwise Identical O Units. Microbiology 2015, 161, 1639–1647. [Google Scholar] [CrossRef] [PubMed]
Core Orthologues | Gene | Drug Class | Resistance Mechanism | AMR Gene Family |
---|---|---|---|---|
OG0000319 | KpnH | Macrolide antibiotic; Fluoroquinolone antibiotic; Aminoglycoside antibiotic; Carbapenem; Cephalosporin; Penam; Peptide antibiotic; Penem | Antibiotic efflux | Major facilitator superfamily (MFS) antibiotic efflux pump |
OG0000873 | PBP3 | Cephalosporin; Cephamycin; Penam | Antibiotic target alteration | Penicillin-binding protein mutations conferring resistance to β-lactam antibiotics |
OG0001323 | qacG | Disinfecting agents and antiseptics | Antibiotic efflux | Small multidrug resistance (SMR) antibiotic efflux pump |
OG0002043 | rsmA | Fluoroquinolone antibiotic; Diaminopyrimidine antibiotic; Phenicol antibiotic | Antibiotic efflux | Resistance-nodulation-cell division (RND) antibiotic efflux pump |
OG0002548 | CRP | Macrolide antibiotic; Fluoroquinolone antibiotic; Penam | Antibiotic efflux | Resistance-nodulation-cell division (RND) antibiotic efflux pump |
OG0002685 | gyrB | Fluoroquinolone antibiotic | Antibiotic target alteration | Fluoroquinolone-resistant gyrB |
Core Orthologues | Virulence Gene | Virulence Factors | VF Class |
---|---|---|---|
OG0000167 | fimD | Type I fimbriae | Adherence |
OG0000540 | |||
OG0001077 | |||
OG0002806 | |||
OG0001650 | cheB | Flagella (Burkholderia) | Autotransporter |
OG0001651 | cheR | ||
OG0001256 | chuS | Heme uptake | Iron uptake |
OG0001254 | chuU | ||
OG0000956 | ireA | Iron-regulated element | |
OG0000280 | sitA | Iron/manganese transport | |
OG0001230 | sitB | ||
OG0001229 | sitC | ||
OG0000279 | sitD | ||
OG0000533 | basG | Acinetobactin (Acinetobacter) | |
OG0002794 | feoA | Ferrous iron transport (Legionella) | |
OG0002449 | hemG | Heme biosynthesis (Hemophilus) | |
OG0001080 | phoQ | PhoPQ (Salmonella) | Regulation |
OG0000220 | spaP | Bsa T3SS (Burkholderia) | Secretion system |
OG0000295 | flhB | Flagella (cluster I) | |
OG0000933 | exsA | T3SS (Aeromonas) | |
OG0000857 | - | T4SS effectors (Coxiella) | |
OG0000142 | invC | TTSS (SPI-1 encode) | |
OG0000221 | ysaS | Ysa TTSS (Yersinia) | |
OG0000109 | ysaV | Ysa TTSS (Yersinia) | |
OG0000422 | hlyA | HemolysinHlyA (Aeromonas) | Toxin |
OG0000833 | farB | FarAB (Neisseria) | Efflux pump |
OG0001671 | htrB | LOS (Hemophilus) | Endotoxin |
OG0002647 | lgtF | ||
OG0002313 | lpxA | ||
OG0000783 | lpxH | ||
OG0001828 | lpxK | ||
OG0002643 | opsX/rfaC | ||
OG0000370 | wecA | ||
OG0001781 | fimC | Fim (Salmonella) | Fimbrial adherence determinants |
OG0001782 | fimD | ||
OG0001783 | fimH | ||
OG0001347 | - | Capsule (Acinetobacter) | Immune evasion |
OG0001468 | mgtB | Mg2+ transport (Salmonella) | Magnesium uptake |
OG0001659 | mgtC | ||
OG0001656 | motA | Flagella (Bordetella) | Motility |
OG0001655 | motB | ||
OG0002110 | - | Cysteine acquisition | |
OG0001526 | msbB2 | MsbB2 (Shigella) | Others |
OG0000371 | - | O-antigen (Yersinia) | |
OG0000253 | galE | ||
OG0000285 | - | LPS rfb locus | Serum resistance |
OG0001161 | katA | Catalase | Stress adaptation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behera, D.U.; Dixit, S.; Gaur, M.; Mishra, R.; Sahoo, R.K.; Sahoo, M.; Behera, B.K.; Subudhi, B.B.; Bharat, S.S.; Subudhi, E. Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes 2023, 14, 1279. https://doi.org/10.3390/genes14061279
Behera DU, Dixit S, Gaur M, Mishra R, Sahoo RK, Sahoo M, Behera BK, Subudhi BB, Bharat SS, Subudhi E. Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes. 2023; 14(6):1279. https://doi.org/10.3390/genes14061279
Chicago/Turabian StyleBehera, Dibyajyoti Uttameswar, Sangita Dixit, Mahendra Gaur, Rukmini Mishra, Rajesh Kumar Sahoo, Maheswata Sahoo, Bijay Kumar Behera, Bharat Bhusan Subudhi, Sutar Suhas Bharat, and Enketeswara Subudhi. 2023. "Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways" Genes 14, no. 6: 1279. https://doi.org/10.3390/genes14061279
APA StyleBehera, D. U., Dixit, S., Gaur, M., Mishra, R., Sahoo, R. K., Sahoo, M., Behera, B. K., Subudhi, B. B., Bharat, S. S., & Subudhi, E. (2023). Sequencing and Characterization of M. morganii Strain UM869: A Comprehensive Comparative Genomic Analysis of Virulence, Antibiotic Resistance, and Functional Pathways. Genes, 14(6), 1279. https://doi.org/10.3390/genes14061279