Progressive Cone-Rod Dystrophy and RPE Dysfunction in Mitfmi/+ Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Mitf Mutation
2.3. Electroretinogram (ERG)
2.4. ERG Data Analysis
2.5. Fundus Photography
2.6. Histology and Measurement of Retinal Layers
2.7. Statistical Analysis
3. Results
3.1. Phenotypic Hallmarks of Progressive CRD in Mitfmi/+
3.2. RPE Response Decreases over Time in Mitfmi/+
3.3. Progressive Loss of Pigmentation in Mitfmi/+ Mice
3.4. Histological Features in Mitfmi/+ Mice
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galvin, O.; Chi, G.; Brady, L.; Hippert, C.; Del Valle Rubido, M.; Daly, A.; Michaelides, M. The Impact of Inherited Retinal Diseases in the Republic of Ireland (ROI) and the United Kingdom (UK) from a Cost-of-Illness Perspective. Clin. Ophthalmol. 2020, 14, 707–719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sergouniotis, P.I. Inherited Retinal Disorders: Using Evidence as a Driver for Implementation. Ophthalmologica 2019, 242, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Richter, T.; Nestler-Parr, S.; Babela, R.; Khan, Z.M.; Tesoro, T.; Molsen, E.; Hughes, D.A. Rare Disease Terminology and Definitions-A Systematic Global Review: Report of the ISPOR Rare Disease Special Interest Group. Value Health 2015, 18, 906–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Hollander, A.I.; Roepman, R.; Koenekoop, R.K.; Cremers, F.P. Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog. Retin. Eye Res. 2008, 27, 391–419. [Google Scholar] [CrossRef]
- Hunt, D.M.; Wilkie, S.E.; Newbold, R.; Deery, E.; Warren, M.J.; Bhattacharya, S.S.; Zhang, K. Dominant cone and cone-rod dystrophies: Functional analysis of mutations in retGC1 and GCAP1. Novartis Found. Symp. 2004, 255, 37–49; discussion 49–50, 177–178. [Google Scholar] [CrossRef]
- Veleri, S.; Lazar, C.H.; Chang, B.; Sieving, P.A.; Banin, E.; Swaroop, A. Biology and therapy of inherited retinal degenerative disease: Insights from mouse models. Dis. Model. Mech. 2015, 8, 109–129. [Google Scholar] [CrossRef] [Green Version]
- Tsang, S.H.; Sharma, T. Progressive Cone Dystrophy and Cone-Rod Dystrophy (XL, AD, and AR). Adv. Exp. Med. Biol. 2018, 1085, 53–60. [Google Scholar] [CrossRef]
- Hamel, C.P. Cone rod dystrophies. Orphanet J. Rare Dis. 2007, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Chiu, W.; Lin, T.Y.; Chang, Y.C.; Isahwan-Ahmad Mulyadi Lai, H.; Lin, S.C.; Ma, C.; Yarmishyn, A.A.; Lin, S.C.; Chang, K.J.; Chou, Y.B.; et al. An Update on Gene Therapy for Inherited Retinal Dystrophy: Experience in Leber Congenital Amaurosis Clinical Trials. Int. J. Mol. Sci. 2021, 22, 4534. [Google Scholar] [CrossRef]
- Beales, P.L.; Elcioglu, N.; Woolf, A.S.; Parker, D.; Flinter, F.A. New criteria for improved diagnosis of Bardet-Biedl syndrome: Results of a population survey. J. Med. Genet. 1999, 36, 437–446. [Google Scholar] [CrossRef]
- Aleman, T.S.; Cideciyan, A.V.; Volpe, N.J.; Stevanin, G.; Brice, A.; Jacobson, S.G. Spinocerebellar ataxia type 7 (SCA7) shows a cone-rod dystrophy phenotype. Exp. Eye Res. 2002, 74, 737–745. [Google Scholar] [CrossRef]
- Gill, J.S.; Georgiou, M.; Kalitzeos, A.; Moore, A.T.; Michaelides, M. Progressive cone and cone-rod dystrophies: Clinical features, molecular genetics and prospects for therapy. Br. J. Ophthalmol. 2019, 103, 711–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manley, A.; Meshkat, B.I.; Jablonski, M.M.; Hollingsworth, T.J. Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023, 13, 271. [Google Scholar] [CrossRef] [PubMed]
- Travis, G.H.; Golczak, M.; Moise, A.R.; Palczewski, K. Diseases caused by defects in the visual cycle: Retinoids as potential therapeutic agents. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 469–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allikmets, R.; Singh, N.; Sun, H.; Shroyer, N.F.; Hutchinson, A.; Chidambaram, A.; Gerrard, B.; Baird, L.; Stauffer, D.; Peiffer, A.; et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nat. Genet. 1997, 15, 236–246. [Google Scholar] [CrossRef]
- Khan, M.; Cremers, F.P.M. ABCA4-Associated Stargardt Disease. Klin. Monbl Augenheilkd. 2020, 237, 267–274. [Google Scholar] [CrossRef]
- Strauss, O. The retinal pigment epithelium in visual function. Physiol. Rev. 2005, 85, 845–881. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Rohrer, B.; Frederick, J.M.; Baehr, W.; Crouch, R.K. Rpe65−/− and Lrat−/− mice: Comparable models of leber congenital amaurosis. Investig. Ophthalmol. Vis. Sci. 2008, 49, 2384–2389. [Google Scholar] [CrossRef] [Green Version]
- Bereta, G.; Kiser, P.D.; Golczak, M.; Sun, W.; Heon, E.; Saperstein, D.A.; Palczewski, K. Impact of retinal disease-associated RPE65 mutations on retinoid isomerization. Biochemistry 2008, 47, 9856–9865. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, Y.; Li, S.; Xiao, X.; Yi, Z.; Jiang, Y.; Li, X.; Jia, X.; Wang, P.; Jin, C.; et al. Clinical and Genetic Analysis of RDH12-Associated Retinopathy in 27 Chinese Families: A Hypomorphic Allele Leads to Cone-Rod Dystrophy. Investig. Ophthalmol. Vis. Sci. 2022, 63, 24. [Google Scholar] [CrossRef]
- Arnheiter, H. The discovery of the microphthalmia locus and its gene, Mitf. Pigment. Cell Melanoma Res. 2010, 23, 729–735. [Google Scholar] [CrossRef] [Green Version]
- Steingrímsson, E.; Tessarollo, L.; Pathak, B.; Hou, L.; Arnheiter, H.; Copeland, N.G.; Jenkins, N.A. Mitf and Tfe3, two members of the Mitf-Tfe family of bHLH-Zip transcription factors, have important but functionally redundant roles in osteoclast development. Proc. Natl. Acad. Sci. USA 2002, 99, 4477–4482. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Llorca, A.; Aspelund, S.G.; Ogmundsdottir, M.H.; Steingrimsson, E.; Eysteinsson, T. The microphthalmia-associated transcription factor (Mitf) gene and its role in regulating eye function. Sci. Rep. 2019, 9, 15386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, M.-T.T.; Arnheiter, H. Signaling and transcriptional regulation in early mammalian eye development: A link between FGF and MITF. Development 2000, 127, 3581–3591. [Google Scholar] [CrossRef] [PubMed]
- Steingrimsson, E.; Copeland, N.G.; Jenkins, N.A. Melanocytes and the microphthalmia transcription factor network. Annu. Rev. Genet. 2004, 38, 365–411. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Li, H.; Chen, Y.; Yang, J.; Chen, H.; Arnheiter, H.; Hou, L. The transcription factor MITF in RPE function and dysfunction. Prog. Retin. Eye Res. 2019, 73, 100766. [Google Scholar] [CrossRef]
- Planque, N.; Raposo, G.; Leconte, L.; Anezo, O.; Martin, P.; Saule, S. Microphthalmia transcription factor induces both retinal pigmented epithelium and neural crest melanocytes from neuroretina cells. J. Biol. Chem. 2004, 279, 41911–41917. [Google Scholar] [CrossRef] [Green Version]
- Read, A.P.; Newton, V.E. Waardenburg syndrome. J. Med. Genet. 1997, 34, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Amiel, J.; Watkin, P.M.; Tassabehji, M.; Read, A.P.; Winter, R.M. Mutation of the MITF gene in albinism-deafness syndrome (Tietz syndrome). Clin. Dysmorphol. 1998, 7, 17–20. [Google Scholar] [CrossRef]
- Smith, S.D.; Kelley, P.M.; Kenyon, J.B.; Hoover, D. Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J. Med. Genet. 2000, 37, 446–448. [Google Scholar] [CrossRef] [Green Version]
- George, A.; Zand, D.J.; Hufnagel, R.B.; Sharma, R.; Sergeev, Y.V.; Legare, J.M.; Rice, G.M.; Scott Schwoerer, J.A.; Rius, M.; Tetri, L.; et al. Biallelic Mutations in MITF Cause Coloboma, Osteopetrosis, Microphthalmia, Macrocephaly, Albinism, and Deafness. Am. J. Hum. Genet. 2016, 99, 1388–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morton, C.C.; Nance, W.E. Newborn hearing screening—A silent revolution. N. Engl. J. Med. 2006, 354, 2151–2164. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, R.P.; Schepens, M.; Thijssen, J.; van Asseldonk, M.; van den Berg, E.; Bridge, J.; Schuuring, E.; Schoenmakers, E.F.P.M.; van Kessel, A.G. Upregulation of the transcription factor TFEB in t(6;11)(p21;q13)-positive renal cell carcinomas due to promoter substitution. Human. Mol. Genet. 2003, 12, 1661–1669. [Google Scholar] [CrossRef]
- Hodgkinson, C.A.; Moore, K.J.; Nakayama, A.; Steingrímsson, E.; Copeland, N.G.; Jenkins, N.A.; Arnheiter, H. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell 1993, 74, 395–404. [Google Scholar] [CrossRef]
- Danielsson, S.B.; Garcia-Llorca, A.; Reynisson, H.; Eysteinsson, T. Mouse microphthalmia-associated transcription factor (Mitf) mutations affect the structure of the retinal vasculature. Acta Ophthalmol. 2022, 100, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Hallsson, J.H.; Favor, J.; Hodgkinson, C.; Glaser, T.; Lamoreux, M.L.; Magnusdottir, R.; Gunnarsson, G.J.; Sweet, H.O.; Copeland, N.G.; Jenkins, N.A.; et al. Genomic, transcriptional and mutational analysis of the mouse microphthalmia locus. Genetics 2000, 155, 291–300. [Google Scholar] [CrossRef] [PubMed]
- Steingrimsson, E.; Moore, K.J.; Lamoreux, M.L.; Ferre-D’Amare, A.R.; Burley, S.K.; Zimring, D.C.; Skow, L.C.; Hodgkinson, C.A.; Arnheiter, H.; Copeland, N.G.; et al. Molecular basis of mouse microphthalmia (mi) mutations helps explain their developmental and phenotypic consequences. Nat. Genet. 1994, 8, 256–263. [Google Scholar] [CrossRef]
- Zimring, D.C.; Lamoreux, M.L.; Millichamp, N.J.; Skow, L.C. Microphthalmia cloudy-eye (mi(ce)): A new murine allele. J. Hered. 1996, 87, 334–338. [Google Scholar] [CrossRef] [Green Version]
- Hemesath, T.J.; Steingrímsson, E.; McGill, G.; Hansen, M.J.; Vaught, J.; Hodgkinson, C.A.; Arnheiter, H.; Copeland, N.G.; Jenkins, N.A.; Fisher, D.E. microphthalmia, A critical factor in melanocyte development, defines a discrete transcription factor family. Genes Dev. 1994, 8, 2770–2780. [Google Scholar] [CrossRef] [Green Version]
- Moore, K.J. Insight into the microphthalmia gene. Trends Genet. 1995, 11, 442–448. [Google Scholar] [CrossRef]
- Hertwig, P. Neue mutationen und koppelungsgruppen bei der hausmaus. Z. Für Indukt. Abstamm.-Und Vererbungslehre 1942, 80, 220–246. [Google Scholar] [CrossRef]
- Grüneberg, H. The relations of microphthalmia and white in the mouse. J. Genet. 1953, 51, 359–362. [Google Scholar] [CrossRef]
- Deol, M.S. The relationship between abnormalities of pigmentation and of the inner ear. Proc. R. Soc. Lond. B Biol. Sci. 1970, 175, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Stechschulte, D.J.; Sharma, R.; Dileepan, K.N.; Simpson, K.M.; Aggarwal, N.; Clancy, J., Jr.; Jilka, R.L. Effect of the mi allele on mast cells, basophils, natural killer cells, and osteoclasts in C57Bl/6J mice. J. Cell Physiol. 1987, 132, 565–570. [Google Scholar] [CrossRef]
- Bell, B.A.; Kaul, C.; Hollyfield, J.G. A protective eye shield for prevention of media opacities during small animal ocular imaging. Exp. Eye Res. 2014, 127, 280–287. [Google Scholar] [CrossRef] [Green Version]
- Peachey, N.S.; Ball, S.L. Electrophysiological analysis of visual function in mutant mice. Doc. Ophthalmol. 2003, 107, 13–36. [Google Scholar] [CrossRef]
- Leinonen, H.; Keksa-Goldsteine, V.; Ragauskas, S.; Kohlmann, P.; Singh, Y.; Savchenko, E.; Puranen, J.; Malm, T.; Kalesnykas, G.; Koistinaho, J.; et al. Retinal Degeneration In A Mouse Model Of CLN5 Disease Is Associated with Compromised Autophagy. Sci. Rep. 2017, 7, 1597. [Google Scholar] [CrossRef] [Green Version]
- Olaisen, B. Distance between lines, a plugin for ImageJ. NIH ImageJ Arch. 2006. [Google Scholar]
- Armstrong, R.A. When to use the Bonferroni correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Nakayama, A.; Nguyen, M.T.; Chen, C.C.; Opdecamp, K.; Hodgkinson, C.A.; Arnheiter, H. Mutations in microphthalmia, the mouse homolog of the human deafness gene MITF, affect neuroepithelial and neural crest-derived melanocytes differently. Mech. Dev. 1998, 70, 155–166. [Google Scholar] [CrossRef]
- Takebayashi, K.; Chida, K.; Tsukamoto, I.; Morii, E.; Munakata, H.; Arnheiter, H.; Kuroki, T.; Kitamura, Y.; Nomura, S. The recessive phenotype displayed by a dominant negative microphthalmia-associated transcription factor mutant is a result of impaired nucleation potential. Mol. Cell Biol. 1996, 16, 1203–1211. [Google Scholar] [CrossRef] [Green Version]
- Perlman, I. The Electroretinogram: ERG. In Webvision: The Organization of the Retina and Visual System; Kolb, H., Fernandez, E., Nelson, R., Eds.; University of Utah Health Sciences Center: Salt Lake City, UT, USA, 1995. [Google Scholar]
- Steinberg, R.H.; Linsenmeier, R.A.; Griff, E.R. Three light-evoked responses of the retinal pigment epithelium. Vis. Res. 1983, 23, 1315–1323. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, R.H.; Schmidt, R.; Brown, K.T. Intracellular responses to light from cat pigment epithelium: Origin of the electroretinogram c-wave. Nature 1970, 227, 728–730. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Peachey, N.S.; Marmorstein, A.D. Light-evoked responses of the mouse retinal pigment epithelium. J. Neurophysiol. 2004, 91, 1134–1142. [Google Scholar] [CrossRef]
- Doring, F.; Derst, C.; Wischmeyer, E.; Karschin, C.; Schneggenburger, R.; Daut, J.; Karschin, A. The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J. Neurosci. 1998, 18, 8625–8636. [Google Scholar] [CrossRef] [Green Version]
- Krapivinsky, G.; Medina, I.; Eng, L.; Krapivinsky, L.; Yang, Y.; Clapham, D.E. A novel inward rectifier K+ channel with unique pore properties. Neuron 1998, 20, 995–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pattnaik, B.R.; Tokarz, S.; Asuma, M.P.; Schroeder, T.; Sharma, A.; Mitchell, J.C.; Edwards, A.O.; Pillers, D.A. Snowflake vitreoretinal degeneration (SVD) mutation R162W provides new insights into Kir7.1 ion channel structure and function. PLoS ONE 2013, 8, e71744. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Pan, A.; Swaminathan, A.; Kumar, G.; Hughes, B.A. Expression and localization of the inwardly rectifying potassium channel Kir7.1 in native bovine retinal pigment epithelium. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3178–3185. [Google Scholar] [CrossRef] [Green Version]
- Shahi, P.K.; Liu, X.; Aul, B.; Moyer, A.; Pattnaik, A.; Denton, J.; Pillers, D.M.; Pattnaik, B.R. Abnormal Electroretinogram after Kir7.1 Channel Suppression Suggests Role in Retinal Electrophysiology. Sci. Rep. 2017, 7, 10651. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Marmorstein, A.D.; Kofuji, P.; Peachey, N.S. Contribution of Kir4.1 to the mouse electroretinogram. Mol. Vis. 2004, 10, 650–654. [Google Scholar]
- Cheli, Y.; Ohanna, M.; Ballotti, R.; Bertolotto, C. Fifteen-year quest for microphthalmia-associated transcription factor target genes. Pigment. Cell Melanoma Res. 2010, 23, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Yavuzer, U.; Keenan, E.; Lowings, P.; Vachtenheim, J.; Currie, G.; Goding, C.R. The Microphthalmia gene product interacts with the retinoblastoma protein in vitro and is a target for deregulation of melanocyte-specific transcription. Oncogene 1995, 10, 123–134. [Google Scholar] [PubMed]
- Samardzija, M.; von Lintig, J.; Tanimoto, N.; Oberhauser, V.; Thiersch, M.; Reme, C.E.; Seeliger, M.; Grimm, C.; Wenzel, A. R91W mutation in Rpe65 leads to milder early-onset retinal dystrophy due to the generation of low levels of 11-cis-retinal. Hum. Mol. Genet. 2008, 17, 281–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Nathans, J. Stargardt’s ABCR is localized to the disc membrane of retinal rod outer segments. Nat. Genet. 1997, 17, 15–16. [Google Scholar] [CrossRef] [PubMed]
- Birnbach, C.D.; Jarvelainen, M.; Possin, D.E.; Milam, A.H. Histopathology and immunocytochemistry of the neurosensory retina in fundus flavimaculatus. Ophthalmology 1994, 101, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Eagle, R.C., Jr.; Lucier, A.C.; Bernardino, V.B., Jr.; Yanoff, M. Retinal pigment epithelial abnormalities in fundus flavimaculatus: A light and electron microscopic study. Ophthalmology 1980, 87, 1189–1200. [Google Scholar] [CrossRef]
- Weng, J.; Mata, N.L.; Azarian, S.M.; Tzekov, R.T.; Birch, D.G.; Travis, G.H. Insights into the function of Rim protein in photoreceptors and etiology of Stargardt’s disease from the phenotype in abcr knockout mice. Cell 1999, 98, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Brauers, A.; Schurmann, A.; Massmann, S.; Muhl-Zurbes, P.; Becker, W.; Kainulainen, H.; Lie, C.; Joost, H.G. Alternative mRNA splicing of the novel GTPase Rab28 generates isoforms with different C-termini. Eur. J. Biochem. 1996, 237, 833–840. [Google Scholar] [CrossRef]
- Lee, S.H.; Baek, K.; Dominguez, R. Large nucleotide-dependent conformational change in Rab28. FEBS Lett. 2008, 582, 4107–4111. [Google Scholar] [CrossRef] [Green Version]
- Ying, G.; Boldt, K.; Ueffing, M.; Gerstner, C.D.; Frederick, J.M.; Baehr, W. The small GTPase RAB28 is required for phagocytosis of cone outer segments by the murine retinal pigmented epithelium. J. Biol. Chem. 2018, 293, 17546–17558. [Google Scholar] [CrossRef] [Green Version]
Symbol | Mode of Induction | Phenotype | DNA Lesion | Effects on the Protein Level | |
---|---|---|---|---|---|
Heterozygote | Homozygote | ||||
Mitfmi | X-irradiation | Less iris pigment than wild type; spots on belly, head, and tail | White coat, eyes small and red; deficiency of mast cells, basophils, and natural killer cells; spinal ganglia, adrenal medulla, and dermis smaller than in normal; incisors fail to erupt, osteopetrosis; inner ear defects | 3 bp deletion in basic domain | Unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Llorca, A.; Ólafsson, K.H.; Sigurdsson, A.T.; Eysteinsson, T. Progressive Cone-Rod Dystrophy and RPE Dysfunction in Mitfmi/+ Mice. Genes 2023, 14, 1458. https://doi.org/10.3390/genes14071458
García-Llorca A, Ólafsson KH, Sigurdsson AT, Eysteinsson T. Progressive Cone-Rod Dystrophy and RPE Dysfunction in Mitfmi/+ Mice. Genes. 2023; 14(7):1458. https://doi.org/10.3390/genes14071458
Chicago/Turabian StyleGarcía-Llorca, Andrea, Knútur Haukstein Ólafsson, Arnór Thorri Sigurdsson, and Thor Eysteinsson. 2023. "Progressive Cone-Rod Dystrophy and RPE Dysfunction in Mitfmi/+ Mice" Genes 14, no. 7: 1458. https://doi.org/10.3390/genes14071458
APA StyleGarcía-Llorca, A., Ólafsson, K. H., Sigurdsson, A. T., & Eysteinsson, T. (2023). Progressive Cone-Rod Dystrophy and RPE Dysfunction in Mitfmi/+ Mice. Genes, 14(7), 1458. https://doi.org/10.3390/genes14071458