The Genetic Diversity of Stallions of Different Breeds in Russia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. DNA Extraction
2.3. Genotyping DNA Samples
2.4. Statistical Analysis and Visualisation
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Librado, P.; Fages, A.; Gaunitz, C.; Leonardi, M.; Wagner, S.; Khan, N.; Hanghøj, K.; Alquraishi, S.A.; Alfarhan, A.H.; Al-Rasheid, K.A.; et al. The Evolutionary Origin and Genetic Makeup of Domestic Horses. Genetics 2016, 204, 423–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noskova, M.V.; Arkhilaeva, M.S. Economic Problems and Prospects for the Development of Horse Breeding in Russia. Bull. Altai State Agrar. Univ. 2009, 12, 98–103. [Google Scholar]
- Yun, J.; Oyungerel, B.; Kong, H.S. Genetic Diversity and Population Structure of Mongolian Regional Horses with 14 Microsatellite Markers. Anim. Biosci. 2022, 35, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Luttman, A.M.; Komine, M.; Thaiwong, T.; Carpenter, T.; Ewart, S.L.; Kiupel, M.; Langohr, I.M.; Venta, P.J. Development of a 17-Plex of Penta- and Tetra-Nucleotide Microsatellites for DNA Profiling and Paternity Testing in Horses. Front. Vet. Sci. 2022, 9, 861623. [Google Scholar] [CrossRef] [PubMed]
- Petersen, J.L.; Mickelson, J.R.; Cothran, E.G.; Andersson, L.S.; Axelsson, J.; Bailey, E.; Bannasch, D.; Binns, M.M.; Borges, A.S.; Brama, P.; et al. Genetic Diversity in the Modern Horse Illustrated from Genome-Wide SNP Data. PLoS ONE 2013, 8, e54997V. [Google Scholar] [CrossRef] [Green Version]
- Rosengren, M.K.; Sigurðardóttir, H.; Eriksson, S.; Naboulsi, R.; Jouni, A.; Novoa-Bravo, M.; Albertsdóttir, E.; Kristjánsson, Þ.; Rhodin, M.; Viklund, Å.; et al. A QTL for Conformation of Back and Croup Influences Lateral Gait Quality in Icelandic Horses. BMC Genom. 2021, 22, 267. [Google Scholar] [CrossRef]
- Nikitkina, E.V.; Dementieva, N.V.; Shcherbakov, Y.S.; Atroshchenko, M.M.; Kudinov, A.A.; Samoylov, O.I.; Pozovnikova, M.V.; Dysin, A.P.; Krutikova, A.A.; Musidray, A.A.; et al. Genome-Wide Association Study for Frozen-Thawed Sperm Motility in Stallions across Various Horse Breeds. Anim. Biosci. 2022, 35, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Drabbe, A.; Janssens, S.; Blott, S.; Ducro, B.J.; Fontanel, M.; Francois, L.; Schurink, A.; Stinckens, A.; Lindgren, G.; Van Mol, B.; et al. Genome-Wide Association Analyses of Osteochondrosis in Belgian Warmbloods Reveal Candidate Genes Associated With Chondrocyte Development. J. Equine Vet. Sci. 2022, 111, 103870. [Google Scholar] [CrossRef] [PubMed]
- Laseca, N.; Demyda-Peyrás, S.; Valera, M.; Ramón, M.; Escribano, B.; Perdomo-González, D.I.; Molina, A. A Genome-Wide Association Study of Mare Fertility in the Pura Raza Español Horse. Animal 2022, 16, 100476. [Google Scholar] [CrossRef]
- Affolter, V.K.; Dalley, B.; Kass, P.H.; Brown, E.A.; Sonder, C.; Bannasch, D.L. Chronic Progressive Lymphoedema in Friesian Horses: Suggestive Phenotype of Affected Horses and Genome-Wide Association Study. Vet. Derm. 2020, 31, 234-e51. [Google Scholar] [CrossRef]
- Solé, M.; Ablondi, M.; Binzer-Panchal, A.; Velie, B.D.; Hollfelder, N.; Buys, N.; Ducro, B.J.; François, L.; Janssens, S.; Schurink, A.; et al. Inter- and Intra-Breed Genome-Wide Copy Number Diversity in a Large Cohort of European Equine Breeds. BMC Genom. 2019, 20, 759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grilz-Seger, G.; Druml, T.; Neuditschko, M.; Dobretsberger, M.; Horna, M.; Brem, G. High-Resolution Population Structure and Runs of Homozygosity Reveal the Genetic Architecture of Complex Traits in the Lipizzan Horse. BMC Genom. 2019, 20, 174. [Google Scholar] [CrossRef] [Green Version]
- Bizarria dos Santos, W.; Pimenta Schettini, G.; Fonseca, M.G.; Pereira, G.L.; Loyola Chardulo, L.A.; Rodrigues Machado Neto, O.; Baldassini, W.A.; Nunes de Oliveira, H.; Abdallah Curi, R. Fine-Scale Estimation of Inbreeding Rates, Runs of Homozygosity and Genome-Wide Heterozygosity Levels in the Mangalarga Marchador Horse Breed. J. Anim. Breed. Genet. 2021, 138, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.B.; Schettini, G.P.; Maiorano, A.M.; Bussiman, F.O.; Balieiro, J.C.C.; Ferraz, G.C.; Pereira, G.L.; Baldassini, W.A.; Neto, O.R.M.; Oliveira, H.N.; et al. Genome-Wide Scans for Signatures of Selection in Mangalarga Marchador Horses Using High-Throughput SNP Genotyping. BMC Genom. 2021, 22, 737. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.C.; Chow, C.C.; Tellier, L.; Vattikuti, S.; Purcell, S.M.; Lee, J.J. Second-Generation PLINK: Rising to the Challenge of Larger and Richer Datasets. Gigascience 2015, 4, 7. [Google Scholar] [CrossRef]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast Model-Based Estimation of Ancestryin Unrelated Individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Francis, R.M. Pophelper: An R Package and Web App to Analyse and Visualize Population Structure. Mol. Ecol. Resour. 2017, 17, 27–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data Quality Control in Genetic Case-Control Association Studies. Nat. Protoc. 2010, 5, 1564–1573. [Google Scholar] [CrossRef] [Green Version]
- Biscarini, F.; Cozzi, P.; Gaspa, G.; Marras, G. detectRUNS: An R package to detect runs of homozygosity and heterozygosity in diploid genomes. R Package Version 0.9.6. 2019. Available online: https://cran.r-project.org/web/packages/detectRUNS/vignettes/detectRUNS.vignette.html (accessed on 18 June 2023).
- Hamann, H.; Distl, O. Genetic Variability in Hanoverian Warmblood Horses Using Pedigree Analysis. J. Anim. Sci. 2008, 86, 1503–1513. [Google Scholar] [CrossRef] [Green Version]
- Mucha, S.; Windig, J.J. Effects of Incomplete Pedigree on Genetic Management of the Dutch Landrace Goat. J. Anim. Breed. Genet. 2009, 126, 250–256. [Google Scholar] [CrossRef]
- Abdelmanova, A.S.; Dotsev, A.V.; Romanov, M.N.; Stanishevskaya, O.I.; Gladyr, E.A.; Rodionov, A.N.; Vetokh, A.N.; Volkova, N.A.; Fedorova, E.S.; Gusev, I.V.; et al. Unveiling Comparative Genomic Trajectories of Selection and Key Candidate Genes in Egg-Type Russian White and Meat-Type white Cornish Chickens. Biology 2021, 10, 876. [Google Scholar] [CrossRef] [PubMed]
- Salek Ardestani, S.; Zandi, M.B.; Vahedi, S.M.; Janssens, S. Population Structure And Genomic Footprints Of Selection In Five Major Iranian Horse Breeds. Anim Genet. 2022, 53, 627–639. [Google Scholar] [CrossRef]
- Cosgrove, E.J.; Sadeghi, R.; Schlamp, F.; Holl, H.M.; Moradi-Shahrbabak, M.; Miraei-Ashtiani, S.R.; Abdalla, S.; Shykind, B.; Troedsson, M.; Stefaniuk-Szmukier, M.; et al. Genome Diversity and the Origin of the Arabian Horse. Sci. Rep. 2020, 10, 9702. [Google Scholar] [CrossRef] [PubMed]
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of Homozygosity: Current Knowledge and Applications in Livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef] [PubMed]
- Cendron, F.; Perini, F.; Mastrangelo, S.; Tolone, M.; Criscione, A.; Bordonaro, S.; Iaffaldano, N.; Castellini, C.; Marzoni, M.; Buccioni, A.; et al. Genome-Wide Snp Analysis Reveals the Population Structure and the Conservation Status of 23 Italian Chicken Breeds. Animals 2020, 10, 1441. [Google Scholar] [CrossRef]
- Esdaile, E.; Avila, F.; Bellone, R.R. Analysis of Genetic Diversity in the American Standardbred Horse Utilizing Short Tandem Repeats and Single Nucleotide Polymorphisms. J. Hered. 2022, 113, 238–247. [Google Scholar] [CrossRef]
- Knorr, F. A History of the Arabian Horse and Its Influence on Modern Breeds. J. Hered. 1912, 3, 174–180. [Google Scholar] [CrossRef]
- Nolte, W.; Thaller, G.; Kuehn, C. Selection Signatures in Four German Warmblood Horse Breeds: Tracing Breeding History in the Modern Sport Horse. PLoS ONE 2019, 14, e0215913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, S.; Dubin, A.E.; Zhang, Y.; Mousavi, S.A.R.; Wang, Y.; Coombs, A.M.; Loud, M.; Andolfo, I.; Patapoutian, A. A Role of PIEZO1 in Iron Metabolism in Mice and Humans. Cell 2021, 184, 969–982.e13. [Google Scholar] [CrossRef]
- Wang, L.; You, X.; Lotinun, S.; Zhang, L.; Wu, N.; Zou, W. Mechanical Sensing Protein PIEZO1 Regulates Bone Homeostasis via Osteoblast-Osteoclast Crosstalk. Nat. Commun. 2020, 11, 282. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Li, J.; Guo, Y.; Zhang, L.; Xu, L.; Gao, X.; Zhu, B.; Gao, H.; Ni, H.; Chen, Y. Multi-Strategy Genome-Wide Association Studies Identify the DCAF16-NCAPG Region as a Susceptibility Locus for Average Daily Gain in Cattle. Sci. Rep. 2016, 6, 38073. [Google Scholar] [CrossRef] [PubMed]
- Szmatoła, T.; Gurgul, A.; Jasielczuk, I.; Oclon, E.; Ropka-Molik, K.; Stefaniuk-Szmukier, M.; Polak, G.; Tomczyk-Wrona, I.; Bugno-Poniewierska, M. Assessment and Distribution of Runs of Homozygosity in Horse Breeds Representing Different Utility Types. Animals 2022, 12, 3293. [Google Scholar] [CrossRef] [PubMed]
- Legrand, R.; Tiret, L.; Abitbol, M. Two Recessive Mutations in FGF5 Are Associated with the Long-Hair Phenotype in Donkeys. Genet. Sel. Evol. 2014, 46, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haythorn, A.; Young, M.; Stanton, J.; Zhang, J.; Mueller, P.O.E.; Halper, J. Differential Gene Expression in Skin RNA of Horses Affected with Degenerative Suspensory Ligament Desmitis. J. Orthop. Surg. Res. 2020, 15, 460. [Google Scholar] [CrossRef] [PubMed]
- Bao, Q.; Ma, X.; Jia, C.; Wu, X.; Wu, Y.; Meng, G.; Bao, P.; Chu, M.; Guo, X.; Liang, C.; et al. Resequencing and Signatures of Selective Scans Point to Candidate Genetic Variants for Hair Length Traits in Long-Haired and Normal-Haired Tianzhu White Yak. Front. Genet. 2022, 13, 798076. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, I.; Spillner, C.; Kehlenbach, R.H. The Nucleoporin-like Protein NLP1 (HCG1) Promotes CRM1-Dependent Nuclear Protein Export. J. Cell Sci. 2012, 125, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.K.; Son, Y.; Saha, A.; Kim, D.; Choi, C.; Kim, M.; Park, J.-H.; Im, H.; Han, J.; Kim, K.; et al. STK3/STK4 Signalling in Adipocytes Regulates Mitophagy and Energy Expenditure. Nat. Metab. 2021, 3, 428–441. [Google Scholar] [CrossRef]
- Ostrowski, K.; Rohde, T.; Asp, S.; Schjerling, P.; Klarlund Pedersen, B. Chemokines Are Elevated in Plasma after Strenuous Exercise in Humans. Eur. J. Appl. Physiol. 2001, 84, 244–245. [Google Scholar] [CrossRef]
- Capomaccio, S.; Cappelli, K.; Spinsanti, G.; Mencarelli, M.; Muscettola, M.; Felicetti, M.; Supplizi, A.; Bonifazi, M. Athletic Humans and Horses: Comparative Analysis of Interleukin-6 (IL-6) and IL-6 Receptor (IL-6R) Expression in Peripheral Blood Mononuclear Cells in Trained and Untrained Subjects at Rest. BMC Physiol. 2011, 11, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, S.; Kahali, B. Exome-Wide Analysis Reveals Role of LRP1 and Additional Novel Loci in Cognition. Hum. Genet. Genom. Adv. 2023, 4, 100208. [Google Scholar] [CrossRef] [PubMed]
- Meech, R.; Gonzalez, K.N.; Barro, M.; Gromova, A.; Zhuang, L.; Hulin, J.-A.; Makarenkova, H.P. Barx2 Is Expressed in Satellite Cells and Is Required for Normal Muscle Growth and Regeneration. Stem Cells 2012, 30, 253–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanioku, T.; Nishibata, M.; Tokinaga, Y.; Konno, K.; Watanabe, M.; Hemmi, H.; Fukuda-Ohta, Y.; Kaisho, T.; Furue, H.; Kawamata, T. Tmem45b Is Essential for Inflammation- and Tissue Injury–Induced Mechanical Pain Hypersensitivity. Proc. Natl. Acad. Sci. USA 2022, 119, e2121989119. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhu, B.; Tang, X.; Chen, B.; Liu, M.; Gao, N.; Li, S.; Gu, J. Genome-Wide Assessment of Runs of Homozygosity by Whole-Genome Sequencing in Diverse Horse Breeds Worldwide. Genes 2023, 14, 1211. [Google Scholar] [CrossRef] [PubMed]
- McGivney, B.A.; Hernandez, B.; Katz, L.M.; MacHugh, D.E.; McGovern, S.P.; Parnell, A.C.; Wiencko, H.L.; Hill, E.W. A Genomic Prediction Model for Racecourse Starts in the Thoroughbred Horse. Anim. Genet. 2019, 50, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Grilz-Seger, G.; Neuditschko, M.; Ricard, A.; Velie, B.; Lindgren, G.; Mesarič, M.; Cotman, M.; Horna, M.; Dobretsberger, M.; Brem, G.; et al. Genome-Wide Homozygosity Patterns and Evidence for Selection in a Set of European and Near Eastern Horse Breeds. Genes 2019, 10, 491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babaev, O.; Cruces-Solis, H.; Piletti Chatain, C.; Hammer, M.; Wenger, S.; Ali, H.; Karalis, N.; de Hoz, L.; Schlüter, O.M.; Yanagawa, Y.; et al. IgSF9b Regulates Anxiety Behaviors through Effects on Centromedial Amygdala Inhibitory Synapses. Nat. Commun. 2018, 9, 5400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witkowski, M.; Duliban, M.; Rak, A.; Profaska-Szymik, M.; Gurgul, A.; Arent, Z.J.; Galuszka, A.; Kotula-Balak, M. Next-Generation Sequencing Analysis Discloses Genes Implicated in Equine Endometrosis That May Lead to Tumorigenesis. Theriogenology 2022, 189, 158–166. [Google Scholar] [CrossRef]
- Alpoim-Moreira, J.; Fernandes, C.; Rebordão, M.R.; Amaral, A.; Pinto-Bravo, P.; Bliebernicht, M.; Skarzynski, D.J.; Ferreira-Dias, G. Collagens and DNA Methyltransferases in Mare Endometrosis. Reprod. Domest. Anim. 2019, 54, 46–52. [Google Scholar] [CrossRef] [Green Version]
- Deutschman, E.; Ward, J.R.; Kumar, A.; Ray, G.; Welch, N.; Lemieux, M.E.; Dasarathy, S.; Longworth, M.S. Condensin II Protein Dysfunction Impacts Mitochondrial Respiration and Stress Response. J. Cell Sci. 2019, 132, jcs233783. [Google Scholar] [CrossRef] [Green Version]
- Momen, M.; Brounts, S.H.; Binversie, E.E.; Sample, S.J.; Rosa, G.J.M.; Davis, B.W.; Muir, P. Selection Signature Analyses and Genome-Wide Association Reveal Genomic Hotspot Regions That Reflect Differences between Breeds of Horse with Contrasting Risk of Degenerative Suspensory Ligament Desmitis. G3 Genes Genomes Genet. 2022, 12, jkac179. [Google Scholar] [CrossRef]
- Li, H.; Xu, S.; Gao, X.; Ren, H. Structure of the Bovine ACAD8 Gene and the Association of Its Polymorphism with the Production Traits. J. Genet. Genom. 2007, 34, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Shen, S.; Yang, J.; Yao, D.; Li, M.; Mao, C.; Wang, Y.; Hao, X.; Ma, D.; Li, J.; et al. Repeat Expansion Is Associated with Movement Disorders. Ann. Neurol. 2022, 91, 704–715. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, D.; Cao, G.; Shi, Q.; Zhu, J.; Zhang, M.; Cheng, H.; Wen, Q.; Xu, H.; Zhu, L.; et al. IL-27 Signalling Promotes Adipocyte Thermogenesis and Energy Expenditure. Nature 2021, 600, 314–318. [Google Scholar] [CrossRef] [PubMed]
- Calvez, J.; Ávila, C.; Timofeeva, E. Sex-specific Effects of Relaxin-3 on Food Intake and Body Weight Gain. Br. J. Pharmacol. 2017, 174, 1049–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bundgaard, L.; Åhrman, E.; Malmström, J.; auf dem Keller, U.; Walters, M.; Jacobsen, S. Effective Protein Extraction Combined with Data Independent Acquisition Analysis Reveals a Comprehensive and Quantifiable Insight into the Proteomes of Articular Cartilage and Subchondral Bone. Osteoarthr. Cartil. 2022, 30, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Humphries, F.; Delagic, N.; Wang, B.; Holland, A.; Edgar, K.S.; Hombrebueno, J.R.; Stolz, D.B.; Oleszycka, E.; Rodgers, A.M.; et al. ECSIT Is a Critical Limiting Factor for Cardiac Function. JCI Insight 2021, 6, e142801. [Google Scholar] [CrossRef] [PubMed]
- Teng, Z.; Zhu, Y.; Lin, D.; Hao, Q.; Yue, Q.; Yu, X.; Sun, S.; Jiang, L.; Lu, S. Deciphering the Chromatin Spatial Organization Landscapes during BMMSC Differentiation. J. Genet. Genom. 2023, 50, 264–275. [Google Scholar] [CrossRef]
- Bisom, T.C.; White, L.A.; Lanchy, J.-M.; Lodmell, J.S. RIOK3 and Its Alternatively Spliced Isoform Have Disparate Roles in the Innate Immune Response to Rift Valley Fever Virus (MP12) Infection. Viruses 2022, 14, 2064. [Google Scholar] [CrossRef]
- Grilz-Seger, G.; Druml, T.; Neuditschko, M.; Mesarič, M.; Cotman, M.; Brem, G. Analysis of ROH Patterns in the Noriker Horse Breed Reveals Signatures of Selection for Coat Color and Body Size. Anim. Genet. 2019, 50, 334–346. [Google Scholar] [CrossRef]
- Huang, H.; Li, C.; Ma, W.; Yin, S.; Zhao, H.; Deng, S.; Shu, X.; Wu, D.; Li, J.; Huang, R.; et al. Sorting Nexin 11 Knockout Mice Exhibit Enhanced Thermosensing Behaviour. Genes Brain Behav. 2020, 19, e12625. [Google Scholar] [CrossRef] [Green Version]
- Ren, S.; Bian, Y.; Hou, Y.; Wang, Z.; Zuo, Z.; Liu, Z.; Teng, Y.; Fu, J.; Wang, H.; Xu, Y.; et al. The Roles of NFE2L1 in Adipocytes: Structural and Mechanistic Insight from Cell and Mouse Models. Redox. Biol. 2021, 44, 102015. [Google Scholar] [CrossRef] [PubMed]
- Kuroda, Y.; Iwata-Otsubo, A.; Dias, K.-R.; Temple, S.E.L.; Nagao, K.; De Hayr, L.; Zhu, Y.; Isobe, S.-Y.; Nishibuchi, G.; Fiordaliso, S.K.; et al. Dominant-Negative Variants in CBX1 Cause a Neurodevelopmental Disorder. Genet. Med. 2023, 25, 100861. [Google Scholar] [CrossRef] [PubMed]
- Hunyady, Á.; Hajna, Z.; Gubányi, T.; Scheich, B.; Kemény, Á.; Gaszner, B.; Borbély, É.; Helyes, Z. Hemokinin-1 Is an Important Mediator of Pain in Mouse Models of Neuropathic and Inflammatory Mechanisms. Brain Res. Bull. 2019, 147, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Jing, X.; Guo, J.; Yao, X.; Guo, F. Mitophagy in Degenerative Joint Diseases. Autophagy 2021, 17, 2082–2092. [Google Scholar] [CrossRef]
- Han, H.; McGivney, B.A.; Allen, L.; Bai, D.; Corduff, L.R.; Davaakhuu, G.; Davaasambuu, J.; Dorjgotov, D.; Hall, T.J.; Hemmings, A.J.; et al. Common Protein-Coding Variants Influence the Racing Phenotype in Galloping Racehorse Breeds. Commun. Biol. 2022, 5, 1320. [Google Scholar] [CrossRef]
- Wu, C.; Tan, S.; Liu, L.; Cheng, S.; Li, P.; Li, W.; Liu, H.; Zhang, F.; Wang, S.; Ning, Y.; et al. Transcriptome-Wide Association Study Identifies Susceptibility Genes for Rheumatoid Arthritis. Arthritis Res. Ther. 2021, 23, 38. [Google Scholar] [CrossRef] [PubMed]
- Catomeris, A.J.; Ballios, B.G.; Sangermano, R.; Wagner, N.E.; Comander, J.I.; Pierce, E.A.; Place, E.M.; Bujakowska, K.M.; Huckfeldt, R.M. Novel RCBTB1 Variants Causing Later-Onset Non-Syndromic Retinal Dystrophy with Macular Chorioretinal Atrophy. Ophthalmic Genet. 2022, 43, 332–339. [Google Scholar] [CrossRef]
- Aomine, Y.; Sakurai, K.; Macpherson, T.; Ozawa, T.; Miyamoto, Y.; Yoneda, Y.; Oka, M.; Hikida, T. Importin A3 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice. Front. Neurosci. 2022, 16, 905991. [Google Scholar] [CrossRef] [PubMed]
- Brunner, S.M.; Schrödl, F.; Preishuber-Pflügl, J.; Runge, C.; Koller, A.; Lenzhofer, M.; Reitsamer, H.A.; Trost, A. Distribution of the Cysteinyl Leukotriene System Components in the Human, Rat and Mouse Eye. Exp. Eye Res. 2023, 232, 109517. [Google Scholar] [CrossRef]
- Kane, M.; Mele, V.; Liberatore, R.A.; Bieniasz, P.D. Inhibition of Spumavirus Gene Expression by PHF11. PLoS Pathog. 2020, 16, e1008644. [Google Scholar] [CrossRef] [PubMed]
- Rostampour, N.; Appelt, C.M.; Abid, A.; Boughner, J.C. Expression of New Genes in Vertebrate Tooth Development and P63 Signaling. Dev. Dyn. 2019, 248, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Cisneros-Larios, B.; Elias, C.F. Sex Differences in the Coexpression of Prokineticin Receptor 2 and Gonadal Steroids Receptors in Mice. Front. Neuroanat. 2023, 16, 1057727. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Mayer, J.; Perez-Millan, M.I. Phenotypic and Genotypic Landscape of PROKR2 in Neuroendocrine Disorders. Front. Endocrinol. 2023, 14, 1132787. [Google Scholar] [CrossRef] [PubMed]
Breed | Number of Samples | Observed Heterozygosity O (hom) | Expected Heterozygosity E (hom) |
---|---|---|---|
Arabian (AR) | 30 | 0.293 ± 0.003 | 0.290 ± 0.000 |
Trakehner (TR) | 6 | 0.351 ± 0.007 | 0.336 ± 0.000 |
French Trotter (FR) | 7 | 0.375 ± 0.007 | 0.344 ± 0.000 |
American Standardbred (AMST) | 6 | 0.375 ± 0.006 | 0.346 ± 0.000 |
Soviet Heavy Draft (SH) | 11 | 0.324 ± 0.006 | 0.313 ± 0.000 |
ECA | Region (Mb) | Breed | Genes |
---|---|---|---|
3 | 36.02 … 36.03 | SH | PIEZO1, CTU2, CDT1, APRT, GALNS |
57.96 … 57.97 | AMST | FGF5, PRDM8, CFAP299, ANTXR2, GK2 | |
106.22 … 107.84 | SH | NCSPG, DCAF16, FAM184B, LAP3, QDPR, CLRN2 | |
4 | 20.22 … 20.23 | AMST | IKZF1, FIGNL1, DDC |
54.16 … 55.71 | AMST | IL6, TOMM7, FAM126A, KLHL7, NUP42, GPNMB, MALSU1, IGF2BP3, TRA2A, CCDC126, FAM221A, STK31 | |
71.23 … 71.73 | AMST | PPP1R3A, FOXP2 | |
93.10 … 93.92 | AMST | HIPK2, TBXAS1, PARP12, KDM7A, SLC37A3, RAB19, MKRN1, DENND2A, ADCK2, BRAF | |
5 | 55.16 … 56.17 | TR | GNAI3, GPR61, AMIGO1, ATXN7L2, SYPL2 |
7 | 39.15 … 51.80 | AMST, FR | BARX2, TMEM45B, NFRKB, PRDM10, APLP2, ST14, ZBTB44, ADAMTS8, ADAMTS15, SNX19, NTM, OPCML, SPATA19, IGSF9B, JAM3, NCAPD3, ACAD8, THYN1, GLB1L2, B3GAT1, ADGRE3, CLEC17A, NDUFB17, TECR, DNAJB1, GIPC1, PTGER1, PKN1, DDX39A, ADGRE5, ASF1B, PRKACA, C7H19orf67, PALM3, IL27RA, RLN3, DCAF15, RFX1, PODNL1, CC2D1A, BRME1, NANOS3, ZSWIM4, C7H19orf53, MRI1, YJU2B, CACNA1A, IER2,STX10, NACC1, TRMIT1, LYL1, NFIX, DAND5, GADD45GIP1, RAD23A, CALR, FARSA, GCDH, KLF1, DNASE2, MAST1, RTBDN, RNASEH2A, PRDX2, THSD8, JUNB, HOOK2, BEST2, GET3, TRIR, TNPO2, FBXW9, GNG14, DHPS, WDR83, WDR83OS, MAN2B1, ZNF791, ACP5, ELOF1, CNN1, ECSIT, ZNF653, ELAVL3, PRKCSH, RGL3, EPOR, SWSAP1, PLPPR2, TMEM205, CCDC159, RAB3D, TSPAN16, ANGPTL8, DOCK6, KANK2, SPC24, LDLR, SMARCA4, TIMM29, YIPF2, CARM1, C7H19orf38, TMED1, DNM2, QTRT1, ILF3, SLC44A2, AP1M2, CDKN2D, KRI1, ATG4D, S1PR5, KEAP1, PDE4A, CDC37, TYK2, ICAM3, RAVER1, ICAM5, ICAM4, ICAM1, MRPL4, S1PR2, DNMT1, EIF3G, P2RY11, ANGPTL6, SHFL, RDH8, OLFM2, PIN1, UBL5, FBXL12 |
8 | 41.62 … 41.63 | AMST, FR | TMEM241, RIOK3, RBBP8 |
11 | 24.14 … 25.76 | SH | SP2, PNPO, PRR15L, CDK5RAP3, COPZ2, NFE2L1, CBX1, SNX11, SKAP1, HOXB1, HOXB2, HOXB3, HOXB4, HOXB5, HOXB8, HOXB9, HOXB13, TTLL6, CALCOCO2, ATP5MC1, UBE2Z, SNF8, IGF2BP1, B4GALNT2, GNGT2, ABI3, PHOSPHO1, ZNF652, PHB1, NXPH3, SPOP, FAM117A, KAT7, TAC4 |
17 | 21.06 … 22.28 | TR | TRIM13, SPRYD7, KPNA3, EBPL, ARL11, RCBTB1, PHF11, SETDB2, CAB39L, CDADC1, MLNR, FNDC3A, CYSLTR2 |
18 | 68.39 … 69.18 | AMST | TMEFF2 |
22 | 17.40 … 18.31 | FR | FERMT1, LRRN4, CRLS1, MCM8, TRMT6, CHGB, SHLD1, GPCPD1, PROKR2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dementieva, N.; Nikitkina, E.; Shcherbakov, Y.; Nikolaeva, O.; Mitrofanova, O.; Ryabova, A.; Atroshchenko, M.; Makhmutova, O.; Zaitsev, A. The Genetic Diversity of Stallions of Different Breeds in Russia. Genes 2023, 14, 1511. https://doi.org/10.3390/genes14071511
Dementieva N, Nikitkina E, Shcherbakov Y, Nikolaeva O, Mitrofanova O, Ryabova A, Atroshchenko M, Makhmutova O, Zaitsev A. The Genetic Diversity of Stallions of Different Breeds in Russia. Genes. 2023; 14(7):1511. https://doi.org/10.3390/genes14071511
Chicago/Turabian StyleDementieva, Natalia, Elena Nikitkina, Yuri Shcherbakov, Olga Nikolaeva, Olga Mitrofanova, Anna Ryabova, Mikhail Atroshchenko, Oksana Makhmutova, and Alexander Zaitsev. 2023. "The Genetic Diversity of Stallions of Different Breeds in Russia" Genes 14, no. 7: 1511. https://doi.org/10.3390/genes14071511
APA StyleDementieva, N., Nikitkina, E., Shcherbakov, Y., Nikolaeva, O., Mitrofanova, O., Ryabova, A., Atroshchenko, M., Makhmutova, O., & Zaitsev, A. (2023). The Genetic Diversity of Stallions of Different Breeds in Russia. Genes, 14(7), 1511. https://doi.org/10.3390/genes14071511