Examination of Factors Affecting Site-Directed RNA Editing by the MS2-ADAR1 Deaminase System
Abstract
:1. Introduction
2. Materials and Methods
2.1. MS2-ADAR1-DD Construct and Reporter Mutated EGFP Target Sequences
2.2. Preparation of Guide RNA Constructs
2.3. Cell Culture and Transfection
2.4. RNA Extraction, cDNA Synthesis, and PCR
2.5. Purification of PCR Products, Sanger Sequencing, and Quantification of RNA Editing
2.6. Statistical Analysis
3. Results
3.1. Effects of the Length and Position of Guide RNAs on Their Editing Efficiency
3.2. Effect of the Amount of Guide RNA on Editing Efficiency
3.3. Effect of the Amount of MS2-ADAR1-DD on Editing Efficiency
3.4. Effect of the Amounts of MS2-ADAR1-DD and Guide RNA on Editing Efficiency in Cells Expressing a Double Repeated 19 nt 2× nt Upstream Guide RNA
3.5. Efficiency and Site Preference of the MS2-ADAR1-DD System in Conversion of the Ochre Stop Codon (TAA) to Tryptophan (TGG)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Brant, E.; Budak, H.; Zhang, B. CRISPR/Cas: A Nobel Prize award-winning precise genome editing technology for gene therapy and crop improvement. J. Zhejiang Univ. Sci. B 2021, 22, 253–284. [Google Scholar] [CrossRef]
- Brokowski, C.; Adli, M. CRISPR ethics: Moral considerations for applications of a powerful tool. J. Mol. Biol. 2019, 431, 88–101. [Google Scholar] [CrossRef]
- Khosravi, H.M.; Jantsch, M.F. Site-directed RNA editing: Recent advances and open challenges. RNA Biol. 2021, 18, 41–50. [Google Scholar] [CrossRef]
- Katrekar, D.; Yen, J.; Xiang, Y.; Saha, A.; Meluzzi, D.; Savva, Y.; Mali, P. Efficient in vitro and in vivo RNA editing via recruitment of endogenous ADARs using circular guide RNAs. Nat. Biotechnol. 2022, 40, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Katrekar, D.; Chen, G.; Meluzzi, D.; Ganesh, A.; Worlikar, A.; Shih, Y.R.; Varghese, S.; Mali, P. In vivo RNA editing of point mutations via RNA-guided adenosine deaminases. Nat. Methods 2019, 16, 239–242. [Google Scholar] [CrossRef]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kordyś, M.; Sen, R.; Warkocki, Z. Applications of the versatile CRISPR-Cas13 RNA targeting system. Wiley Interdiscip. Rev. RNA 2022, 13, e1694. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Altae-Tran, H.; Jin, X.; Madigan, V.J.; Oshiro, R.; Makarova, K.S.; Koonin, E.V.; Zhang, F. Compact RNA editors with small Cas13 proteins. Nat. Biotechnol. 2022, 40, 194–197. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Jiang, Y.; Hao, L.; Hui, J.; Xing, Y. Genetic variation and microRNA targeting of A-to-I RNA editing fine tune human tissue transcriptomes. Genome Biol. 2021, 22, 77. [Google Scholar] [CrossRef]
- Schneider, M.F.; Wettengel, J.; Hoffmann, P.C.; Stafforst, T. Optimal guideRNAs for re-directing deaminase activity of hADAR1 and hADAR2 in trans. Nucleic Acids Res. 2014, 42, e87. [Google Scholar] [CrossRef] [Green Version]
- Montiel-Gonzalez, M.F.; Vallecillo-Viejo, I.; Yudowski, G.A.; Rosenthal, J.J.C. Correction of mutations within the cystic fibrosis transmembrane conductance regulator by site-directed RNA editing. Proc. Natl. Acad. Sci. USA 2013, 110, 18285–18290. [Google Scholar] [CrossRef] [PubMed]
- Woolf, T.M.; Chase, J.M.; Stinchcomb, D.T. Toward the therapeutic editing of mutated RNA sequences. Proc. Natl. Acad. Sci. USA 1995, 92, 8298–8302. [Google Scholar] [CrossRef]
- Vogel, P.; Schneider, M.F.; Wettengel, J.; Stafforst, T. Improving site-directed RNA editing in vitro and in cell culture by chemical modification of the guideRNA. Angew. Chem. Int. Ed. 2014, 53, 6267–6271. [Google Scholar] [CrossRef] [PubMed]
- Ni, C.Z.; Syed, R.; Kodandapani, R.; Wickersham, J.; Peabody, D.S.; Ely, K.R. Crystal structure of the MS2 coat protein dimer: Implications for RNA binding and virus assembly. Structure 1995, 3, 255–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azad, M.T.A.; Bhakta, S.; Tsukahara, T. Site-directed RNA editing by Adenosine Deaminase Acting on RNA (ADAR1) for correction of the genetic code in gene therapy. Gene Ther. 2017, 24, 779–786. [Google Scholar] [CrossRef]
- Azad, M.T.A.; Qulsum, U.; Tsukahara, T. Comparative Activity of Adenosine Deaminase Acting on RNA (ADARs) Isoforms for Correction of Genetic Code in Gene Therapy. Curr. Gene Ther. 2018, 19, 31–39. [Google Scholar] [CrossRef]
- Tohama, T.; Sakari, M.; Tsukahara, T. Development of a single construct system for site-directed RNA editing using MS2-ADAR. Int. J. Mol. Sci. 2020, 21, 4943. [Google Scholar] [CrossRef]
- Li, M.; Yan, C.; Jiao, Y.; Xu, Y.; Bai, C.; Miao, R.; Jiang, J.; Liu, J. Site-directed RNA editing by harnessing ADARs: Advances and challenges. Funct. Integr. Genom. 2022, 22, 1089–1103. [Google Scholar] [CrossRef]
- Nakamura, T.; Yagi, Y.; Kobayashi, K. Mechanistic insight into pentatricopeptide repeat proteins as sequence-specific RNA-binding proteins for organellar RNAs in plants. Plant Cell Physiol. 2012, 53, 1171–1179. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, A.S. The UCSC genome browser database: Update 2006. Nucleic Acids Res. 2006, 34, D590–D598. [Google Scholar] [CrossRef] [Green Version]
- Eggington, J.M.; Greene, T.; Bass, B.L. Predicting sites of ADAR editing in double-stranded RNA. Nat. Commun. 2011, 2, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinkevich, F.D.; Schweitzer, P.A.; Scott, J.G. Antisense sequencing improves the accuracy and precision of A-to-I editing measurements using the peak height ratio method. BMC Res. Notes 2012, 5, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallecillo-Viejo, I.C.; Liscovitch-Brauer, N.; Montiel-Gonzalez, M.F.; Eisenberg, E.; Rosenthal, J.J.C. Abundant off-target edits from site-directed RNA editing can be reduced by nuclear localization of the editing enzyme. RNA Biol. 2017, 15, 104–114. [Google Scholar] [CrossRef] [Green Version]
- McMahon, A.C.; Rahman, R.; Jin, H.; Shen, J.L.; Fieldsend, A.; Luo, W.; Rosbash, M. TRIBE: Hijacking an RNA-Editing Enzyme to Identify Cell-Specific Targets of RNA-Binding Proteins. Cell 2016, 165, 742–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinnamon, J.R.; Kim, S.Y.; Corson, G.M.; Song, Z.; Nakai, H.; Adelman, J.P.; Mandel, G. Site-directed RNA repair of endogenous Mecp2 RNA in neurons. Proc. Natl. Acad. Sci. USA 2017, 114, E9395–E9402. [Google Scholar] [CrossRef] [Green Version]
- Monian, P.; Shivalila, C.; Lu, G.; Shimizu, M.; Boulay, D.; Bussow, K.; Byrne, M.; Bezigian, A.; Chatterjee, A.; Chew, D.; et al. Endogenous ADAR- mediated RNA editing in non-human primates using stereopure chemically modified oligonucleotides. Nat. Biotechnol. 2022, 40, 1093–1102. [Google Scholar] [CrossRef]
- Reautschnig, P.; Wahn, N.; Wettengel, J.; Schulz, A.E.; Latifi, N.; Vogel, P.; Kang, T.W.; Pfeiffer, L.S.; Zarges, C.; Naumann, U.; et al. CLUSTER guide RNAs enable precise and efficient RNA editing with endogenous ADAR enzymes in vivo. Nat. Biotechnol. 2022, 40, 759–768. [Google Scholar] [CrossRef]
- Sui, H.; Xu, X.; Su, Y.; Gong, Z.; Yao, M.; Liu, X.; Zhang, T.; Jiang, Z.; Bai, T.; Wang, J.; et al. Gene therapy for cystic fibrosis: Challenges and prospects. Front. Pharmacol. 2022, 13, 1015926. [Google Scholar] [CrossRef]
- Montiel-González, M.F.; Vallecillo-Viejo, I.C.; Rosenthal, J.J.C. An efficient system for selectively altering genetic information within mRNAs. Nucleic Acids Res. 2016, 44, e157. [Google Scholar] [CrossRef] [Green Version]
- Erkut, E.; Yokota, T. CRISPR Therapeutics for Duchenne Muscular Dystrophy. Int. J. Mol. Sci. 2022, 23, 1832. [Google Scholar] [CrossRef]
No. | Name | Restriction Enzyme Site, Guide with Primer Sequence (5′–3′) |
---|---|---|
1 | Guide 19 bp upstream | ATCAGAATTCAGGGGGGGCCAGGGCACGGGAATGGCCATGGGACGTCGAC |
2 | Guide 21 bp upstream | ATCAGAATTCGAGGGGGGGCCAGGGCACGGGGAATGGCCATGGGACGTC |
3 | Guide 23 bp upstream | ATCAGAATTCCGAGGGGGGGCCAGGGCACGGGCGAATGGCCATGGGACGT |
4 | Guide 19 bp downstream | ATTCCTCGAGCCGTGCCCTGGCCCCCCCTCGCAAATTTAAAGCGCTGAT |
5 | Guide 21 bp downstream | ATTCCTCGAGCCCGTGCCCTGGCCCCCCCTCCGCAAATTTAAAGCGCTG |
6 | Guide 23 bp downstream | ATTCCTCGAGGCCCGTGCCCTGGCCCCCCCTCGCGCAAATTTAAAGCGCT |
7 | Guide 19 2 × upstream | ATCAGAATTCAGGGGGGGCCAGGGCACGGAGGGGGGGCCAGGGCACGGGAATGGCCATGGGACGTCGAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azad, M.T.A.; Qulsum, U.; Tsukahara, T. Examination of Factors Affecting Site-Directed RNA Editing by the MS2-ADAR1 Deaminase System. Genes 2023, 14, 1584. https://doi.org/10.3390/genes14081584
Azad MTA, Qulsum U, Tsukahara T. Examination of Factors Affecting Site-Directed RNA Editing by the MS2-ADAR1 Deaminase System. Genes. 2023; 14(8):1584. https://doi.org/10.3390/genes14081584
Chicago/Turabian StyleAzad, Md Thoufic Anam, Umme Qulsum, and Toshifumi Tsukahara. 2023. "Examination of Factors Affecting Site-Directed RNA Editing by the MS2-ADAR1 Deaminase System" Genes 14, no. 8: 1584. https://doi.org/10.3390/genes14081584
APA StyleAzad, M. T. A., Qulsum, U., & Tsukahara, T. (2023). Examination of Factors Affecting Site-Directed RNA Editing by the MS2-ADAR1 Deaminase System. Genes, 14(8), 1584. https://doi.org/10.3390/genes14081584