Development of Ogura CMS Fertility-Restored Interspecific Hybrids for Use in Cytoplasm Replacement of Golden-Heart Materials in Brassica rapa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Conditions
2.2. Population Construction and Genetic Efficiency
2.3. Morphological Observation of Intermediate Materials
2.4. DNA Extraction and PCR Amplification
2.5. Fertility Determination
2.6. Specific Markers and Genetic Efficiency
2.7. Statistical Analysis
3. Results
3.1. Genetic Regularity of Rfo in F1
3.1.1. The Performance of Fertility Recovery
3.1.2. Availability of Specific Primers
3.1.3. Morphological Differences between Offspring and Parents
3.1.4. Comparison of F1 Pollen Vitality
3.2. Genetic Rule of GOLDEN Gene in F1
3.2.1. Characteristics of the Female Parent
3.2.2. Genetic Rule of GOLDEN Gene in F1
3.3. Selection of Individual Plants for Traits
3.4. Creation of Chinese Cabbage Germplasm with Normal Cytoplasm and a Golden Heart
3.4.1. Investigation of Agronomic Traits in the Offspring of Secondary Hybridization
3.4.2. Genetic Efficiency of GOLDEN and Rfo Genes
3.4.3. Creation of Normal Cytoplasmic Germplasm
4. Discussion
4.1. Creating Ogura CMS Recovery Material by Distant Hybridization
4.2. Selection of F1 Material
4.3. The Significance of the Bridge Material in Chinese Flowering Cabbage
4.4. Possibly the Most Suitable Strain as a Restorer in F1
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaul, M.L.H. Male Sterility in Higher Plants; Springer: Berlin, Germany, 1988; p. xvi + 1005. [Google Scholar]
- Duan, L.Y.; Wu, T.; Li, X.; Xie, J.K.; Hu, B.L. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice. Crops 2022, 20–30. [Google Scholar] [CrossRef]
- Guangqing, X.; Qiwei, H. Research progress on male sterility and its mechanism in Chinese cabbage. Shandong Agric. Sci. 2004. [Google Scholar]
- Sun, R.F.; Niu, X.G.; Si, J.K.; Zhang, S.J.; Wu, F.Y. Preliminary report on a novel radish cytoplasmic Chinese cabbage male sterile line. China Veg. 1997, 32–33. [Google Scholar] [CrossRef]
- Nair, C.K.K. Mitochondrial genome organization and cytoplasmic male sterility in plants. J. Biosci. 1993, 18, 407–422. [Google Scholar] [CrossRef]
- Ogura, H. Studies on the new male-sterility in Japanese radish, with special reference to the utilization of this sterility towards the practical raising of hybrid seeds. Mem. Fac. Agric. Kagoshima Univ. 1968, 6, 39–78. [Google Scholar]
- Bannerot, H. Unexpected difficulties met with the radish cytoplasm in Brassica oleracea. Eucarpia Crucif. Newsl. 1977, 2, 16. [Google Scholar]
- Bonhomme, S.; Budar, F.; Lancelin, D.; Small, I.; Defrance, M.C.; Pelletier, G. Sequence and transcript analysis of the Nco2.5 Ogura-specific fragment correlated with cytoplasmic male sterility in Brassica cybrids. Mol. Gen. Genet. MGG 1992, 235, 340–348. [Google Scholar] [CrossRef]
- Bonhomme, S.; Budar, F.; Férault, M.; Pelletier, G. A 2.5 kb NcoI fragment of Ogura radish mitochondrial DNA is correlated with cytoplamic male sterility in Brassica cybrids. Curr. Genet. 1991, 19, 121–127. [Google Scholar] [CrossRef]
- Grelon, M.; Budar, F.; Bonhomme, S.; Pelletier, G. Ogura cytoplasmic male-sterility (CMS)-associated orf138 is translated into a mitochondrial membrane polypeptide in male-sterile Brassica cybrids. Mol. Gen. Genet. MGG 1994, 243, 540–547. [Google Scholar] [CrossRef]
- Duroc, Y.; Gaillard, C.; Hiard, S.; Defrance, M.C.; Pelletier, G.; Budar, F. Biochemical and functional characterization of ORF138, a mitochondrial protein responsible for Ogura cytoplasmic male sterility in Brassiceae. Biochimie 2005, 87, 1089–1100. [Google Scholar] [CrossRef]
- Duroc, Y.; Gaillard, C.; Hiard, S.; Tinchant, C.; Berthome, R.; Pelletier, G.; Budar, F. Nuclear expression of a cytoplasmic male sterility gene modifies mitochondrial morphology in yeast and plant cells. Plant Sci. 2006, 170, 755–767. [Google Scholar] [CrossRef]
- Chen, L.T.; Liu, Y.G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Zhang, D. Molecular control of male fertility for crop hybrid breeding. Trends Plant Sci. 2018, 23, 53–65. [Google Scholar] [CrossRef]
- Delourme, R.; Eber, F. Linkage between an isozyme marker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor. Appl. Genet. 1992, 85, 222–228. [Google Scholar] [CrossRef]
- Delourme, R.; Bouchereau, A.; Hubert, N.; Renard, M.; Landry, B.S. Identification of RAPD markers linked to a fertility restorer gene for theOgura radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor. Appl. Genet. 1994, 88, 741–748. [Google Scholar] [CrossRef]
- Brown, G.G.; Formanová, N.; Jin, H.; Wargachuk, R.; Dendy, C.; Patil, P.; Laforest, M.; Zhang, J.; Cheung, W.Y.; Landry, B.S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 2003, 35, 262–272. [Google Scholar] [CrossRef]
- Desloire, S.; Gherbi, H.; Laloui, W.; Marhadour, S.; Clouet, V.; Cattolico, L.; Falentin, C.; Giancola, S.; Renard, M.; Budar, F.; et al. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 2003, 4, 588–594. [Google Scholar] [CrossRef] [Green Version]
- Weimin, W.; Yunchang, L.; Qiong, H.; Desheng, M.; Jihua, C. Regulation Machanism Studies of Cytoplasmic Male Sterility in Plants. Mol. Plant Breed. 2008, 1139–1145. [Google Scholar]
- Bellaoui, M.; Grelon, M.; Pelletier, G.; Budar, F. The restorer Rfo gene acts post-translationally on the stability of the ORF138 Ogura CMS-associated protein in reproductive tissues of rapeseed cybrids. Plant Mol. Biol. 1999, 40, 893–902. [Google Scholar] [CrossRef] [PubMed]
- Lurin, C.; Andres, C.; Aubourg, S.; Bellaoui, M.; Bitton, F.; Bruyere, C.; Caboche, M.; Debast, C.; Gualberto, J.; Hoffmann, B.; et al. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 2004, 16, 2089–2103. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.Y.; Niu, M.L.; Yao, Y.; Chang, X.Y.; Lv, L.F.; Li, N. Research on the Construction and Application of a Big Data Platform for the Whole Vegetable Industry China:The Case of Chinese Cabbage. J. Agric. Big Data 2021, 3, 66–72. [Google Scholar] [CrossRef]
- Wang, G.F.; Zhang, L.G.; Li, D.X. Restoring and maintaining relationship and molecular identification of cytoplasmic male sterility in Chinese cabbage. J. Northwest A F Univ. (Nat. Sci. Ed.) 2014, 42, 183–190. [Google Scholar] [CrossRef]
- Lizhu, J.; Deling, S.; Liquan, S. Types and mechanisms of cytoplasmic male sterility in cruciferous vegetables. Jiangsu Agric. Sci. 2007, 106–110. [Google Scholar]
- Lang, X.; Liu, W.; Yang, L.; Zhou, W.; Wu, J.; Bie, C. A New Rapid DNA Extraction Method Suitable for Dry Cotton Seed. Cotton Sci. 2014, 26, 87–94. [Google Scholar]
- Hu, X.Y.; Sullivan-Gilbert, M.; Kubik, T.; Danielson, J.; Hnatiuk, N.; Marchione, W.; Greene, T.; Thompson, S.A. Mapping of the Ogura fertility restorer gene Rfo and development of Rfo allele-specific markers in canola (Brassica napus L.). Mol. Breed. 2008, 22, 663–674. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.F.; Dai, Y.; Wang, S.X.; Wang, C.G.; Li, F.; Zhang, H.; Chen, G.H.; Yuan, L.Y.; Hou, J.F.; et al. Mapping and Validation of BrGOLDEN: A Dominant Gene Regulating Carotenoid Accumulation in Brassica rapa. Int. J. Mol. Sci. 2022, 23, 12442. [Google Scholar] [CrossRef]
- Wang, R.F.; Ma, S.; Chen, L.; Lu, Q.Q.; Meng, Y.; Zhang, L.G. Molecular Identification and Comparison of Horticultural Characters of Homonuclear-allocytoplasm Cytoplasmic Male Sterile Line in Orange Chinese Cabbage. China Veg. 2021, 384, 58–63. [Google Scholar] [CrossRef]
- Liwang, L.; Bingshuang, L.; Junhui, D.; Xiaoli, Z.; Yan, W.; Liang, X. Advances on genetic mechanism and utilization of cytoplasmic male sterility in radish. J. Nanjing Agric. Univ. 2022, 45, 883–897. [Google Scholar]
- Tonghua, W.; Yiming, G.; Mei, L.; Liang, Q.; Lianyi, F. Inheritance pattern of CLR650 restorer gene from the novel Ogu-CMS restorer in Brassica napus. In Proceedings of the 2019 Annual Academic Meeting of Crop Society of China, Hangzhou, China, 6–9 December 2019; p. 243. [Google Scholar]
- Hailong, Y.; Zhiyuan, L.; LiMei, Y.; Yumei, L.; Mu, Z.; Honghao, L.; Zhangsheng, L.; Zhiyuan, F.; Yangyong, Z. Development of Fertility-Restoredd BC3 Prohenies in Ogura CMS Chinese Kale and Analysis on Gene Transmission Rate of Rfo and Genetic Background. Sci. Agric. Sin. 2018, 51, 1746–1757. [Google Scholar]
- Hailong, Y. Creation of Ogura-CMS Fertility-Restored Materials in Brassica oleracea through Distant Hybridization. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2015. [Google Scholar]
- Jiao, J. The Reseaarch on Breeding of Ogura CMS Fertility Restoration Materials for Brassica oleracea L. Throigh Embryo Rescue Technique. Master’s Thesis, Northwest A&F University, Xianyang, China, 2018. [Google Scholar]
- Wenjing, R. Creation of Ogura CMS Fertility-Restored Materials via Advanced-Generatiion Backcross and Their Utilization in Cabbage(Brassica oleracea L. var. capitata). Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Huang, J.J.; Liu, W.; Liu, Y.M.; Han, F.Q.; Fang, Z.Y.; Yang, L.M.; Zhang, M.; Zhang, Y.Y.; Lv, H.H.; Wang, Y.; et al. Creation of Fertility Restorer Materials for Ogura CMS Broccoli and the Study of Its Genetic Background. Acta Hortic. Sin. 2022, 49, 533–547. [Google Scholar] [CrossRef]
P1 | P2 | F1 | Number of Seeds | Number of Ungerminated Seeds | Number of Surviving Plants | Survival Rate of F1 (%) | Number of Fertile Plants | Number of Sterile Plants | Tested Ratio | χ2 1 |
---|---|---|---|---|---|---|---|---|---|---|
F544 | M540 | M101 | 128 | 24 | 104 | 81.25 | 90 | 0 | — | — |
M541 | — | 0 | — | — | — | — | — | — | — | |
M542 | M102 | 130 | 26 | 104 | 80.00 | 70 | 0 | — | — | |
M543 | M103 | 130 | 13 | 117 | 90.00 | 56 | 39 | 1:1 | 3.04 | |
F545 | M540 | M104 | 80 | 26 | 54 | 67.50 | 44 | 0 | — | — |
M541 | M105 | 56 | 20 | 36 | 64.29 | 0 | 24 | — | — | |
M542 | — | 0 | — | — | — | — | — | — | — | |
M543 | M106 | 80 | 12 | 68 | 85.00 | 29 | 33 | 1:1 | 1.47 |
F1 | Combination | Total Number of Investigated Plants | Number of GOLDEN-Positive Plants | Transmission Rate of GOLDEN in F1 (%) | Tested Ratio | χ2 1 | Number of Positive Plants Containing Both Rfo and GOLDEN | Proportion of Expectation | Actual Proportion | Difference Value |
---|---|---|---|---|---|---|---|---|---|---|
M101 | F544 × M540 | 104 | 49 | 47.12 | 0.35 | 34 | 0.5 | 0.33 | 0.17 | |
M102 | F544 × M542 | 104 | 49 | 47.12 | 0.35 | 25 | 0.5 | 0.24 | 0.26 | |
M103 | F544 × M543 | 117 | 55 | 47.01 | 0.42 | 15 | 0.25 | 0.13 | 0.12 | |
M104 | F545 × M540 | 54 | 44 | 81.48 | 21.41 | 29 | 0.5 | 0.54 | −0.04 | |
M105 | F545 × M541 | 36 | 12 | 33.33 | 4.00 | 0 | 0 | 0 | 0 | |
M106 | F545 × M543 | 68 | 35 | 51.47 | 1:1 | 0.06 | 11 | 0.25 | 0.16 | 0.09 |
Name | Combination | Total Number of Plants | Number of GOLDEN-Positive Plants | Actual Proportion (%) | Number of Rfo-Positive Plants | Actual Proportion (%) | Number of Plants Containing GOLDEN but Not Rfo | Actual Proportion (%) |
---|---|---|---|---|---|---|---|---|
M6801 | F5577 × M102 | 612 | 169 | 27.61 | 131 | 21.41 | 94 | 15.36 |
M6802 | F3898 × M103 | 169 | 69 | 40.83 | 56 | 33.14 | 45 | 26.63 |
M6803 | F5270 × M104 | 19 | 13 | 68.42 | 6 | 31.58 | 5 | 26.32 |
Total | 800 | 251 | 31.38 | 193 | 24.13 | 144 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, G.; Li, F.; Zhang, S.; Wang, X.; Wu, J.; Sun, R.; Zhang, S.; Zhang, H. Development of Ogura CMS Fertility-Restored Interspecific Hybrids for Use in Cytoplasm Replacement of Golden-Heart Materials in Brassica rapa. Genes 2023, 14, 1613. https://doi.org/10.3390/genes14081613
Li Z, Li G, Li F, Zhang S, Wang X, Wu J, Sun R, Zhang S, Zhang H. Development of Ogura CMS Fertility-Restored Interspecific Hybrids for Use in Cytoplasm Replacement of Golden-Heart Materials in Brassica rapa. Genes. 2023; 14(8):1613. https://doi.org/10.3390/genes14081613
Chicago/Turabian StyleLi, Ze, Guoliang Li, Fei Li, Shifan Zhang, Xiaowu Wang, Jian Wu, Rifei Sun, Shujiang Zhang, and Hui Zhang. 2023. "Development of Ogura CMS Fertility-Restored Interspecific Hybrids for Use in Cytoplasm Replacement of Golden-Heart Materials in Brassica rapa" Genes 14, no. 8: 1613. https://doi.org/10.3390/genes14081613
APA StyleLi, Z., Li, G., Li, F., Zhang, S., Wang, X., Wu, J., Sun, R., Zhang, S., & Zhang, H. (2023). Development of Ogura CMS Fertility-Restored Interspecific Hybrids for Use in Cytoplasm Replacement of Golden-Heart Materials in Brassica rapa. Genes, 14(8), 1613. https://doi.org/10.3390/genes14081613