Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. RNA-Extraction and Sequencing
2.3. Genome-Guided Referenced Comparative Transcriptomic Analyses
2.4. Custom Data Analyses and Illustration
3. Results
3.1. RNA-seq Data Statistics and Quality Check
3.2. Differentially Expressed Genes
3.3. Implications of the Underlying Biological Mechanisms
3.4. Key Stress Response and Toxicity Mechanisms
3.5. Novel Stress Response Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vincent, J.B.; Lukaski, H.C. Chromium. Adv. Nutr. 2018, 9, 505–506. [Google Scholar] [CrossRef] [Green Version]
- Murthy, M.K.; Khandayataray, P.; Samal, D. Chromium toxicity and its remediation by using endophytic bacteria and nanomaterials: A review. J. Environ. Manag. 2022, 318, 115620. [Google Scholar] [CrossRef]
- Wise, S.S.; Wise Sr, J.P. Chromium and genomic stability. Mutat. Res. 2012, 733, 78–82. [Google Scholar] [CrossRef] [Green Version]
- Vincent, J.B. Effects of chromium supplementation on body composition, human and animal health, and insulin and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 483–489. [Google Scholar] [CrossRef]
- Vincent, J.B. The biochemistry of chromium. J. Nutr. 2000, 130, 715–718. [Google Scholar] [CrossRef] [Green Version]
- Mo, H.H.; Lee, S.E.; Son, J.; Hwang, J.M.; Bae, Y.J.; Cho, K. Exposure of mayfly Ephemera orientalis (Ephemeroptera) eggs to heavy metals and discovery of biomarkers. Environ. Toxicol. Pharmacol. 2013, 36, 1167–1175. [Google Scholar] [CrossRef]
- Vidal, L.M.; Pimentel, E.; Cruces, M.P.; Sánchez-Meza, J.C. Different radiation dose rate as radioprotection and the cross effect with chromium using in vivo somatic cells of Drosophila. Environ. Toxicol. Pharmacol. 2018, 63, 16–20. [Google Scholar] [CrossRef]
- Singh, P.; Chowdhuri, D.K. Environmental Presence of Hexavalent but Not Trivalent Chromium Causes Neurotoxicity in Exposed Drosophila melanogaster. Mol. Neurobiol. 2017, 54, 3368–3387. [Google Scholar] [CrossRef]
- Tucker, F.B.; Wang, K.X.; Lu, S.L.; Xu, L.J. Influence of form and quantity of chromium on the development and survival of two silkworm (Bombyx mori L.) races. J. Environ. Sci. 2003, 15, 744–748. [Google Scholar]
- de Andrade, J.R.; da Silva, M.G.C.; Gimenes, M.L.; Vieira, M.G.A. Bioadsorption of trivalent and hexavalent chromium from aqueous solutions by sericin-alginate particles produced from Bombyx mori cocoons. Environ. Sci. Pollut. Res. Int. 2018, 25, 25967–25982. [Google Scholar] [CrossRef]
- DesMarais, T.L.; Costa, M. Mechanisms of Chromium-Induced Toxicity. Curr. Opin. Toxicol. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Mishra, S.; Bharagava, R.N. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2016, 34, 1–32. [Google Scholar] [CrossRef]
- Nie, G.; Zhong, M.; Cai, J.; Yang, X.; Zhou, J.; Appiah, C.; Tang, M.; Wang, X.; Feng, G.; Huang, L.; et al. Transcriptome characterization of candidate genes related to chromium uptake, transport and accumulation in Miscanthus sinensis. Ecotoxicol. Environ. Saf. 2021, 221, 112445. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Chakraborty, R.; Renu, K.; Eladl, M.A.; El-Sherbiny, M.; Elsherbini, D.M.A.; Mirza, A.K.; Vellingiri, B.; Iyer, M.; Dey, A.; Valsala Gopalakrishnan, A. Mechanism of chromium-induced toxicity in lungs, liver, and kidney and their ameliorative agents. Biomed. Pharmacother. Biomed. Pharmacother. 2022, 151, 113119. [Google Scholar] [CrossRef]
- Wang, R.; Guo, J.; Xu, Y.; Ding, Y.; Shen, Y.; Zheng, X.; Feng, R. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi. Ecotoxicol. Environ. Saf. 2016, 124, 239–247. [Google Scholar] [CrossRef] [Green Version]
- Marzoli, F.; Antonelli, P.; Saviane, A.; Tassoni, L.; Cappellozza, S.; Belluco, S. Bombyx mori from a food safety perspective: A systematic review. Food Res. Int. 2022, 160, 111679. [Google Scholar] [CrossRef]
- Xia, Q.; Li, S.; Feng, Q. Advances in silkworm studies accelerated by the genome sequencing of Bombyx mori. Annu. Rev. Entomol. 2014, 59, 513–536. [Google Scholar] [CrossRef]
- Ma, S.Y.; Smagghe, G.; Xia, Q.Y. Genome editing in Bombyx mori: New opportunities for silkworm functional genomics and the sericulture industry. Insect Sci. 2019, 26, 964–972. [Google Scholar] [CrossRef]
- Kawamoto, M.; Jouraku, A.; Toyoda, A.; Yokoi, K.; Minakuchi, Y.; Katsuma, S.; Fujiyama, A.; Kiuchi, T.; Yamamoto, K.; Shimada, T. High-quality genome assembly of the silkworm, Bombyx mori. Insect Biochem. Mol. Biol. 2019, 107, 53–62. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, C.; Sun, L.; Wang, A.; Lan, X.; Xu, W.; Liang, Y.; Ma, S.; Xia, Q. In-depth transcriptome unveils the cadmium toxicology and a novel metallothionein in silkworm. Chemosphere 2021, 273, 128522. [Google Scholar] [CrossRef]
- Xin, Z.Z.; Liu, Q.N.; Liu, Y.; Zhang, D.Z.; Wang, Z.F.; Zhang, H.B.; Ge, B.M.; Zhou, C.L.; Chai, X.Y.; Tang, B.P. Transcriptome-Wide Identification of Differentially Expressed Genes in Chinese Oak Silkworm Antheraea pernyi in Response to Lead Challenge. J. Agric. Food Chem. 2017, 65, 9305–9314. [Google Scholar] [CrossRef]
- Liu, Y.; Xin, Z.Z.; Song, J.; Zhu, X.Y.; Liu, Q.N.; Zhang, D.Z.; Tang, B.P.; Zhou, C.L.; Dai, L.S. Transcriptome Analysis Reveals Potential Antioxidant Defense Mechanisms in Antheraea pernyi in Response to Zinc Stress. J. Agric. Food Chem. 2018, 66, 8132–8141. [Google Scholar] [CrossRef]
- Li, T.; Zhou, H.; Zhang, J.; Zhang, Z.; Yu, Y.; Wei, Y.; Hu, J. Effects of silkworm excrement and water management on the accumulation of Cd and As in different varieties of rice and an assessment of their health risk. Ecotoxicol. Environ. Saf. 2021, 228, 112974. [Google Scholar] [CrossRef]
- Dunkov, B.; Georgieva, T. Insect iron binding proteins: Insights from the genomes. Insect Biochem. Mol. Biol. 2006, 36, 300–309. [Google Scholar] [CrossRef]
- Abdelli, N.; Peng, L.; Keping, C. Silkworm, Bombyx mori, as an alternative model organism in toxicological research. Environ. Sci. Pollut. Res. Int. 2018, 25, 35048–35054. [Google Scholar] [CrossRef]
- Zhang, N.N.; He, Y.X.; Li, W.F.; Teng, Y.B.; Yu, J.; Chen, Y.; Zhou, C.Z. Crystal structures of holo and Cu-deficient Cu/Zn-SOD from the silkworm Bombyx mori and the implications in amyotrophic lateral sclerosis. Proteins 2010, 78, 1999–2004. [Google Scholar] [CrossRef]
- Park, S.Y.; Nair, P.M.; Choi, J. Characterization and expression of superoxide dismutase genes in Chironomus riparius (Diptera, Chironomidae) larvae as a potential biomarker of ecotoxicity. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2012, 156, 187–194. [Google Scholar] [CrossRef]
- Muhammad, A.; He, J.; Yu, T.; Sun, C.; Shi, D.; Jiang, Y.; Xianyu, Y.; Shao, Y. Dietary exposure of copper and zinc oxides nanoparticles affect the fitness, enzyme activity, and microbial community of the model insect, silkworm Bombyx mori. Sci. Total Environ. 2022, 813, 152608. [Google Scholar] [CrossRef]
- de Sena Brandine, G.; Smith, A.D. Falco: High-speed FastQC emulation for quality control of sequencing data. F1000Research 2019, 8, 1874. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef]
- Pertea, M.; Pertea, G.M.; Antonescu, C.M.; Chang, T.C.; Mendell, J.T.; Salzberg, S.L. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015, 33, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Gene Ontology Consortium. Gene Ontology Consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, S.; Yan, X.; Qin, Z.; Jia, C.; Li, Z.; Zhang, J.; Huang, R. The mobility of cadmium and lead in the soil-mulberry-silkworm system. Chemosphere 2020, 242, 125179. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, Y.; Wang, S.; Han, S.; Liu, J. Lead in the soil-mulberry (Morus alba L.)-silkworm (Bombyx mori) food chain: Translocation and detoxification. Chemosphere 2015, 128, 171–177. [Google Scholar] [CrossRef]
- Tanaka, S.; Kinouchi, T.; Fujii, T.; Imanaka, T.; Takahashi, T.; Fukutani, S.; Maki, D.; Nohtomi, A.; Takahashi, S. Observation of morphological abnormalities in silkworm pupae after feeding (137)CsCl-supplemented diet to evaluate the effects of low dose-rate exposure. Sci. Rep. 2020, 10, 16055. [Google Scholar] [CrossRef]
- Rahman, Z.; Singh, V.P. The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environ. Monit. Assess. 2019, 191, 419. [Google Scholar] [CrossRef]
- Chen, L.; Meng, X.; Gu, J.; Fan, W.; Abdlli, N.; Peprah, F.A.; Wang, N.; Zhu, F.; Lü, P.; Ma, S.; et al. Silver nanoparticle toxicity in silkworms: Omics technologies for a mechanistic understanding. Ecotoxicol. Environ. Saf. 2019, 172, 388–395. [Google Scholar] [CrossRef]
- Purać, J.; Čelić, T.V.; Vukašinović, E.L.; Đorđievski, S.; Milić, S.; Ninkov, J.; Kojić, D. Identification of a metallothionein gene and the role of biological thiols in stress induced by short-term Cd exposure in Ostrinia nubilalis. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2021, 250, 109148. [Google Scholar] [CrossRef]
- Sijko, M.; Janasik, B.; Wąsowicz, W.; Kozłowska, L. Can the effects of chromium compounds exposure be modulated by vitamins and microelements? Int. J. Occup. Med. Environ. Health 2021, 34, 461–490. [Google Scholar] [CrossRef]
- Perng, W.; Tamayo-Ortiz, M.; Tang, L.; Sánchez, B.N.; Cantoral, A.; Meeker, J.D.; Dolinoy, D.C.; Roberts, E.F.; Martinez-Mier, E.A.; Lamadrid-Figueroa, H.; et al. Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open 2019, 9, e030427. [Google Scholar] [CrossRef] [Green Version]
- Ledda, C.; Cannizzaro, E.; Lovreglio, P.; Vitale, E.; Stufano, A.; Montana, A.; Li Volti, G.; Rapisarda, V. Exposure to Toxic Heavy Metals Can Influence Homocysteine Metabolism? Antioxid 2019, 9, 30. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Han, N.; Kang, T.; Zhan, S.; Lee, K.S.; Jin, B.R.; Li, J.; Wan, H. SeGSTo, a novel glutathione S-transferase from the beet armyworm (Spodoptera exigua), involved in detoxification and oxidative stress. Cell Stress Chaperones 2016, 21, 805–816. [Google Scholar] [CrossRef] [Green Version]
Sample | Number of Clean Reads | Clean Data (bp) | Clean Reads (%) | Mapped Reads | Mapping Rate (%) |
---|---|---|---|---|---|
TKAa1 | 46,480,154 | 7,018,503,254 | 94.1 | 44,133,117 | 94.95 |
TKAb2 | 49,383,830 | 7,456,958,330 | 94.63 | 47,462,432 | 96.11 |
TKAc3 | 46,228,046 | 6,980,434,946 | 94.86 | 44,424,220 | 96.1 |
T2Ba1 | 44,269,598 | 6,684,709,298 | 93.73 | 39,665,480 | 89.6 |
T2Bb2 | 34,848,742 | 5,262,160,042 | 94.84 | 31,339,902 | 89.93 |
T2Bc3 | 43,443,810 | 6,560,015,310 | 94.24 | 39,661,947 | 91.29 |
T4Ca1 | 40,528,222 | 6,119,761,522 | 94.93 | 39,290,214 | 96.95 |
T4Cb2 | 38,550,946 | 5,821,192,846 | 94.84 | 37,167,990 | 96.41 |
T4Cc3 | 38,875,430 | 5,870,189,930 | 94.91 | 37,722,658 | 97.03 |
Gene ID | B.P. Terms |
---|---|
LOC101744812 | GO:0006629//lipid metabolic process; GO:0006638//neutral lipid metabolic process |
LOC101747119 | GO:0009653//anatomical structure morphogenesis |
LOC119628334 | GO:0001654//eye development; GO:0007166//cell surface receptor signaling pathway; GO:0007185//transmembrane receptor protein tyrosine phosphatase signaling pathway |
LOC101740376 | GO:0007268//chemical synaptic transmission; GO:0007270//neuron-neuron synaptic transmission |
LOC101735576 | GO:0002009//morphogenesis of an epithelium; GO:0002165//instar larval or pupal development |
LOC101742664 | GO:0006508//proteolysis; GO:0006511//ubiquitin-dependent protein catabolic process; GO:0006807//nitrogen compound metabolic process |
LOC101740250 | GO:0001654//eye development; GO:0001745//compound eye morphogenesis; GO:1903430//negative regulation of cell maturation; GO:2000242//negative regulation of reproductive process |
LOC101742357 | GO:0000003//reproduction; GO:0002064//epithelial cell development |
LOC101746579 | GO:0000003//reproduction; GO:0000278//mitotic cell cycle |
LOC101739530 | GO:0000086//G2/M transition of mitotic cell cycle; GO:0007346//regulation of mitotic cell cycle |
LOC105841728 | GO:0001736//establishment of planar polarity; GO:0001737//establishment of imaginal disc-derived wing hair orientation; GO:0001738//morphogenesis of a polarized epithelium |
LOC119628328 | GO:0007155//cell adhesion; GO:0007157//heterophilic cell–cell adhesion via plasma membrane cell adhesion molecules |
LOC101736099 | GO:0007346//regulation of mitotic cell cycle; GO:1902749//regulation of cell cycle G2/M phase transition; GO:1902750//negative regulation of cell cycle G2/M phase transition; |
LOC101742038 | GO:0001703//gastrulation with mouth forming first |
LOC101739155 | GO:0000462//maturation of SSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) |
LOC101735895 | GO:0007600//sensory perception; GO:0007606//sensory perception of chemical stimulus; GO:0007608//sensory perception of smell |
LOC101742065 | GO:0002009//morphogenesis of an epithelium; GO:0002165//instar larval or pupal development |
LOC101740587 | GO:0000375//RNA splicing, via transesterification reactions |
Gene ID | B.P. Terms |
---|---|
LOC101737268 | GO:0006281//DNA repair; GO:0006950//response to stress; GO:0006974//cellular response to DNA damage stimulus |
LOC101746842 | GO:0006491//N-glycan processing; GO:0006807//nitrogen compound metabolic process |
LOC101742664 | GO:0006508//proteolysis; GO:0006511//ubiquitin-dependent protein catabolic process; GO:0006807//nitrogen compound metabolic process |
LOC119631147 | GO:0050789//regulation of biological process; GO:0060255//regulation of macromolecule metabolic process |
LOC101735873 | GO:0006935//chemotaxis; GO:0007155//cell adhesion; GO:0007157//heterophilic cell–cell adhesion via plasma membrane cell adhesion molecules |
LOC101746799 | GO:0006810//transport; GO:0006897//endocytosis; GO:0006909//phagocytosis |
LOC101742993 | GO:0007043//cell–cell junction assembly; GO:0007275//multicellular organism development; GO:0007424//open tracheal system development |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, W.; Chen, Y.; Lu, J.; Huang, S.; Xin, L.; Guan, D.; Li, X. Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes 2023, 14, 1616. https://doi.org/10.3390/genes14081616
Rong W, Chen Y, Lu J, Huang S, Xin L, Guan D, Li X. Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes. 2023; 14(8):1616. https://doi.org/10.3390/genes14081616
Chicago/Turabian StyleRong, Wantao, Yazhen Chen, Jieyou Lu, Shuiwang Huang, Lei Xin, Delong Guan, and Xiaodong Li. 2023. "Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori" Genes 14, no. 8: 1616. https://doi.org/10.3390/genes14081616
APA StyleRong, W., Chen, Y., Lu, J., Huang, S., Xin, L., Guan, D., & Li, X. (2023). Effects of Chromium Exposure on the Gene Expression of the Midgut in Silkworms, Bombyx mori. Genes, 14(8), 1616. https://doi.org/10.3390/genes14081616