Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Isolation and Culture of Chicken Primary Myoblasts (CPMs)
2.3. Transfections, RNA Extraction, Quantification, and Qualification
2.4. cDNA Library Preparation, Quality Inspection, and Sequencing
2.5. Analysis of the Sequencing Results
2.6. Real-Time Quantitative PCR of Differentially Expressed Genes
3. Results
3.1. Sequencing Data Quality Summary
3.2. Statistics of Differentially Expressed Genes
3.3. Functional Enrichment Analysis of the Differentially Expressed Genes
3.4. Variation Site Analysis
3.5. Target Gene Prediction and RT-qPCR Experiment Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilroy, R. Spotlight on the avian gut microbiome: Fresh opportunities in discovery. Avian. Pathol. 2021, 50, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Lin, J.; Wang, J.; Wu, S.G.; Qiu, K.; Zhang, H.J.; Qi, G.H. The Role of Incubation Conditions on the Regulation of Muscle Development and Meat Quality in Poultry. Front. Physiol. 2022, 13, 883134. [Google Scholar] [CrossRef] [PubMed]
- Tafrihi, M.; Hasheminasab, E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna 2019, 8, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Roush, S.; Slack, F.J. The let-7 family of microRNAs. Trends Cell Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Correia de Sousa, M.; Gjorgjieva, M.; Dolicka, D.; Sobolewski, C.; Foti, M. Deciphering miRNAs’ Action through miRNA Editing. Int. J. Mol. Sci. 2019, 20, 6249. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Sun, L.; Qin, S.; Li, R.; Chen, L.; Jin, P.; Ma, F. Dme-Hsa Disease Database (DHDD): Conserved Human Disease-Related miRNA and Their Targeting Genes in Drosophila melanogaster. Int. J. Mol. Sci. 2018, 19, 2642. [Google Scholar] [CrossRef]
- Stavast, C.J.; Erkeland, S.J. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019, 8, 1465. [Google Scholar] [CrossRef] [PubMed]
- Yue, B.; Yang, H.; Wang, J.; Ru, W.; Wu, J.; Huang, Y.; Lan, X.; Lei, C.; Chen, H. Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif. 2020, 53, e12857. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, Y.; Zhang, Y.; Yan, C.; Yang, M.; Wang, Z.; Li, W.; Li, F.; Wang, W.; Yang, Y.; et al. MicroRNA-200c-5p Regulates Migration and Differentiation of Myoblasts via Targeting Adamts5 in Skeletal Muscle Regeneration and Myogenesis. Int. J. Mol. Sci. 2023, 24, 4995. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Li, Z.; Abdalla, B.A.; Chen, Y.; Nie, Q. MiR-34b-5p Mediates the Proliferation and Differentiation of Myoblasts by Targeting IGFBP2. Cells 2019, 8, 360. [Google Scholar] [CrossRef]
- Wu, P.; He, M.; Zhang, X.; Zhou, K.; Zhang, T.; Xie, K.; Dai, G.; Wang, J.; Wang, X.; Zhang, G. miRNA-seq analysis in skeletal muscle of chicken and function exploration of miR-24-3p. Poult. Sci. 2022, 101, 102120. [Google Scholar] [CrossRef]
- Shi, H.; He, Y.; Li, X.; Du, Y.; Zhao, J.; Ge, C. Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes 2022, 13, 1033. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Zhang, X.; Zhang, G.; Chen, F.; He, M.; Zhang, T.; Wang, J.; Xie, K.; Dai, G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ 2020, 8, e8950. [Google Scholar] [CrossRef] [PubMed]
- Takács, R.; Póliska, S.; Juhász, T.; Barna, K.B.; Matta, C. Isolation of High-Quality Total RNA from Small Animal Articular Cartilage for Next-Generation Sequencing. Curr. Protoc. 2023, 3, e692. [Google Scholar] [CrossRef]
- Gaines, D.; Brodsky, E.; Kaur, H.; Nestorova, G.G. RNA capture pin technology: Investigating long-term stability and mRNA purification specificity of oligonucleotide immobilization on gold and streptavidin surfaces. Anal. Bioanal. Chem. 2023; Epub ahead of print. [Google Scholar] [CrossRef]
- Liu, C.; Chen, Z.; Chen, J.; Wang, S.; Li, J.; Mao, X. Transcriptome analysis reveals the potential mechanism of carotenoids change in hepatopancreas under low-temperature storage from swimming crab (Portunus trituberculatus). Food Chem. 2023, 408, 135241. [Google Scholar] [CrossRef] [PubMed]
- Wilton, R.; Szalay, A.S. Performance optimization in DNA short-read alignment. Bioinformatics 2022, 38, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, Z.; Zhu, R.; Wang, F.; Cheng, Y.; Liu, Y. Three Differential Expression Analysis Methods for RNA Sequencing: Limma, EdgeR, DESeq2. J. Vis. Exp. 2021, 175, 62528. [Google Scholar] [CrossRef]
- Tan, L.P.; Gao, R.F.; Yin, X.; Chen, X.M.; Li, F.F.; Yuan, L.; He, J.L. The expression of lincRNA AC027700.1 in mouse decidualization. Yi Chuan 2022, 44, 168–177. [Google Scholar] [CrossRef]
- Przybyła, W.; Gjersvoll Paulsen, K.M.; Mishra, C.K.; Nygård, S.; Engebretsen, S.; Ruud, E.; Trøen, G.; Beiske, K.; Baumbusch, L.O. Whole exome sequencing of high-risk neuroblastoma identifies novel non-synonymous variants. PLoS ONE 2022, 17, e0273280. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nadda, N.; Paul, S.; Gamanagatti, S.; Dash, N.R.; Vanamail, P.; Saraya, A.; Shalimar; Nayak, B. Evaluation of the cell-free DNA integrity index as a liquid biopsy marker to differentiate hepatocellular carcinoma from chronic liver disease. Front. Mol. Biosci. 2022, 9, 1024193. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Wu, P.; Ling, X.; Wang, Q.; Zhou, K.; Li, P.; Zhang, L.; Ye, H.; Zhang, Q.; et al. Transcriptome Sequencing Analysis of circRNA in Skeletal Muscle between Fast- and Slow-Growing Chickens at Embryonic Stages. Animals 2022, 12, 3166. [Google Scholar] [CrossRef]
- Soglia, F.; Petracci, M.; Davoli, R.; Zappaterra, M. A critical review of the mechanisms involved in the occurrence of growth-related abnormalities affecting broiler chicken breast muscles. Poult. Sci. 2021, 100, 101180. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, X.; Zhou, K.; Ling, X.; Zhang, J.; Wu, P.; Zhang, T.; Xie, K.; Dai, G. miRNA-10a-5p Targeting the BCL6 Gene Regulates Proliferation, Differentiation and Apoptosis of Chicken Myoblasts. Int. J. Mol. Sci. 2022, 23, 79545. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ran, J.; Li, J.; Yu, C.; Cui, Z.; Amevor, F.K.; Wang, Y.; Jiang, X.; Qiu, M.; Du, H.; et al. miR-21-5p Regulates the Proliferation and Differentiation of Skeletal Muscle Satellite Cells by Targeting KLF3 in Chicken. Genes 2021, 12, 814. [Google Scholar] [CrossRef]
- Cao, X.; Tang, S.; Du, F.; Li, H.; Shen, X.; Li, D.; Wang, Y.; Zhang, Z.; Xia, L.; Zhu, Q.; et al. miR-99a-5p Regulates the Proliferation and Differentiation of Skeletal Muscle Satellite Cells by Targeting MTMR3 in Chicken. Genes 2020, 11, 369. [Google Scholar] [CrossRef]
- Guglielmi, A. A complete overview of REEP1: Old and new insights on its role in hereditary spastic paraplegia and neurodegeneration. Rev. Neurosci. 2020, 31, 351–362. [Google Scholar] [CrossRef]
- Qin, S.; You, P.; Yu, H.; Su, B. REEP1 Preserves Motor Function in SOD1(G93A) Mice by Improving Mitochondrial Function via Interaction with NDUFA4. Neurosci. Bull. 2022, 39, 929–946. [Google Scholar] [CrossRef]
- Li, J.; Zhao, B.; Chen, S.; Wang, Z.; Shi, K.; Lei, B.; Cao, C.; Ke, Z.; Wang, R. Downhill running induced DNA damage enhances mitochondrial membrane permeability by facilitating ER-mitochondria signaling. J. Muscle Res. Cell Motil. 2022, 43, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Kramer, G.; Steiner, G.E.; Neumayer, C.; Prinz-Kashani, M.; Hohenfellner, M.; Gomha, M.; Ghoneim, M.; Newman, M.; Marberger, M. Over-expression of anti-CD75 reactive proteins on distal and collecting renal tubular epithelial cells in calcium-oxalate stone-forming kidneys in Egypt. BJU Int. 2004, 93, 822–826. [Google Scholar] [CrossRef] [PubMed]
- Hait, N.C.; Maiti, A.; Wu, R.; Andersen, V.L.; Hsu, C.C.; Wu, Y.; Chapla, D.G.; Takabe, K.; Rusiniak, M.E.; Bshara, W.; et al. Extracellular sialyltransferase st6gal1 in breast tumor cell growth and invasiveness. Cancer Gene Ther. 2022, 29, 1662–1675. [Google Scholar] [CrossRef]
- Gc, S.; Bellis, S.L.; Hjelmeland, A.B. ST6Gal1: Oncogenic signaling pathways and targets. Front. Mol. Biosci. 2022, 9, 962908. [Google Scholar] [CrossRef] [PubMed]
- Dorsett, K.A.; Marciel, M.P.; Hwang, J.; Ankenbauer, K.E.; Bhalerao, N.; Bellis, S.L. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2021, 31, 530–539. [Google Scholar] [CrossRef]
- Osseni, A.; Ravel-Chapuis, A.; Belotti, E.; Scionti, I.; Gangloff, Y.G.; Moncollin, V.; Mazelin, L.; Mounier, R.; Leblanc, P.; Jasmin, B.J.; et al. Pharmacological inhibition of HDAC6 improves muscle phenotypes in dystrophin-deficient mice by downregulating TGF-β via Smad3 acetylation. Nat. Commun. 2022, 13, 7108. [Google Scholar] [CrossRef]
- Endo, T. Mammalian O-mannosyl glycans: Biochemistry and glycopathology. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 39–51. [Google Scholar] [CrossRef]
- Wang, Y.C.; Jiang, R.R.; Kang, X.T.; Li, Z.J.; Han, R.L.; Geng, J.; Fu, J.X.; Wang, J.F.; Wu, J.P. Identification of single nucleotide polymorphisms in the ASB15 gene and their associations with chicken growth and carcass traits. Genet. Mol. Res. 2015, 14, 11377–11388. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Li, Z.J.; Han, R.L.; Xu, C.L.; Wang, S.H.; Sun, G.R.; Wang, S.H.; Wu, J.P.; Kang, X.T. Promoter analysis and tissue expression of the chicken ASB15 gene. Br. Poult. Sci. 2017, 58, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.C.; Han, R.L.; Li, Z.J.; Geng, J.; Tian, Y.D.; Jiang, R.R.; Wu, J.P.; Kang, X.T. Polymorphisms of Flanking Region of the ASB15 Gene and Their Associations with Performance Traits in Chicken. Anim. Biotechnol. 2017, 28, 53–60. [Google Scholar] [CrossRef]
- Vargas-Franco, D.; Kalra, R.; Draper, I.; Pacak, C.A.; Asakura, A.; Kang, P.B. The Notch signaling pathway in skeletal muscle health and disease. Muscle Nerve 2022, 66, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Mo, J.; Lu, Y.; Zhu, S.; Feng, L.; Qi, W.; Chen, X.; Xie, B.; Chen, B.; Lan, G.; Liang, J. Genome-Wide Association Studies, Runs of Homozygosity Analysis, and Copy Number Variation Detection to Identify Reproduction-Related Genes in Bama Xiang Pigs. Front. Vet. Sci. 2022, 9, 892815. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Du, X.; Wen, L.; Li, Y.; Qin, J.; Chen, Z.; Huang, Y.; Wu, X.; Luo, H.; Lin, Y.; et al. Transcriptome analysis reveals the involvement of ubiquitin-proteasome pathway in the regulation of muscle growth of rice flower carp. Comp. Biochem. Physiol. Part D Genom. Proteom. 2022, 41, 100948. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mei, Y.; Hou, M. Knockdown RBM15 Inhibits Colorectal Cancer Cell Proliferation and Metastasis Via N6-Methyladenosine (m6A) Modification of MyD88 mRNA. Cancer Biother. Radiopharm. 2022, 37, 976–986. [Google Scholar] [CrossRef]
- Zeng, X.; Chen, K.; Li, L.; Tian, J.; Ruan, W.; Hu, Z.; Peng, D.; Chen, Z. Epigenetic activation of RBM15 promotes clear cell renal cell carcinoma growth, metastasis and macrophage infiltration by regulating the m6A modification of CXCL11. Free Radic. Biol. Med. 2022, 184, 135–147. [Google Scholar] [CrossRef]
- Ma, M.; Wang, W.; Wang, B.; Yang, Y.; Huang, Y.; Zhao, G.; Ye, L. The prognostic value of N6-methyladenosine RBM15 regulators in lung adenocarcinoma. Cell Mol. Biol. 2022, 68, 130–139. [Google Scholar] [CrossRef]
- Chen, B.; Liu, S.; Zhang, W.; Xiong, T.; Zhou, M.; Hu, X.; Mao, H.; Liu, S. Profiling Analysis of N6-Methyladenosine mRNA Methylation Reveals Differential m6A Patterns during the Embryonic Skeletal Muscle Development of Ducks. Animals 2022, 12, 2593. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Liu, L.; Li, C.; Liang, Z.; Huang, Z.; Wang, Q.; Li, S.; Zhao, Z. Fat mass- and obesity-associated (FTO) gene promoted myoblast differentiation through the focal adhesion pathway in chicken. 3 Biotech 2020, 10, 403. [Google Scholar] [CrossRef]
- Cui, C.; Yin, H.; Han, S.; Zhang, Y.; Zhang, Y.; Zhu, Q. Quantitative proteomic and phosphoproteomic analysis of chicken skeletal muscle during embryonic development. Anim. Biotechnol. 2023, 34, 122–133. [Google Scholar] [CrossRef]
- Metzger, K.; Kalbe, C.; Siengdee, P.; Ponsuksili, S. The effects of temperature and donor piglet age on the transcriptomic profile and energy metabolism of myoblasts. Front. Physiol. 2022, 13, 979283. [Google Scholar] [CrossRef] [PubMed]
- Liao, Z.; Lan, H.; Jian, X.; Huang, J.; Wang, H.; Hu, J.; Liao, H. Myofiber directs macrophages IL-10-Vav1-Rac1 efferocytosis pathway in inflamed muscle following CTX myoinjury by activating the intrinsic TGF-β signaling. Cell Commun. Signal. 2023, 21, 168. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Huang, J.; Jian, X.; Wang, H.; Lan, H.; Liao, Z.; Gu, R.; Hu, J.; Liao, H. IRE1α arm of unfolded protein response in muscle-specific TGF-β signaling-mediated regulation of muscle cell immunological properties. Cell Mol. Biol. Lett. 2023, 28, 15. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Cao, Z.; Pan, Z.; Zhao, C.; Xue, M.; Yang, F.; Chen, J. Butyrate promotes C2C12 myoblast proliferation by activating ERK/MAPK pathway. Mol. Omics 2023, 19, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, W.; Liu, P.; Qian, S.; Tao, S.; Huang, M.; Xu, W.; Li, C.; Chen, X.; Lin, H.; et al. Role of lncRNA Has2os in Skeletal Muscle Differentiation and Regeneration. Cells 2022, 11, 3497. [Google Scholar] [CrossRef] [PubMed]
- McCorquodale, D.S., 3rd; Ozomaro, U.; Huang, J.; Montenegro, G.; Kushman, A.; Citrigno, L.; Price, J.; Speziani, F.; Pericak-Vance, M.A.; Züchner, S. Variant screening of spastin, atlastin, and REEP1 in hereditary spastic paraplegia. Clin. Genet. 2011, 79, 523–530. [Google Scholar] [CrossRef] [PubMed]
Sample | Raw Reads | Clean Reads | Error Rate | Q20 | Q30 | GC_ pct |
---|---|---|---|---|---|---|
mimic_1 | 46,980,614 | 44,438,956 | 0.03 | 96.08% | 90.12% | 51.65% |
mimic_2 | 43,638,870 | 41,261,988 | 0.03 | 96.34% | 90.68% | 50.73% |
mimic_3 | 46,386,290 | 44,033,654 | 0.03 | 96.41% | 90.85% | 51.03% |
mimic_4 | 47,859,392 | 45,430,248 | 0.03 | 96.14% | 90.30% | 51.36% |
NC_1 | 41,796,294 | 37,958,990 | 0.03 | 96.28% | 90.42% | 48.71% |
NC_2 | 47,161,432 | 45,087,540 | 0.03 | 96.62% | 91.18% | 49.07% |
NC_3 | 41,438,596 | 38,035,454 | 0.03 | 96.02% | 89.94% | 49.64% |
NC_4 | 46,961,062 | 42,302,224 | 0.03 | 96.54% | 90.92% | 48.09% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ling, X.; Wang, Q.; Wu, P.; Zhou, K.; Zhang, J.; Zhang, G. Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis. Genes 2023, 14, 1764. https://doi.org/10.3390/genes14091764
Ling X, Wang Q, Wu P, Zhou K, Zhang J, Zhang G. Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis. Genes. 2023; 14(9):1764. https://doi.org/10.3390/genes14091764
Chicago/Turabian StyleLing, Xuanze, Qifan Wang, Pengfei Wu, Kaizhi Zhou, Jin Zhang, and Genxi Zhang. 2023. "Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis" Genes 14, no. 9: 1764. https://doi.org/10.3390/genes14091764
APA StyleLing, X., Wang, Q., Wu, P., Zhou, K., Zhang, J., & Zhang, G. (2023). Exploration of Potential Target Genes of miR-24-3p in Chicken Myoblasts by Transcriptome Sequencing Analysis. Genes, 14(9), 1764. https://doi.org/10.3390/genes14091764