Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population and Sample Recruitment
2.2. CTC Enrichment and Staining
2.3. Extraction of DNA and RNA and cDNA Conversion
2.4. Whole-Genome Amplification (WGA) Reaction
2.5. Primer Design
2.6. Quantitative Real-Time Polymerase Chain Reaction Analysis
2.7. High-Resolution Melt (HRM) Curve Analysis
2.8. Sanger Sequencing
2.9. Statistical Analysis
3. Results
3.1. CTCs Identification
3.2. Identification of KRAS Mutations in CTCs and CRC Tissues
3.3. Correlation between KRAS and CTLA-4 mRNA Expression
3.4. Clinicopathological Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira, F.; Ferreira, A.; Reis, C.A.; Sousa, M.J.; Oliveira, M.J.; Preto, A. KRAS as a Modulator of the Inflammatory Tumor Microenvironment: Therapeutic Implications. Cells 2022, 11, 398. [Google Scholar] [CrossRef] [PubMed]
- Matikas, A.; Voutsina, A.; Lagoudaki, E.; Hatzidaki, D.; Trypaki, M.; Stoupis, G.; Tzardi, M.; Mavroudis, D.; Georgoulias, V. Detection of KRAS Exon 2 Mutations in Circulating Tumor Cells Isolated by the ISET System from Patients with RAS Wild Type Metastatic Colorectal Cancer. Transl. Oncol. 2017, 10, 693–698. [Google Scholar] [CrossRef] [PubMed]
- De Roock, W.; Claes, B.; Bernasconi, D.; De Schutter, J.; Biesmans, B.; Fountzilas, G.; Kalogeras, K.T.; Kotoula, V.; Papamichael, D.; Laurent-Puig, P. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapy-refractory metastatic colorectal cancer: A retrospective consortium analysis. Lancet Oncol. 2010, 11, 753–762. [Google Scholar] [CrossRef]
- Lenz, H.J.; Van Cutsem, E.; Luisa Limon, M.; Wong, K.Y.M.; Hendlisz, A.; Aglietta, M.; García-Alfonso, P.; Neyns, B.; Luppi, G.; Cardin, D.B.; et al. First-Line Nivolumab plus low-dose Ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: The Phase II CheckMate 142 study. J. Clin. Oncol. 2022, 40, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Barbee, M.S.; Ogunniyi, A.; Horvat, T.Z.; Dang, T.-O. Current Status and Future Directions of the Immune Checkpoint Inhibitors Ipilimumab, Pembrolizumab, and Nivolumab in Oncology. Ann. Pharmacother. 2015, 49, 907–937. [Google Scholar] [CrossRef]
- Chen, N.; Fang, W.; Lin, Z.; Peng, P.; Wang, J.; Zhan, J.; Hong, S.; Huang, J.; Liu, L.; Sheng, J.; et al. KRAS mutation-induced upregulation of PD-L1 mediates immune escape in human lung adenocarcinoma. Cancer Immunol. Immunother. 2017, 66, 1175–1187. [Google Scholar] [CrossRef]
- Kim, E.Y.; Kim, A.; Kim, S.K.; Chang, Y.S. MYC expression correlates with PD-L1 expression in non-small cell lung cancer. Lung Cancer 2017, 110, 63–67. [Google Scholar] [CrossRef]
- Casey, S.C.; Tong, L.; Li, Y.; Do, R.; Walz, S.; Fitzgerald, K.N.; Gouw, A.M.; Baylot, V.; Gütgemann, I.; Eilers, M.; et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science 2016, 352, 227–231. [Google Scholar] [CrossRef]
- Glorieux, C.; Xia, X.; He, Y.Q.; Hu, Y.; Cremer, K.; Robert, A.; Liu, J.; Wang, F.; Ling, J.; Chiao, P.J.; et al. Regulation of PD-L1 expression in K-ras-driven cancers through ROS-mediated FGFR1 signaling. Redox Biol. 2021, 38, 101780. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Duanmu, J.; Li, T.; Jiang, Q. KRAS mutations are negatively correlated with immunity in colon cancer. Aging 2020, 13, 750–768. [Google Scholar] [CrossRef]
- Cha, Y.J.; Kim, H.R.; Lee, C.Y.; Cho, B.C.; Shim, H.S. Clinicopathological and prognostic significance of programmed cell death ligand-1 expression in lung adenocarcinoma and its relationship with p53 status. Lung Cancer 2016, 97, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Layer, J.P.; Kronmüller, M.T.; Quast, T.; Boorn-Konijnenberg, D.V.D.; Effern, M.; Hinze, D.; Althoff, K.; Schramm, A.; Westermann, F.; Peifer, M. Amplification of N-Myc is associated with a T-cell-poor microenvironment in metastatic neuroblastoma restraining interferon pathway activity and chemokine expression. Oncoimmunology 2017, 6, e1320626. [Google Scholar] [CrossRef] [PubMed]
- Cen, B.; Wei, J.; Wang, D.; Xiong, Y.; Shay, J.W.; DuBois, R.N. Mutant APC promotes tumor immune evasion via PD-L1 in colorectal cancer. Oncogene 2021, 40, 5984–5992. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Chen, D.; Lu, B.; Wang, C.; Zhang, J.; Huang, L.; Wang, X.; Timmons, C.L.; Hu, J.; Liu, B.; et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS ONE 2013, 8, e65821. [Google Scholar] [CrossRef]
- Rosenbaum, M.W.; Bledsoe, J.R.; Morales-Oyarvide, V.; Huynh, T.G.; Mino-Kenudson, M. PD-L1 expression in colorectal cancer is associated with microsatellite instability, BRAF mutation, medullary morphology and cytotoxic tumor-infiltrating lymphocytes. Mod. Pathol. 2016, 29, 1104–1112. [Google Scholar] [CrossRef]
- Thiem, A.; Hesbacher, S.; Kneitz, H.; di Primio, T.; Heppt, M.V.; Hermanns, H.M.; Goebeler, M.; Meierjohann, S.; Houben, R.; Schrama, D. IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression. J. Exp. Clin. Cancer Res. 2019, 38, 397. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Liu, H.; Wei, C.; Ru, H.; Qin, H.; Lai, H.; Meng, Y.; Wu, G.; Xie, W.; et al. Immune landscape and prognostic immune-related genes in KRAS-mutant colorectal cancer patients. J. Transl. Med. 2021, 19, 27. [Google Scholar] [CrossRef]
- Ischenko, I.; D’Amico, S.; Rao, M.; Li, J.; Hayman, M.J.; Powers, S.; Petrenko, O.; Reich, N.C. KRAS drives immune evasion in a genetic model of pancreatic cancer. Nat. Commun. 2021, 12, 1482. [Google Scholar] [CrossRef]
- Zou, J.; Zhuang, M.; Yu, X.; Li, N.; Mao, R.; Wang, Z.; Wang, J.; Wang, X.; Zhou, H.; Zhang, L.; et al. MYC inhibition increases PD-L1 expression induced by IFN-γ in hepatocellular carcinoma cells. Mol. Immunol. 2018, 101, 203–209. [Google Scholar] [CrossRef]
- Blagih, J.; Buck, M.D.; Vousden, K.H. p53, cancer and the immune response. J. Cell. Sci. 2020, 133, jcs237453. [Google Scholar] [CrossRef]
- Kortlever, R.M.; Sodir, N.M.; Wilson, C.H.; Burkhart, D.L.; Pellegrinet, L.; Swigart, L.B.; Littlewood, T.D.; Evan, G.I. Myc cooperates with Ras by programming inflammation and immune suppression. Cell 2017, 171, 1301–1315.e14. [Google Scholar] [CrossRef] [PubMed]
- Coelho, M.A.; de Carné Trécesson, S.; Rana, S.; Zecchin, D.; Moore, C.; Molina-Arcas, M.; East, P.; Spencer-Dene, B.; Nye, E.; Barnouin, K. Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 2017, 47, 1083–1099.e6. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.J.; Punt, C.J.; Iannotti, N.; Saidman, B.H.; Sabbath, K.D.; Gabrail, N.Y.; Picus, J.; Morse, M.; Mitchell, E.; Miller, M.C.; et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J. Clin. Oncol. 2008, 26, 3213–3221. [Google Scholar] [CrossRef] [PubMed]
- Sastre, J.; Maestro, M.L.; Gómez-España, A.; Rivera, F.; Valladares, M.; Massuti, B.; Benavides, M.; Gallén, M.; Marcuello, E.; Abad, A. Circulating tumor cell count is a prognostic factor in metastatic colorectal cancer patients receiving first-line chemotherapy plus bevacizumab: A Spanish Cooperative Group for the Treatment of Digestive Tumors study. Oncologist 2012, 17, 947–955. [Google Scholar] [CrossRef]
- Kalikaki, A.; Politaki, H.; Souglakos, J.; Apostolaki, S.; Papadimitraki, E.; Georgoulia, N.; Tzardi, M.; Mavroudis, D.; Georgoulias, V.; Voutsina, A. KRAS genotypic changes of circulating tumor cells during treatment of patients with metastatic colorectal cancer. PLoS ONE 2014, 9, e104902. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, L.; Han, L.; Tuo, X.; Ma, S.; Wang, Y.; Feng, X.; Liang, D.; Sun, C.; Wang, Q.; et al. The Discordance of Gene Mutations between Circulating Tumor Cells and Primary/Metastatic Tumor. Mol. Ther. Oncolytics 2019, 15, 21–29. [Google Scholar] [CrossRef]
- Casasent, A.K.; Schalck, A.; Gao, R.; Sei, E.; Long, A.; Pangburn, W.; Casasent, T.; Meric-Bernstam, F.; Edgerton, M.E.; Navin, N.E. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell 2018, 172, 205–217.e212. [Google Scholar] [CrossRef]
- Zhang, J.; Fujimoto, J.; Zhang, J.; Wedge, D.C.; Song, X.; Zhang, J.; Seth, S.; Chow, C.-W.; Cao, Y.; Gumbs, C. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014, 346, 256–259. [Google Scholar] [CrossRef]
- Hao, J.-J.; Lin, D.-C.; Dinh, H.Q.; Mayakonda, A.; Jiang, Y.-Y.; Chang, C.; Jiang, Y.; Lu, C.-C.; Shi, Z.-Z.; Xu, X. Spatial intratumoral heterogeneity and temporal clonal evolution in esophageal squamous cell carcinoma. Nat. Genet. 2016, 48, 1500–1507. [Google Scholar] [CrossRef]
- Aktar, S.; Hamid, F.B.; Gamage, S.M.K.; Cheng, T.; Pakneshan, N.; Lu, C.T.; Islam, F.; Gopalan, V.; Lam, A.K.Y. Gene Expression Analysis of Immune Regulatory Genes in Circulating Tumour Cells and Peripheral Blood Mononuclear Cells in Patients with Colorectal Carcinoma. Int. J. Mol. Sci. 2023, 24, 5051. [Google Scholar] [CrossRef]
- Nagtegaal, I.; Arends, M.; Salto-Tellez, M. Colorectal Adenocarcinoma: Tumours of the Colon and Rectum. In World Health Organization Classification of Tumours of the Digestive System; IARC Press: Lyon, France, 2019; pp. 177–187. [Google Scholar]
- Gopalan, V.; Ebrahimi, F.; Islam, F.; Vider, J.; Qallandar, O.B.; Pillai, S.; Lu, C.-T.; Lam, A.K.-Y. Tumour suppressor properties of miR-15a and its regulatory effects on BCL2 and SOX2 proteins in colorectal carcinomas. Exp. Cell Res. 2018, 370, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Hamid, F.B.; Lu, C.T.; Matos, M.; Cheng, T.; Gopalan, V.; Lam, A.K. Enumeration, characterisation and clinicopathological significance of circulating tumour cells in patients with colorectal carcinoma. Cancer Genet. 2021, 254–255, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Gopalan, V.; Wahab, R.; Lee, K.T.; Haque, M.H.; Mamoori, A.; Lu, C.; Smith, R.A.; Lam, A.K. Novel FAM134B mutations and their clinicopathological significance in colorectal cancer. Hum. Genet. 2017, 136, 321–337. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Islam, F.; Gopalan, V.; Wahab, R.; Smith, R.A.; Qiao, B.; Lam, A.K.-Y. Stage dependent expression and tumor suppressive function of FAM134B (JK1) in colon cancer. Mol. Carcinog. 2017, 56, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Gamage, S.M.K.; Islam, F.; Cheng, T.; Aktar, S.; Lu, C.T.; Ranaweera, C.D.; Lee, K.T.W.; Dissabandara, L.; Gopalan, V.; Lam, A.K. HFE variants in colorectal cancer and their clinicopathological correlations. Hum. Pathol. 2021, 117, 9–30. [Google Scholar] [CrossRef]
- Haque, M.H.; Gopalan, V.; Chan, K.-W.; Shiddiky, M.J.; Smith, R.A.; Lam, A.K.-Y. Identification of novel FAM134B (JK1) mutations in oesophageal squamous cell carcinoma. Sci. Rep. 2016, 6, 29173. [Google Scholar] [CrossRef]
- Cheng, T.; Gamage, S.M.K.; Lu, C.-T.; Aktar, S.; Gopalan, V.; Lam, A.K.-y. Polymorphisms in PAH metabolising enzyme CYP1A1 in colorectal cancer and their clinicopathological correlations. Pathol. Res. Pract. 2022, 231, 153801. [Google Scholar] [CrossRef]
- Fabbri, F.; Carloni, S.; Zoli, W.; Ulivi, P.; Gallerani, G.; Fici, P.; Chiadini, E.; Passardi, A.; Frassineti, G.L.; Ragazzini, A.; et al. Detection and recovery of circulating colon cancer cells using a dielectrophoresis-based device: KRAS mutation status in pure CTCs. Cancer Lett. 2013, 335, 225–231. [Google Scholar] [CrossRef]
- Buim, M.E.; Fanelli, M.F.; Souza, V.S.; Romero, J.; Abdallah, E.A.; Mello, C.A.; Alves, V.; Ocea, L.M.; Mingues, N.B.; Barbosa, P.N.; et al. Detection of KRAS mutations in circulating tumor cells from patients with metastatic colorectal cancer. Cancer Biol. Ther. 2015, 16, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Lyberopoulou, A.; Aravantinos, G.; Efstathopoulos, E.P.; Nikiteas, N.; Bouziotis, P.; Isaakidou, A.; Papalois, A.; Marinos, E.; Gazouli, M. Mutational analysis of circulating tumor cells from colorectal cancer patients and correlation with primary tumor tissue. PLoS ONE 2015, 10, e0123902. [Google Scholar] [CrossRef] [PubMed]
- Mostert, B.; Jiang, Y.; Sieuwerts, A.M.; Wang, H.; Bolt-de Vries, J.; Biermann, K.; Kraan, J.; Lalmahomed, Z.; Van Galen, A.; De Weerd, V. KRAS and BRAF mutation status in circulating colorectal tumor cells and their correlation with primary and metastatic tumor tissue. Int. J. Cancer 2013, 133, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Raimondi, C.; Nicolazzo, C.; Gradilone, A.; Giannini, G.; De Falco, E.; Chimenti, I.; Varriale, E.; Hauch, S.; Plappert, L.; Cortesi, E.; et al. Circulating tumor cells: Exploring intratumor heterogeneity of colorectal cancer. Cancer Biol. Ther. 2014, 15, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Guan, Y.; Sun, Y.; Ai, D.; Guo, Q. Tumor heterogeneity and circulating tumor cells. Cancer Lett. 2016, 374, 216–223. [Google Scholar] [CrossRef]
- Suhaimi, N.-A.M.; Foong, Y.M.; San Lee, D.Y.; Phyo, W.M.; Cima, I.; Lee, E.X.W.; Goh, W.L.; Lim, W.-Y.; Chia, K.S.; Kong, S.L. Non-invasive sensitive detection of KRAS and BRAF mutation in circulating tumor cells of colorectal cancer patients. Mol. Oncol. 2015, 9, 850–860. [Google Scholar] [CrossRef]
- El Agy, F.; El Bardai, S.; El Otmani, I.; Benbrahim, Z.; Karim, M.H.; Mazaz, K.; Benjelloun, E.B.; Ousadden, A.; El Abkari, M.; Ibrahimi, S.A.; et al. Mutation status and prognostic value of KRAS and NRAS mutations in Moroccan colon cancer patients: A first report. PLoS ONE 2021, 16, e0248522. [Google Scholar] [CrossRef]
- Mannan, A.; Hahn-Strömberg, V. K-ras mutations are correlated to lymph node metastasis and tumor stage, but not to the growth pattern of colon carcinoma. Apmis 2012, 120, 459–468. [Google Scholar] [CrossRef]
- Rimbert, J.; Tachon, G.; Junca, A.; Villalva, C.; Karayan-Tapon, L.; Tougeron, D. Association between clinicopathological characteristics and RAS mutation in colorectal cancer. Mod. Pathol. 2018, 31, 517–526. [Google Scholar] [CrossRef]
- Liebig, C.; Ayala, G.; Wilks, J.; Verstovsek, G.; Liu, H.; Agarwal, N.; Berger, D.H.; Albo, D. Perineural invasion is an independent predictor of outcome in colorectal cancer. J. Clin. Oncol. 2009, 27, 5131. [Google Scholar] [CrossRef]
- Huh, J.W.; Lee, W.Y.; Shin, J.K.; Park, Y.A.; Cho, Y.B.; Kim, H.C.; Yun, S.H. A novel histologic grading system based on lymphovascular invasion, perineural invasion, and tumor budding in colorectal cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 471–477. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Eresen, A.; Shangguan, J.; Yang, J.; Benson, A.B.; Yaghmai, V.; Zhang, Z. Preoperative prediction of perineural invasion and KRAS mutation in colon cancer using machine learning. J. Cancer Res. Clin. Oncol. 2020, 146, 3165–3174. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (23) |
---|---|
Gender | |
Female | 13 (56.5%) |
Male | 10 (43.5%) |
Age | |
≤60 years | 7 (30.4%) |
>60 years | 16 (69.6%) |
Size | |
≤40 mm | 13 (56.5%) |
>40 mm | 10 (43.5%) |
Site | |
Colon | 13 (56.5%) |
Rectum | 10 (43.5%) |
Grade | |
Well (1) | 4 (17.4%) |
Moderate (2) | 16 (69.6%) |
Poor (3) | 3 (13.0%) |
T Stage | |
I or II | 8 (34.8%) |
III or IV | 15 (65.2%) |
Lymph node status | |
Negative | 12 (52.2%) |
Positive | 11 (47.8%) |
Distant metastasis | |
Negative | 21 (91.3%) |
Positive | 2 (8.7%) |
Overall pathological stage | |
I or II | 12 (52.2%) |
III or IV | 11 (47.8%) |
Microsatellite instability (MSI) | |
Stable | 19 (82.6%) |
High | 4 (17.4%) |
Patient ID | # of CTCs | KRAS Mutation | |
---|---|---|---|
CTC | Tumour | ||
Patient 1 | 32 | WT | c.35G>T/G12V |
Patient 2 | 12 | c.35G>A7G12D | WT |
Patient 3 | 14 | WT | c.35G>T/G12V |
Patient 4 | 4 | WT | WT |
Patient 5 | 2 | WT | c.34G>A/G12S |
Patient 6 | 2 | WT | c.34G>A/G12S |
Patient 7 | 6 | WT | c.35G>T/G12V |
Patient 8 | 2 | WT | c.35G>T/G12V |
Patient 9 | 6 | c.35G>A7G12D | c.35G>T/G12V |
Patient 10 | 4 | c.38G>C/G13A | c.35G>T/G12V |
Patient 11 | 16 | WT | c.38G>A/G13D |
Patient 12 | 4 | WT | WT |
Patient 13 | 10 | WT | WT |
Patient 14 | 6 | WT | WT |
Patient 15 | 52 | WT | c.35G>T/G12V |
Patient 16 | 80 | WT | WT |
Patient 17 | 30 | WT | WT |
Patient 18 | 200 | WT | c.35G>C/G12A |
Patient 19 | 20 | WT | c.35G>A7/G12D |
Patient 20 | 6 | WT | WT |
Patient 21 | 4 | WT | c.34G>A/G12S |
Patient 22 | 100 | WT | c.38G>A/G13D |
Patient 23 | 80 | WT | c.38G>A/G13D |
KRAS Mutation Status | KRAS mRNA Expression Level in CTC Fraction | CTLA-4 mRNA Expression Level in CTC Fraction | ||||||
---|---|---|---|---|---|---|---|---|
Low | High | Total | p-Value | Low | High | Total | p-Value | |
KRAS WT | 4 | 3 | 7 | 0.56 | 4 | 3 | 7 | 0.24 |
KRAS MT | 8 | 8 | 16 | 5 | 11 | 16 |
Characteristics | CTCs | Cancer Tissue | ||||
---|---|---|---|---|---|---|
MT (%) | WT (%) | p-Value | MT (%) | WT (%) | p-Value | |
Gender | ||||||
Female | 1 (7.7%) | 12 (92.3%) | 0.386 | 8 (61.5%) | 5 (38.5%) | 0.54 |
Male | 2 (20.0%) | 8 (80.0%) | 7 (70.0%) | 3 (30.0%) | ||
Age | ||||||
≤60 years | 1 (14.3%) | 6 (85.7%) | 0.684 | 3 (42.9%) | 4 (57.1%) | 0.14 |
>60 years | 2 (12.5%) | 14 (87.5%) | 12 (75.0%) | 4 (25.0%) | ||
Size | ||||||
≤40 mm | 2 (15.4%) | 11 (84.6%) | 0.602 | 8 (61.5%) | 5 (38.5%) | 0.51 |
>40 mm | 1 (10.0%) | 9 (90.0%) | 7 (70.0%) | 3 (30.0%) | ||
Site | ||||||
Colon | 2 (15.4%) | 11 (84.6%) | 0.602 | 8 (61.5%) | 5 (38.5%) | 0.51 |
Rectum | 1 (10.0%) | 9 (90.0%) | 7 (70.0%) | 3 (30.0%) | ||
Grade | ||||||
Well (1) | 0 (0%) | 4 (100%) | 0.039 | 2 (50%) | 2 (50.0%) | 0.79 |
Moderate (2) | 1 (6.25%) | 15 (93.8%) | 11 (68.8%) | 5 (31.3%) | ||
Poor (3) | 2 (66.7%) | 1 (33.3%) | 2 (66.7%) | 1 (33.3%) | ||
T Stage | ||||||
I or II | 0 (0%) | 8 (100%) | 0.094 | 4 (50.0%) | 4 (50.0%) | 0.09 |
III or IV | 3 (20.0%) | 12 (80.0%) | 11 (73.3%) | 4 (26.7%) | ||
Lymph node status | ||||||
Negative | 0 (0%) | 12 (100%) | 0.027 | 7 (58.3%) | 5 (41.7%) | 0.39 |
Positive | 3 (27.3%) | 8 (72.7%) | 8 (72.7%) | 3 (27.3%) | ||
Distant metastasis | ||||||
Negative | 3 (14.3%) | 18 (85.7%) | 0.444 | 13 (61.9%) | 8 (38.1%) | 0.18 |
Positive | 0 (0%) | 2 (100%) | 2 (100%) | 0 (0%) | ||
Overall pathological stage | ||||||
I or II | 0 (0%) | 12 (100%) | 0.027 | 7 (58.3%) | 5 (41.7%) | 0.39 |
III or IV | 3 (27.3%) | 8 (72.7%) | 8 (72.7%) | 3 (27.3%) | ||
MSI | ||||||
Stable | 3 (15.8%) | 16 (84.2%) | 0.266 | 14 (73.7%) | 5 (26.3%) | 0.06 |
High | 0 (0%) | 4 (100%) | 1 (25.0%) | 3 (75.0%) | ||
Perineural invasion | ||||||
Negative | 1 (5.0%) | 19 (95.0%) | 0.014 | 12 (60.0%) | 8 (40.0%) | 0.09 |
Positive | 2 (66.7%) | 1 (33.3%) | 3 (100%) | 0 (0%) | ||
Lymphovascular invasion | ||||||
Negative | 1 (6.7%) | 14 (93.3%) | 0.226 | 8 (53.3%) | 7 (46.7%) | 0.089 |
Positive | 2 (25.0%) | 6 (75.0%) | 7 (87.5%) | 1 (12.5%) |
Characteristics | Total (23) | Low | High | p-Value |
---|---|---|---|---|
Gender | ||||
Female | 13 (56.5%) | 6 (46.2%) | 7 (53.8%) | 0.552 |
Male | 10 (43.5%) | 4 (40.0%) | 6 (60.0%) | |
Age | ||||
≤60 years | 7 (30.4%) | 1 (14.3%) | 6 (85.7%) | 0.05 |
>60 years | 16 (69.6%) | 9 (56.3%) | 7 (43.8%) | |
Size | ||||
≤40 mm | 13 (56.5%) | 5 (53.8%) | 8 (46.2%) | 0.448 |
>40 mm | 10 (43.5%) | 5 (50.0%) | 5 (50.0%) | |
Site | ||||
Colon | 13 (56.5%) | 7 (53.8%) | 6 (46.2%) | 0.237 |
Rectum | 10 (43.5%) | 3 (30.0%) | 7 (70.0%) | |
Grade | ||||
Well (1) | 4 (17.4%) | 1 (25.0%) | 3 (75.0%) | 0.608 |
Moderate (2) | 16 (69.6%) | 8 (50.0%) | 8 (50.0%) | |
Poor (3) | 3 (13.04%) | 1 (33.3%) | 2 (66.7%) | |
T Stage | ||||
I or II | 8 (34.8%) | 4 (50.0%) | 4 (50.0%) | 0.490 |
III or IV | 15 (65.2%) | 6 (40.0%) | 9 (60.0%) | |
Lymph node status | ||||
Negative | 12 (52.2%) | 7 (58.3%) | 5 (41.7%) | 0.129 |
Positive | 11 (47.8%) | 3 (27.3%) | 8 (72.75) | |
Distant metastasis | ||||
Negative | 21 (91.3%) | 9 (42.9%) | 12 (57.1%) | 0.692 |
Positive | 2 (8.7%) | 1 (50.0%) | 1 (50.0%) | |
Overall pathological stage | ||||
I or II | 12 (52.2%) | 7 (58.3%) | 5 (41.7%) | 0.129 |
III or IV | 11 (47.8%) | 3 (27.3%) | 8 (72.7%) | |
Microsatellite instability (MSI) | ||||
Stable | 19 (82.6%) | 9 (47.4%) | 10 (52.6%) | 0.401 |
High | 4 (17.4%) | 1 (25.0%) | 3 (75.0%) |
Characteristics | Total (23) | Low | High | p-Value |
---|---|---|---|---|
Gender | ||||
Female | 13 (56.5%) | 4 (30.8%) | 9 (69.2%) | 0.306 |
Male | 10 (43.5%) | 5 (50.0%) | 5 (50.0%) | |
Age | ||||
≤60 years | 7 (30.4%) | 3 (42.9%) | 4 (57.1%) | 0.582 |
>60 years | 16 (69.6%) | 6 (37.5%) | 10 (62.5%) | |
Size | ||||
≤40 mm | 13 (56.5%) | 6 (46.2%) | 7 (53.8%) | 0.363 |
>40 mm | 10 (43.5%) | 3 (30%) | 7 (70%) | |
Site | ||||
Colon | 13 (56.5%) | 6 (46.2%) | 7 (53.8%) | 0.363 |
Rectum | 10 (43.5%) | 3 (30%) | 7 (70%) | |
Grade | ||||
Well (1) | 4 (17.4%) | 4 (100%) | 0 (0%) | 0.011 |
Moderate (2) | 16 (69.6%) | 4 (25.0%) | 12 (75.0%) | |
Poor (3) | 3 (13.0%) | 1 (33.3%) | 2 (66.7%) | |
T Stage | ||||
I or II | 8 (34.7%) | 5 (62.5%) | 3 (37.5%) | 0.036 |
III or IV | 15 (65.2%) | 4 (26.7%) | 11 (73.3%) | |
Lymph node status | ||||
Negative | 12 (52.2%) | 6 (50.0%) | 6 (50%) | 0.247 |
Positive | 11 (47.8%) | 3 (27.3%) | 8 (72.7%) | |
Distant metastasis | ||||
Negative | 21 (91.3%) | 9 (42.9%) | 12 (57.1%) | 0.147 |
Positive | 2 (8.7%) | 0 (0%) | 2 (100%) | |
Overall pathological stage | ||||
I or II | 12 (52.2%) | 6 (50.0%) | 6 (50.0%) | 0.247 |
III or IV | 11 (47.8%) | 3 (27.3%) | 8 (72.7%) | |
Microsatellite instability (MSI) | ||||
Stable | 19 (82.6%) | 6 (31.6%) | 13 (68.4%) | 0.107 |
High | 4 (17.4%) | 3 (75%) | 1 (25%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktar, S.; Islam, F.; Cheng, T.; Gamage, S.M.K.; Choudhury, I.N.; Islam, M.S.; Lu, C.T.; Hamid, F.B.; Ishida, H.; Abe, I.; et al. Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer. Genes 2023, 14, 1808. https://doi.org/10.3390/genes14091808
Aktar S, Islam F, Cheng T, Gamage SMK, Choudhury IN, Islam MS, Lu CT, Hamid FB, Ishida H, Abe I, et al. Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer. Genes. 2023; 14(9):1808. https://doi.org/10.3390/genes14091808
Chicago/Turabian StyleAktar, Sharmin, Farhadul Islam, Tracie Cheng, Sujani Madhurika Kodagoda Gamage, Indra Neil Choudhury, Md Sajedul Islam, Cu Tai Lu, Faysal Bin Hamid, Hirotaka Ishida, Ichiro Abe, and et al. 2023. "Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer" Genes 14, no. 9: 1808. https://doi.org/10.3390/genes14091808
APA StyleAktar, S., Islam, F., Cheng, T., Gamage, S. M. K., Choudhury, I. N., Islam, M. S., Lu, C. T., Hamid, F. B., Ishida, H., Abe, I., Xie, N., Gopalan, V., & Lam, A. K. (2023). Correlation between KRAS Mutation and CTLA-4 mRNA Expression in Circulating Tumour Cells: Clinical Implications in Colorectal Cancer. Genes, 14(9), 1808. https://doi.org/10.3390/genes14091808