Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat (Triticum aestivum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Trials
2.2. Mixograph-Related Traits Evaluated and Statistical Analyses
2.3. Genotyping and Population Structure
2.4. Association Mapping and the Identification of Candidate Genes
3. Results
3.1. Genotyping and Population Structure Analysis
3.2. Phenotypic Evaluation
3.3. Genome-Wide Association Studies
3.4. Candidate Genes
4. Discussion
4.1. Comparison with QTLs or Genes in Previous Studies
4.2. Candidate Gene Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jin, H.; Zhang, Y.; Li, G.; Mu, P.; Fan, Z.; Xia, X.; He, Z. Effects of allelic variation of HMW-GS and LMW-GS on mixograph properties and Chinese noodle and steamed bread qualities in a set of Aroona near-isogenic wheat lines. J. Cereal Sci. 2013, 57, 146–152. [Google Scholar] [CrossRef]
- Barakat, M.; Al-Doss, A.; Moustafa, K.; Motawei, M.; Alamri, M.; Mergoum, M.; Sallam, M.; Al-Ashkar, I. QTL analysis of farinograph and mixograph related traits in spring wheat under heat stress conditions. Mol. Biol. Rep. 2020, 47, 5477–5486. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Singh, N.; Kaur, S.; Ahlawat, A.K.; Singh, A.M. Relationships of flour solvent retention capacity, secondary structure and rheological properties with the cookie making characteristics of wheat cultivars. Food Chem. 2014, 158, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Boehm, J.D.; Ibba, M.I.; Kiszonas, A.M.; Morris, C.F. End-use quality of CIMMYT-derived soft-kernel durum wheat germplasm: II. Dough strength and pan bread quality. Crop Sci. 2017, 57, 1485–1494. [Google Scholar] [CrossRef]
- Pu, H.; Wei, J.; Wang, L.; Huang, J.; Chen, X.; Luo, C.; Liu, S.; Zhang, H. Effects of potato/wheat flours ratio on mixing properties of dough and quality of noodles. J. Cereal Sci. 2017, 76, 236–242. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z.; Appels, R.; Xia, X. Functional markers in wheat: Current status and future prospects. Theor. Appl. Genet. 2012, 125, 1–10. [Google Scholar] [CrossRef]
- He, Z.H.; Zhuang, Q.S.; Cheng, S.H.; Yu, Z.W.; Zhao, Z.D.; Liu, X. Wheat production and technology improvement in China. J. Agric. 2018, 8, 107, (In Chinese with English abstract). [Google Scholar]
- Rasheed, A.; Hao, Y.; Xia, X.; Khan, A.; Xu, Y.; Varshney, R.K.; He, Z. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives. Mol. Plant 2017, 10, 1047–1064. [Google Scholar] [CrossRef]
- Prashant, R.; Mani, E.; Rai, R.; Gupta, R.K.; Tiwari, R.; Dholakia, B.; Oak, M.; Röder, M.; Kadoo, N.; Gupta, V. Genotype × environment interactions and QTL clusters underlying dough rheology traits in Triticum aestivum L. J. Cereal Sci. 2015, 64, 82–91. [Google Scholar] [CrossRef]
- Sakr, N.; Rhazi, L.; Aussenac, T. Bread wheat quality under limiting environmental conditions: II—Rheological properties of Lebanese wheat genotypes. J. Saudi Soc. Agric. Sci. 2021, 20, 235–242. [Google Scholar] [CrossRef]
- Williams, R.M.; O’Brien, L.; Eagles, H.A.; Solah, V.A.; Jayasena, V. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agr. Res. 2008, 59, 95–111. [Google Scholar] [CrossRef]
- Cappelli, A.; Oliva, N.; Cini, E. Stone milling versus roller milling: A systematic review of the effects on wheat flour quality, dough rheology, and bread characteristics. Trends Food Sci. Technol. 2020, 97, 147–155. [Google Scholar] [CrossRef]
- McCartney, C.A.; Somers, D.J.; Lukow, O.; Ames, N.; Noll, J.; Cloutier, S.; Humphreys, D.G.; McCallum, B.D. QTL analysis of quality traits in the spring wheat cross RL4452 × ‘AC Domain’. Plant Breed. 2006, 125, 565–575. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Xiao, Y.; Yan, J.; Zhang, Y.; Zhang, Y.; Ma, C.; Xia, X.; He, Z. QTL mapping for milling, gluten quality, and flour pasting properties in a recombinant inbred line population derived from a Chinese soft × hard wheat cross. Crop Pasture Sci. 2009, 60, 587–597. [Google Scholar] [CrossRef]
- Kerfal, S.; Giraldo, P.; Rodríguez-Quijano, M.; Vázquez, J.F.; Adams, K.; Lukow, O.M.; Röder, M.S.; Somers, D.J.; Carrillo, J.M. Mapping quantitative trait loci (QTLs) associated with dough quality in a soft × hard bread wheat progeny. J. Cereal Sci. 2010, 52, 46–52. [Google Scholar] [CrossRef]
- Zheng, F.F.; Deng, Z.Y.; Shi, C.L.; Zhang, X.Y.; Tian, J.C. QTL mapping for dough mixing characteristics in a recombinant inbred population derived from a waxy × strong gluten wheat (Triticum aestivum L.). J. Integr. Agr. 2013, 12, 951–961. [Google Scholar] [CrossRef]
- Echeverry-Solarte, M.; Kumar, A.; Kianian, S.; Simsek, S.; Alamri, M.S.; Mantovani, E.E.; McClean, P.E.; Deckard, E.L.; Elias, E.; Schatz, B.; et al. New QTL alleles for quality-related traits in spring wheat revealed by RIL population derived from supernumerary × non-supernumerary spikelet genotypes. Theor. Appl. Genet. 2015, 128, 893–912. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol. J. 2014, 12, 787–796. [Google Scholar] [CrossRef]
- Sun, C.; Dong, Z.; Zhao, L.; Ren, Y.; Zhang, N.; Chen, F. The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol. J. 2020, 18, 1354–1360. [Google Scholar] [CrossRef]
- Huang, S.; Wu, J.; Wang, X.; Mu, J.; Xu, Z.; Zeng, Q.; Liu, S.; Wang, Q.; Kang, Z.; Han, D. Utilization of the genomewide wheat 55K SNP array for genetic analysis of stripe rust resistance in common wheat line P9936. Phytopathology 2019, 109, 819–827. [Google Scholar] [CrossRef]
- Xu, Y.; Crouch, J.H. Marker-assisted selection in plant breeding: From publications to practice. Crop Sci. 2008, 48, 391–407. [Google Scholar] [CrossRef]
- Zhu, C.; Gore, M.; Buckler, E.S.; Yu, J. Status and prospects of association mapping in plants. Plant Genome 2008, 1, 5–20. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Thornsberry, J.M.; Buckler, E.S. Structure of linkage disequilibrium in plants. Annu. Rev. Plant Biol. 2003, 54, 357–374. [Google Scholar] [CrossRef] [PubMed]
- Breseghello, F.; Sorrells, M.E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 2006, 172, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; He, Z.; Rasheed, A.; Wen, W.; Yan, J.; Zhang, P.; Wan, Y.; Zhang, Y.; Xie, C.; Xia, X. Genome-wide association mapping of black point reaction in common wheat (Triticum aestivum L.). BMC Plant Biol. 2017, 17, 220. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Xu, W.; Peng, C.; Li, C.; Zhang, Y.; Hu, L. Identification and validation of a novel locus, Qpm-3BL, for adult plant resistance to powdery mildew in wheat using multilocus GWAS. BMC Plant Biol. 2021, 21, 357. [Google Scholar] [CrossRef] [PubMed]
- Battenfield, S.D.; Sheridan, J.L.; Silva, L.D.C.E.; Miclaus, K.J.; Dreisigacker, S.; Wolfinger, R.D.; Peña, R.J.; Singh, R.P.; Jackson, E.W.; Fritz, A.K.; et al. Breeding-assisted genomics: Applying meta-GWAS for milling and baking quality in CIMMYT wheat breeding program. PLoS ONE 2018, 13, e0204757. [Google Scholar] [CrossRef]
- Zhang-Biehn, S.; Fritz, A.K.; Zhang, G.; Evers, B.; Regan, R.; Poland, J. Accelerating wheat breeding for end-use quality through association mapping and multivariate genomic prediction. Plant Genome 2021, 14, e20164. [Google Scholar] [CrossRef]
- Thoen, M.P.M.; Olivas, N.H.D.; Kloth, K.J.; Coolen, S.; Huang, P.; Aarts, M.G.M.; Bac-Molenaar, J.A.; Bakker, J.; Bouwmeester, H.J.; Broekgaarden, C.; et al. Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytol. 2017, 213, 1346–1362. [Google Scholar] [CrossRef]
- Ma, F.; Xu, Y.; Ma, Z.; Li, L.; An, D. Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol. Breed. 2018, 38, 1–15. [Google Scholar] [CrossRef]
- Yang, Y.; Amo, A.; Wei, D.; Chai, Y.; Zheng, J.; Qiao, P.; Cui, C.; Lu, S.; Chen, L.; Hu, Y.G.; et al. Large-scale integration of meta-QTL and genome-wide association study discovers the genomic regions and candidate genes for yield and yield-related traits in bread wheat. Theor. Appl. Genet. 2021, 134, 3083–3109. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Assanga, S.O.; Awika, J.M.; Ibrahim, A.M.H.; Rudd, J.C.; Xue, Q.; Guttieri, M.J.; Zhang, G.; Baker, J.A.; Jessup, K.E.; et al. Genetic mapping of quantitative trait loci for end-use quality and grain minerals in hard red winter wheat. Agronomy 2021, 11, 2519. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Z.; Jia, L.; Qiu, H.; Guan, H.; Liu, C.; Qin, M.; Wang, Y.; Li, W.; Yao, W.; et al. Genetic basis of gluten aggregation properties in wheat (Triticum aestivum L.) dissected by QTL mapping of glutopeak parameters. Front. Plant Sci. 2021, 11, 611605. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R. Evolutionary trails of plant group II pyridoxal phosphate-dependent decarboxylase genes. Front. Plant Sci. 2016, 7, 1268. [Google Scholar] [CrossRef] [PubMed]
- Douliez, J.P.; Michon, T.; Elmorjani, K.; Marion, D. Mini review: Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J. Cereal Sci. 2000, 3, 1–20. [Google Scholar] [CrossRef]
- Castleden, C.K.; Aoki, N.; Gillespie, V.J.; MacRae, E.A.; Quick, W.P.; Buchner, P.; Foyer, C.H.; Furbank, R.T.; Lunn, J.E. Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol. 2004, 135, 1753–1764. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, N.; Zhang, K.Y.; Fan, H.Y.; Li, T.L. Research advance of sucrose phosphate synthase (SPS) in higher plants. Int. J. Agric. Biol. 2013, 15, 1221–1226. [Google Scholar]
- Borrelli, G.M.; Troccoli, A.; Di Fonzo, N.; Fares, C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chem. 1999, 76, 335–340. [Google Scholar] [CrossRef]
- Mousavi, B.; Kadivar, M. Effect of brine solution as a wheat conditioner, on lipase, amylase, and lipoxygenase activities in flour and its corresponding dough rheological properties. J. Food Process Pres. 2018, 42, e13631. [Google Scholar] [CrossRef]
- Bahal, G.; Sudha, M.L.; Ramasarma, P.R. Wheat germ lipoxygenase: Its effect on dough rheology, microstructure, and bread making quality. Int. J. Food Prop. 2013, 16, 1730–1739. [Google Scholar] [CrossRef]
- Jing, Y.F.; Wei, H.X.; Liu, F.F.; Liu, Y.F.; Zhou, L.; Liu, J.F.; Yang, S.Z.; Zhang, H.Z.; Mu, B.Z. Genetic engineering of the branched-chain fatty acid biosynthesis pathway to enhance surfactin production from Bacillus subtilis. Biotechnol. Appl. Biochem. 2023, 70, 238–248. [Google Scholar] [CrossRef]
Source of Variation | df | MS | |||
---|---|---|---|---|---|
MPW | MPV | MPT | MTxW | ||
Genotypes | 164 | 1.88 ** | 46.3 ** | 32.5 ** | 20.3 ** |
Environments | 3 | 0.42 ** | 295.0 ** | 896.3 ** | 56.4 ** |
Replicates (nested in environments) | 2 | 0.15 ** | 6.1 ** | 7.1 ** | 3.2 ** |
Genotype*Environment | 983 | 0.13 ** | 3.8 ** | 5.9 ** | 2.1 ** |
Error | 1425 |
Loci | Trait | Chr. | Start (Mb) | R2 | p-Value | Environments | Favorable Allele | Reference | ||
---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Min | Max | |||||||
qM1 | MPT | 1A | 506.9 | 14.90% | 23.70% | 6.70 × 10−8 | 1.90 × 10−5 | E1; E3; E4; E5 | C | |
MTxW | 1A | 506.9 | 13.80% | 15.90% | 9.40 × 10−6 | 3.90 × 10−5 | E1; E3; E5 | T | ||
qM2 | MTxW | 1B | 13.5–14.5 | 10.80% | 17.00% | 7.20 × 10−7 | 6.40 × 10−5 | E1; E4; E5 | T | |
qM3 | MPW | 1B | 130.6 | 10.30% | 12.10% | 1.70 × 10−5 | 7.40 × 10−5 | E1; E4; E5 | A | [2] |
MPT | 1B | 553.6 | 31.50% | 37.70% | 9.10 × 10−12 | 4.40 × 10−10 | E1; E3; E4; E5 | G | ||
qM4 | MTxW | 1B | 553.6 | 14.80% | 27.10% | 1.90 × 10−9 | 3.70 × 10−6 | E1; E2; E3; E4; E5 | G | |
qM5 | MPW | 1B | 673.4–674.5 | 12.70% | 13.90% | 3.70 × 10−5 | 8.10 × 10−5 | E2 | A | [28] |
qM6 | MPT | 1D | 407.9–416.5 | 12.60% | 42.50% | 1.40 × 10−13 | 9.80 × 10−5 | E1; E2; E3; E4; E5 | G | [32] |
MTxW | 1D | 407.9–416.5 | 10.80% | 27.30% | 8.30 × 10−10 | 9.40 × 10−5 | E1; E2; E3; E4; E5 | G | ||
qM7 | MPW | 2A | 191.9–199.6 | 12.50% | 13.80% | 3.50 × 10−5 | 9.00 × 10−5 | E2 | A | [28] |
qM8 | MTxW | 2B | 4.6 | 10.60% | 11.20% | 6.30 × 10−5 | 9.40 × 10−5 | E2; E3; E5 | G | [32,33] |
qM9 | MPT | 2B | 738.2–752.8 | 14.90% | 18.20% | 4.70 × 10−6 | 2.70 × 10−5 | E4 | G | [2] |
qM10 | MPT | 3A | 709.6–710.7 | 12.90% | 11.60% | 4.20 × 10−5 | 9.70 × 10−5 | E4 | G | |
qM11 | MPW | 3B | 561.0–579.3 | 13.00% | 13.60% | 4.00 × 10−5 | 7.80 × 10−5 | E2 | A | |
qM12 | MPT | 3D | 191.1 | 22.70% | 28.90% | 3.60 × 10−10 | 1.70 × 10−8 | E1; E3; E4; E5 | A | [33] |
MTxW | 3D | 191.1 | 14.70% | 17.30% | 5.60 × 10−7 | 3.70 × 10−6 | E1; E2; E3; E5 | A | ||
qM13 | MTxW | 3D | 578.4 | 10.90% | 11.70% | 3.10 × 10−5 | 6.90 × 10−5 | E1; E4; E5 | A | |
qM14 | MTxW | 4A | 12.4–12.6 | 12.60% | 13.50% | 8.20 × 10−6 | 9.50 × 10−5 | E1; E2; E3; E5 | A | |
qM15 | MTxW | 4A | 89.9–90.4 | 10.50% | 14.40% | 4.60 × 10−6 | 8.10 × 10−5 | E1; E5 | A | |
qM16 | MPW | 4A | 610.1–621.6 | 12.80% | 14.40% | 2.60 × 10−5 | 9.00 × 10−5 | E2 | G | [2] |
MPT | 4A | 621.2–667.7 | 14.60% | 17.60% | 4.30 × 10−6 | 4.90 × 10−5 | E1; E4; E5 | G | ||
qM17 | MPW | 4B | 12.9–25.8 | 10.20% | 15.80% | 1.30 × 10−6 | 7.70 × 10−5 | E2; E3; E5 | G | |
qM18 | MPV | 5D | 3.6 | 13.40% | 16.80% | 8.20 × 10−7 | 9.50 × 10−6 | E1; E3; E4; E5 | C | |
qM19 | MPT | 5D | 454.1 | 10.60% | 12.30% | 2.30 × 10−5 | 8.50 × 10−5 | E1; E3; E5 | G | |
qM20 | MPW | 6A | 23.4–26.9 | 12.70% | 14.10% | 3.70 × 10−5 | 9.60 × 10−5 | E2 | G | |
qM21 | MTxW | 7B | 126.6 | 14.80% | 18.20% | 3.20 × 10−7 | 3.20 × 10−6 | E1; E3; E4; E5 | C | |
qM22 | MPW | 7B | 551.9–557.4 | 12.50% | 15.20% | 2.00 × 10−5 | 9.90 × 10−5 | E2 | G | |
qM23 | MTxW | 7D | 57.5 | 13.90% | 22.30% | 3.40 × 10−7 | 6.00 × 10−5 | E2; E4; E5 | C | |
qM24 | MPT | 7D | 321 | 20.80% | 25.10% | 3.70 × 10−9 | 5.90 × 10−8 | E1; E3; E4; E5 | G | |
MTxW | 7D | 321 | 12.40% | 17.80% | 4.00 × 10−7 | 1.90 × 10−5 | E1; E2; E3; E5 | C | [33] |
Candidate Gene | Chromosome | Position (Mb) | Annotation |
---|---|---|---|
TraesCS1A01G329500 | 1A | 518.5 | Pyridoxal phosphate-dependent decarboxylase |
TraesCS2B01G535700 | 2B | 731.5 | 3-ketoacyl-CoA synthase |
TraesCS3A01G451100 | 3A | 689.5 | 3-ketoacyl-CoA synthase |
TraesCS3D01G444000 | 3D | 553.2 | 3-ketoacyl-CoA synthase |
TraesCS3D01G184500 | 3D | 170.2 | sucrose synthase 3 |
TraesCS4A01G021300 | 4A | 14.8 | Plant lipid transfer protein/Par allergen |
TraesCS4A01G359800 | 4A | 632.9 | Lipoxygenase |
Cultivar | BLUP-MPT | BLUP-MPV | BLUP-MPW | BLUP-MTxW |
---|---|---|---|---|
Aca 601 | 5.6 | 50.0 | 26.7 | 17.7 |
Klein Jabal 1 | 6.5 | 50.4 | 20.6 | 17.2 |
Shanyou 225 | 4.6 | 54.0 | 24.4 | 16.6 |
Jishi 02-1 | 6.0 | 52.8 | 22.5 | 16.0 |
Sagittario | 5.1 | 50.6 | 23.4 | 15.6 |
Klein Flecha | 5.6 | 49.5 | 23.4 | 15.3 |
Wanmai 33 | 6.3 | 51.9 | 21.5 | 15.1 |
Sunong 6 | 6.2 | 48.4 | 18.9 | 14.8 |
Libero | 5.6 | 44.2 | 18.4 | 14.8 |
Mantol | 5.5 | 47.3 | 19.5 | 14.5 |
ProINTA Colibr 1 | 5.2 | 51.4 | 21.2 | 14.4 |
Nidera Baguette 20 | 5.0 | 47.2 | 21.6 | 13.4 |
Barra | 6.3 | 44.0 | 15.1 | 13.2 |
Aca 801 | 5.4 | 48.3 | 23.8 | 13.0 |
Jimai 20 | 4.0 | 50.6 | 23.5 | 12.8 |
Nidera Baguette 10 | 5.8 | 42.4 | 15.3 | 12.5 |
Shanmai 94 | 4.6 | 52.9 | 22.8 | 11.8 |
Kitanokaori | 4.0 | 49.4 | 17.6 | 11.5 |
Xinong 979-005 | 4.3 | 52.5 | 25.2 | 11.4 |
Norin 67 | 3.0 | 54.6 | 23.5 | 11.1 |
Shanmai 509 | 6.1 | 44.0 | 16.4 | 11.0 |
Zhoumai 26 | 5.6 | 41.6 | 14.5 | 10.8 |
Jinan 17 | 3.5 | 52.6 | 25.7 | 10.6 |
Sunstate | 4.4 | 45.3 | 16.7 | 10.6 |
Zhoumai 19 | 4.3 | 49.5 | 19.5 | 10.3 |
Gaocheng 8901 | 4.9 | 52.4 | 19.2 | 10.3 |
Shannong 981 | 3.2 | 63.8 | 30.4 | 10.2 |
Genio | 3.5 | 48.4 | 23.5 | 10.1 |
Shiyou 17 | 4.5 | 47.2 | 17.7 | 9.9 |
Jining 16 | 4.6 | 49.1 | 18.8 | 9.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, H.; Tian, Y.; Zhang, Y.; Zhang, R.; Zhao, H.; Yang, X.; Song, X.; Dimitrov, Y.; Wu, Y.-e.; Gao, Q.; et al. Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat (Triticum aestivum L.). Genes 2023, 14, 1816. https://doi.org/10.3390/genes14091816
Jin H, Tian Y, Zhang Y, Zhang R, Zhao H, Yang X, Song X, Dimitrov Y, Wu Y-e, Gao Q, et al. Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat (Triticum aestivum L.). Genes. 2023; 14(9):1816. https://doi.org/10.3390/genes14091816
Chicago/Turabian StyleJin, Hui, Yuanyuan Tian, Yan Zhang, Rui Zhang, Haibin Zhao, Xue Yang, Xizhang Song, Yordan Dimitrov, Yu-e Wu, Qiang Gao, and et al. 2023. "Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat (Triticum aestivum L.)" Genes 14, no. 9: 1816. https://doi.org/10.3390/genes14091816
APA StyleJin, H., Tian, Y., Zhang, Y., Zhang, R., Zhao, H., Yang, X., Song, X., Dimitrov, Y., Wu, Y. -e., Gao, Q., Liu, J., Zhang, J., & He, Z. (2023). Genome-Wide Association Mapping of Processing Quality Traits in Common Wheat (Triticum aestivum L.). Genes, 14(9), 1816. https://doi.org/10.3390/genes14091816