Lung and Heart Biology of the Dp16 Mouse Model of down Syndrome: Implications for Studying Cardiopulmonary Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. RNA Sequencing
2.3. Reverse-Transcriptase Semi-Quantitative Polymerase Chain Reaction (RTqPCR)
2.4. Hemodynamics: Pressure-Volume Measurements
2.5. Fulton Score and Gravimetric Analyses
2.6. Flexivent
2.7. Mesoscale Discovery ELISA
2.8. Immunoblot
2.9. Immunofluorescence
2.10. Histomorphometry
2.10.1. Mean Linear Intercept
2.10.2. Bronchus-Associated Lymphoid Tissue (BALT)
2.11. Statistics
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Englund, A.; Jonsson, B.; Zander, C.S.; Gustafsson, J.; Anneren, G. Changes in mortality and causes of death in the Swedish Down syndrome population. Am. J. Med. Genet. Part A 2013, 161A, 642–649. [Google Scholar] [CrossRef]
- Ballinger, M.N.; Standiford, T.J. Postinfluenza bacterial pneumonia: Host defenses gone awry. J. Interferon. Cytokine Res. 2010, 30, 643–652. [Google Scholar] [CrossRef]
- Huls, A.; Costa, A.C.S.; Dierssen, M.; Baksh, R.A.; Bargagna, S.; Baumer, N.T.; Brandao, A.C.; Carfi, A.; Carmona-Iragui, M.; Chicoine, B.A.; et al. Medical vulnerability of individuals with Down syndrome to severe COVID-19-data from the Trisomy 21 Research Society and the UK ISARIC4C survey. EClinicalMedicine 2021, 33, 100769. [Google Scholar] [CrossRef]
- Day, S.M.; Strauss, D.J.; Shavelle, R.M.; Reynolds, R.J. Mortality and causes of death in persons with Down syndrome in California. Dev. Med. Child Neurol. 2005, 47, 171–176. [Google Scholar] [CrossRef]
- Uppal, H.; Chandran, S.; Potluri, R. Risk factors for mortality in Down syndrome. J. Intellect. Disabil. Res. JIDR 2015, 59, 873–881. [Google Scholar] [CrossRef]
- Yang, Q.; Rasmussen, S.A.; Friedman, J.M. Mortality associated with Down’s syndrome in the USA from 1983 to 1997: A population-based study. Lancet 2002, 359, 1019–1025. [Google Scholar] [CrossRef]
- Das, I.; Reeves, R.H. The use of mouse models to understand and improve cognitive deficits in Down syndrome. Dis. Model Mech. 2011, 4, 596–606. [Google Scholar] [CrossRef]
- Rueda, N.; Florez, J.; Martinez-Cue, C. Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast. 2012, 2012, 584071. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.D.; Lewis, H.C.; Hill, A.A.; Pandey, A.; Jackson, L.P.; Cabral, J.M.; Smith, K.P.; Liggett, L.A.; Gomez, E.B.; Galbraith, M.D.; et al. Trisomy 21 consistently activates the interferon response. eLife 2016, 5, e16220. [Google Scholar] [CrossRef]
- Yu, T.; Li, Z.; Jia, Z.; Clapcote, S.J.; Liu, C.; Li, S.; Asrar, S.; Pao, A.; Chen, R.; Fan, N.; et al. A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum. Mol. Genet. 2010, 19, 2780–2791. [Google Scholar] [CrossRef]
- Waugh, K.A.; Minter, R.; Baxter, J.; Chi, C.; Galbraith, M.D.; Tuttle, K.D.; Eduthan, N.P.; Kinning, K.T.; Andrysik, Z.; Araya, P.; et al. Triplication of the interferon receptor locus contributes to hallmarks of Down syndrome in a mouse model. Nat. Genet. 2023, 55, 1034–1047. [Google Scholar] [CrossRef] [PubMed]
- Schurch, N.J.; Schofield, P.; Gierlinski, M.; Cole, C.; Sherstnev, A.; Singh, V.; Wrobel, N.; Gharbi, K.; Simpson, G.G.; Owen-Hughes, T.; et al. How many biological replicates are needed in an RNA-seq experiment and which differential expression tool should you use? RNA 2016, 22, 839–851. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Colvin, K.L.; Cripe, P.J.; Ivy, D.D.; Stenmark, K.R.; Yeager, M.E. Bronchus-associated lymphoid tissue in pulmonary hypertension produces pathologic autoantibodies. Am. J. Respir. Crit. Care Med. 2013, 188, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Hantos, Z.; Daroczy, B.; Suki, B.; Nagy, S.; Fredberg, J.J. Input impedance and peripheral inhomogeneity of dog lungs. J. Appl. Physiol. 1992, 72, 168–178. [Google Scholar] [CrossRef]
- Crowley, G.; Kwon, S.; Caraher, E.J.; Haider, S.H.; Lam, R.; Batra, P.; Melles, D.; Liu, M.; Nolan, A. Quantitative lung morphology: Semi-automated measurement of mean linear intercept. BMC Pulm. Med. 2019, 19, 206. [Google Scholar] [CrossRef]
- Takahashi, T.; Sakai, N.; Iwasaki, T.; Doyle, T.C.; Mobley, W.C.; Nishino, S. Detailed evaluation of the upper airway in the Dp(16)1Yey mouse model of Down syndrome. Sci. Rep. 2020, 10, 21323. [Google Scholar] [CrossRef]
- Waugh, K.A.; Araya, P.; Pandey, A.; Jordan, K.R.; Smith, K.P.; Granrath, R.E.; Khanal, S.; Butcher, E.T.; Estrada, B.E.; Rachubinski, A.L.; et al. Mass Cytometry Reveals Global Immune Remodeling with Multi-lineage Hypersensitivity to Type I Interferon in Down Syndrome. Cell Rep. 2019, 29, 1893–1908.e4. [Google Scholar] [CrossRef]
- Sullivan, K.D.; Evans, D.; Pandey, A.; Hraha, T.H.; Smith, K.P.; Markham, N.; Rachubinski, A.L.; Wolter-Warmerdam, K.; Hickey, F.; Espinosa, J.M.; et al. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci. Rep. 2017, 7, 14818. [Google Scholar] [CrossRef]
- Tuttle, K.D.; Waugh, K.A.; Araya, P.; Minter, R.; Orlicky, D.J.; Ludwig, M.; Andrysik, Z.; Burchill, M.A.; Tamburini, B.A.J.; Sempeck, C.; et al. JAK1 Inhibition Blocks Lethal Immune Hypersensitivity in a Mouse Model of Down Syndrome. Cell Rep. 2020, 33, 108407. [Google Scholar] [CrossRef]
- van der Sluijs, K.F.; van Elden, L.J.; Nijhuis, M.; Schuurman, R.; Florquin, S.; Shimizu, T.; Ishii, S.; Jansen, H.M.; Lutter, R.; van der Poll, T. Involvement of the platelet-activating factor receptor in host defense against Streptococcus pneumoniae during postinfluenza pneumonia. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L194–L199. [Google Scholar] [CrossRef]
- McCullers, J.A.; Iverson, A.R.; McKeon, R.; Murray, P.J. The platelet activating factor receptor is not required for exacerbation of bacterial pneumonia following influenza. Scand. J. Infect. Dis. 2008, 40, 11–17. [Google Scholar] [CrossRef]
- Danopoulos, S.; Deutsch, G.H.; Dumortier, C.; Mariani, T.J.; Al Alam, D. Lung disease manifestations in Down syndrome. Am. J. Physiol. Lung Cell Mol. Physiol. 2021, 321, L892–L899. [Google Scholar] [CrossRef]
- Fernandez-Plata, R.; Perez-Padilla, R.; Del Rio-Hidalgo, R.; Garcia-Sancho, C.; Gochicoa-Rangel, L.; Rodriguez-Hernandez, C.; Torre-Bouscoulet, L.; Martinez-Briseno, D. Quality of Pulmonary Function Tests in Participants with Down Syndrome. Arch. Bronconeumol. 2019, 55, 513–518. [Google Scholar] [CrossRef]
- Wallbank, A.M.; Vaughn, A.E.; Niemiec, S.; Bilodeaux, J.; Lehmann, T.; Knudsen, L.; Kolanthai, E.; Seal, S.; Zgheib, C.; Nozik, E.; et al. CNP-miR146a improves outcomes in a two-hit acute- and ventilator-induced lung injury model. Nanomedicine 2023, 50, 102679. [Google Scholar] [CrossRef] [PubMed]
- Colvin, K.L.; Yeager, M.E. What people with Down Syndrome can teach us about cardiopulmonary disease. Eur. Respir. Rev. 2017, 26, 160098. [Google Scholar] [CrossRef] [PubMed]
- Revercomb, L.; Hanmandlu, A.; Wareing, N.; Akkanti, B.; Karmouty-Quintana, H. Mechanisms of Pulmonary Hypertension in Acute Respiratory Distress Syndrome (ARDS). Front. Mol. Biosci. 2020, 7, 624093. [Google Scholar] [CrossRef]
- Raveau, M.; Nakahari, T.; Asada, S.; Ishihara, K.; Amano, K.; Shimohata, A.; Sago, H.; Yamakawa, K. Brain ventriculomegaly in Down syndrome mice is caused by Pcp4 dose-dependent cilia dysfunction. Hum. Mol. Genet. 2017, 26, 923–931. [Google Scholar] [CrossRef]
- Mouton-Liger, F.; Sahun, I.; Collin, T.; Lopes Pereira, P.; Masini, D.; Thomas, S.; Paly, E.; Luilier, S.; Meme, S.; Jouhault, Q.; et al. Developmental molecular and functional cerebellar alterations induced by PCP4/PEP19 overexpression: Implications for Down syndrome. Neurobiol. Dis. 2014, 63, 92–106. [Google Scholar] [CrossRef]
- Mouton-Liger, F.; Thomas, S.; Rattenbach, R.; Magnol, L.; Larigaldie, V.; Ledru, A.; Herault, Y.; Verney, C.; Creau, N. PCP4 (PEP19) overexpression induces premature neuronal differentiation associated with Ca(2+) /calmodulin-dependent kinase II-delta activation in mouse models of Down syndrome. J. Comp. Neurol. 2011, 519, 2779–2802. [Google Scholar] [CrossRef] [PubMed]
- Malle, L.; Patel, R.S.; Martin-Fernandez, M.; Stewart, O.J.; Philippot, Q.; Buta, S.; Richardson, A.; Barcessat, V.; Taft, J.; Bastard, P.; et al. Autoimmunity in Down’s syndrome via cytokines, CD4 T cells and CD11c(+) B cells. Nature 2023, 615, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Raha-Chowdhury, R.; Raha, A.A.; Henderson, J.; Ghaffari, S.D.; Grigorova, M.; Beresford-Webb, J.; Allinson, K.; Chakraborty, S.; Holland, A.; Zaman, S.H. Impaired Iron Homeostasis and Haematopoiesis Impacts Inflammation in the Ageing Process in Down Syndrome Dementia. J. Clin. Med. 2021, 10, 2909. [Google Scholar] [CrossRef]
- Licastro, F.; Chiappelli, M.; Ruscica, M.; Carnelli, V.; Corsi, M.M. Altered cytokine and acute phase response protein levels in the blood of children with Downs syndrome: Relationship with dementia of Alzheimer’s type. Int. J. Immunopathol. Pharmacol. 2005, 18, 165–172. [Google Scholar] [CrossRef]
- Trotta, M.B.; Serro Azul, J.B.; Wajngarten, M.; Fonseca, S.G.; Goldberg, A.C.; Kalil, J.E. Inflammatory and Immunological parameters in adults with Down syndrome. Immun. Ageing 2011, 8, 4. [Google Scholar] [CrossRef] [PubMed]
- Passerini, V.; Ozeri-Galai, E.; de Pagter, M.S.; Donnelly, N.; Schmalbrock, S.; Kloosterman, W.P.; Kerem, B.; Storchova, Z. The presence of extra chromosomes leads to genomic instability. Nat. Commun. 2016, 7, 10754. [Google Scholar] [CrossRef] [PubMed]
- Bellinghausen, C.; Rohde, G.G.; Savelkoul, P.H.; Wouters, E.F.; Stassen, F.R. Viral-bacterial interactions in the respiratory tract. J. Gen. Virol. 2016, 97, 3089–3102. [Google Scholar] [CrossRef] [PubMed]
- Staeheli, P.; Grob, R.; Meier, E.; Sutcliffe, J.G.; Haller, O. Influenza virus-susceptible mice carry Mx genes with a large deletion or a nonsense mutation. Mol. Cell Biol. 1988, 8, 4518–4523. [Google Scholar] [PubMed]
- Yu, H.; Lee, H.; Herrmann, A.; Buettner, R.; Jove, R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nat. Rev. Cancer 2014, 14, 736–746. [Google Scholar] [CrossRef]
- Basters, A.; Knobeloch, K.P.; Fritz, G. USP18-a multifunctional component in the interferon response. Biosci. Rep. 2018, 38, BSR20180250. [Google Scholar] [CrossRef] [PubMed]
- Porritt, R.A.; Hertzog, P.J. Dynamic control of type I IFN signalling by an integrated network of negative regulators. Trends Immunol. 2015, 36, 150–160. [Google Scholar] [CrossRef]
- Sundarakrishnan, A.; Chen, Y.; Black, L.D.; Aldridge, B.B.; Kaplan, D.L. Engineered cell and tissue models of pulmonary fibrosis. Adv. Drug Deliv. Rev. 2018, 129, 78–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhong, M.; Luo, Y.; Deng, L.; Hu, Z.; Song, Y. Determination of rheology and surface tension of airway surface liquid: A review of clinical relevance and measurement techniques. Respir. Res. 2019, 20, 274. [Google Scholar] [CrossRef]
- Liu, G.; Cooley, M.A.; Jarnicki, A.G.; Borghuis, T.; Nair, P.M.; Tjin, G.; Hsu, A.C.; Haw, T.J.; Fricker, M.; Harrison, C.L.; et al. Fibulin-1c regulates transforming growth factor-beta activation in pulmonary tissue fibrosis. JCI Insight 2019, 5, e124529. [Google Scholar] [CrossRef]
- Nakamura, T. Roles of short fibulins, a family of matricellular proteins, in lung matrix assembly and disease. Matrix Biol. 2018, 73, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Paulissen, G.; Rocks, N.; Gueders, M.M.; Crahay, C.; Quesada-Calvo, F.; Bekaert, S.; Hacha, J.; El Hour, M.; Foidart, J.M.; Noel, A.; et al. Role of ADAM and ADAMTS metalloproteinases in airway diseases. Respir. Res. 2009, 10, 127. [Google Scholar] [CrossRef] [PubMed]
- Schlingmann, B.; Molina, S.A.; Koval, M. Claudins: Gatekeepers of lung epithelial function. Semin. Cell Dev. Biol. 2015, 42, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Ruane, L.; Buckley, T.; Hoo, S.Y.S.; Hansen, P.S.; McCormack, C.; Shaw, E.; Fethney, J.; Tofler, G.H. Triggering of acute myocardial infarction by respiratory infection. Intern. Med. J. 2017, 47, 522–529. [Google Scholar] [CrossRef]
- Kishore, A.K.; Vail, A.; Chamorro, A.; Garau, J.; Hopkins, S.J.; Di Napoli, M.; Kalra, L.; Langhorne, P.; Montaner, J.; Roffe, C.; et al. How is pneumonia diagnosed in clinical stroke research? A systematic review and meta-analysis. Stroke 2015, 46, 1202–1209. [Google Scholar] [CrossRef]
- Liu, C.; Morishima, M.; Yu, T.; Matsui, S.; Zhang, L.; Fu, D.; Pao, A.; Costa, A.C.; Gardiner, K.J.; Cowell, J.K.; et al. Genetic analysis of Down syndrome-associated heart defects in mice. Hum. Genet. 2011, 130, 623–632. [Google Scholar] [CrossRef]
- Fagiola, M.; Reznik, S.; Riaz, M.; Qyang, Y.; Lee, S.; Avella, J.; Turino, G.; Cantor, J. The relationship between elastin cross linking and alveolar wall rupture in human pulmonary emphysema. Am. J. Physiol. Lung Cell Mol. Physiol. 2023, 324, L747–L755. [Google Scholar] [CrossRef] [PubMed]
- D’Anna, S.E.; Maniscalco, M.; Cappello, F.; Carone, M.; Motta, A.; Balbi, B.; Ricciardolo, F.L.M.; Caramori, G.; Stefano, A.D. Bacterial and viral infections and related inflammatory responses in chronic obstructive pulmonary disease. Ann. Med. 2021, 53, 135–150. [Google Scholar] [CrossRef] [PubMed]
- Marin, N.D.; Dunlap, M.D.; Kaushal, D.; Khader, S.A. Friend or Foe: The Protective and Pathological Roles of Inducible Bronchus-Associated Lymphoid Tissue in Pulmonary Diseases. J. Immunol. 2019, 202, 2519–2526. [Google Scholar] [CrossRef] [PubMed]
Numbers of Control and Dp16 Mice Used for This Study | ||||
---|---|---|---|---|
Assay/Endpoint | Controls | Dp16 | ||
Males | Females | Males | Females | |
RNA Sequencing | 3 | 3 | 3 | 3 |
RTqPCR | 7 | 8 | 7 | 8 |
Hemodynamics | 10 | 10 | 10 | 10 |
Fulton Score | 10 | 10 | 13 | 9 |
Gravimetry | 7 | 8 | 7 | 7 |
Flexivent | 15 | 10 | 7 | 6 |
Mesoscale ELISA-Plasma | 3 | 3 | 3 | 3 |
Mesoscale ELISA-Cells | 3 | 3 | 3 | 3 |
Mesoscale ELISA-Homogenates | 3 | 3 | 3 | 3 |
Immunoblot | 6 | 6 | 6 | 6 |
Immunofluorescence | 3 | 3 | 3 | 3 |
Histomorphometry | 4 | 3 | 3 | 4 |
Body weight | 128 | 116 | 51 | 56 |
Body length | 9 | 13 | 9 | 14 |
Anesthesia time to non-response | 3 | 3 | 3 | 3 |
Gene Family | Lung mRNA Fold Change Increased in Dp16 vs. Controls (Chromosome Number) | Lung mRNA N.D. in Fold Change Dp16 vs. Controls (Chromosome Number) | Lung mRNA Fold Change Decreased in Dp16 vs. Controls (Chromosome Number) |
---|---|---|---|
Type I IFN | IFNAR1 (16) 1.6 ± 0.3 IFNAR2 (16) 1.7 ± 0.2 | --- | --- |
Type II IFN | IFNGR2 (16) 1.9 ± 0.1 | --- | --- |
Type III IFN | IL-10Ra (9) 2.4 ± 0.1 IL-10Rb (16) 1.6 ± 0.1 IRF7 (7) 2.8 ± 0.1 IRF9 (14) 1.7 ± 0.1 | --- | --- |
IFN Activated Genes | ISG15 (4) 2.5 ± 0.1 Mx1 (16) 1.8 ± 0.1 Mx2 (16) 1.7 ± 0.1 USP18 (6) 2.1 ± 0.1 OAS1a (5) 2.8 ± 0.1 OAS1g (5) 2.7 ± 0.1 OAS2 (5) 2.4 ± 0.1 OAS3 (5) 2.9 ± 0.1 | SOCS3 (11) SOCS1 (16) | --- |
Vascular Signaling | Flt3 (5) 3.8 ± 0.1 | ACVRL1 (5) Flt1 (5) PECAM (5) VECAM (5) VEGFA (5) VEGFB (5) VEGFC (5) PDGF (5) PDFGR (5) Smad1 (8) Smad 2 (18) Smad 3 (9) Smad 4 (18) Smad 6 (9) Smad 7 (18) Smad 9 (3) Tek (4) TGFB1 (7) TGFBR1 (4) TGFBRII (9) Tie1 (4) | Smad 5 (13) 2.2 ±0.1 VEGFD (X) 1.9 ± 0.1 |
Lymphatic | --- | FoxC2 (8) Podoplanin (4) Prox1 (1) Sox18 (2) | --- |
TLR Signaling | IRF5 (6) 1.8 ± 0.1 TLR2 (3) 2.4 ± 0.1 TLR7 (X) 2.7 ± 0.1 TLR13 (X) 1.8 ± 0.1 | --- | --- |
Leukocyte Biology | Beta2M (2) 2.4 ± 0.1 CD54/ICAM (9) 2.4 ± 0.1 CD68 (11) 1.9 ± 0.1 CD86 (16) 1.7 ± 0.1 CD152/CTLA4 (1) 2.2 ± 0.1 | CD28 (1) CD40 (2) CD83 (13) CD163 (6) | --- |
ECM | Fibulin 1 (15) 2.4 ± 0.1 Fibulin 2 (6) 2.1 ± 0.1 | Col1a1 (11) Col1a2 (6) Col3a1 (1) Col4a1 (8) Col5a1 (2) Col18a1 (10) TCF21 (10) | --- |
Lung Epithelium | --- | PAFR (4) | --- |
Apoptosis | --- | Bad (19) Bax (7) Bcl2 (11) | --- |
Analyte | Cell Lysate | Lung Lysate | Supernatant | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Dp16 | Control | Dp16 | Control | Dp16 | |||||||
Avg | SD | Avg | SD | Avg | SD | Avg | SD | Avg | SD | Avg | SD | |
IL-2 | 1.53 | 0.72 | 1.06 | 0.12 | 7.48 | 1.40 | 6.92 | 3.21 | 1.77 | 0.17 | 1.69 | 0.21 |
IL-4 | 0.29 | 0.07 | 0.20 | 0.02 | 1.51 | 0.27 | 2.32 | 1.38 | 0.03 | 0.01 | 0 | 0 |
IL-5 | 1.05 | 0.53 | 0.31 | 0.13 | 2.99 | 0.50 | 8.69 | 1.30 | 0.28 | 0.04 | 0.08 | 0.01 |
IL-6 | 7180 | 1120 | 3870 | 665 | 134 | 8.36 | 147 | 45 | 4200 | 1920 | 3430 | 1340 |
IL-10 | 1.80 | 0.21 | 1.48 | 0.16 | 7.95 | 1.06 | 17.8 | 11.7 | 0.72 | 0.23 | 2.40 | 0.67 |
IL-1β | 19.1 | 18.4 | 13.1 | 8.1 | 16.7 | 4.77 | 44.8 | 35.0 | 0.07 | 0.01 | 0.06 | 0.02 |
IL-12p70 | 60.7 | 15.7 | 32.7 | 2.39 | 164 | 18.7 | 168 | 22.5 | 15.0 | 2.03 | 10.8 | 3.04 |
IFN-γ | 0.07 | 0.02 | 0.06 | 0.01 | 1.30 | 1.77 | 1.93 | 3.62 | 0.06 | 0.02 | 0.01 | 0.01 |
KC-GRO | 70.7 | 25.2 | 7.68 | 1.48 | 139 | 85.8 | 174 | 14.4 | 98.7 | 66.4 | 35.9 | 17.0 |
TNF-α | 5.27 | 0.29 | 7.45 | 1.24 | 21.1 | 4.92 | 39.7 | 15.7 | 0.84 | 0.44 | 0.90 | 0.26 |
Controls | Dp16 | p Value | |
---|---|---|---|
Weight | 23.27 | 23.27 | 0.406 |
HR (bpm) | 525 19 | 492 16 | 0.316 |
mPAP (mmHg) | 16.86 17 | 14.14 10 | 0.138 |
Pa PP (mmHg) | 13.45 17 | 14.09 10 | 0.641 |
RV-ESP (mmHg) | 30.50 | 30.90 16 | 0.789 |
RV-EDP (mmHg) | 3.09 | 3.04 16 | 0.911 |
RV-ESV (mL) | 23.34 | 19.72 16 | 0.150 |
RV-EDV (mL) | 44.14 | 37.16 16 | 0.061 |
RV-SV (mL) | 20.80 | 17.64 16 | 0.134 |
RV-CO (mL/min) | 9.91 | 8.45 16 | 0.178 |
RV-EF % | 47.64 | 47.16 16 | 0.897 |
RV-Ea (mmHg/mL) | 1.68 | 1.92 16 | 0.255 |
RV-Ea/Ees | 1.22 17 | 1.24 12 | 0.973 |
RV-SV/ESV | 1.03 | 0.99 16 | 0.842 |
PVR (mPAP/RVCO) | 1.78 16 | 2.14 9 | 0.167 |
RV- Ca (SV/PaPP) | 1.67 16 | 1.46 9 | 0.621 |
RV-dP/dtmax (mmHg/sec) | 2213 | 2476 16 | 0.306 |
RV-dP/dtmin (mmHg/sec) | −1948 | −2058 16 | 0.577 |
RV-SW (mJoules) | 0.08 | 0.07 16 | 0.544 |
RV-PRSW | 15.83 17 | 12.69 12 | 0.232 |
RV-Tau L (msec) | 19.56 19 | 15.34 15 | 0.015 * |
RV-ESPVR (Ees) | 2.27 17 | 1.86 12 | 0.448 |
MSP (mmHg) | 49.15 12 | 34.21 14 | 0.013 * |
Systemic PP (mmHg) | 36.41 12 | 27.74 14 | 0.007 ** |
SVR (MAP/LVCO) | 5.44 10 | 4.2 12 | 0.187 |
LV-ESP (mmHg) | 73.7 19 | 58.49 15 | 0.060 |
LV-EDP (mmHg) | 6.48 19 | 4.51 15 | 0.140 |
LV-ESV (mL) | 22.33 18 | 23.57 14 | 0.744 |
LV-EDV (mL) | 43.26 18 | 41.53 14 | 0.730 |
LV-SV (mL) | 20.93 18 | 17.96 14 | 0.179 |
LV-CO (mL/min) | 11.24 18 | 9.23 14 | 0.101 |
LV-EF % | 49.91 18 | 44.11 14 | 0.163 |
LV-Ea (mmHg/mL) | 4.19 18 | 3.61 14 | 0.379 |
LV-Ea/Ees | 0.56 9 | 0.67 3 | 0.529 |
LV-SV/ESV | 1.218 | 0.85 14 | 0.158 |
LV-dP/dtmax (mmHg/s) | 6329 19 | 5251 15 | 0.327 |
LV-dP/dtmin (mmHg/s) | −5108 19 | −3660 15 | 0.075 |
LV-SW (mJoules) | 0.22 18 | 0.15 14 | 0.023 * |
LV-PRSW | 19.06 9 | 26.98 3 | 0.048 * |
LV-Tau L (ms) | 14.31 18 | 15.14 14 | 0.486 |
LV-ESPVR (Ees) | 7.79 9 | 6.05 3 | 0.536 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colvin, K.L.; Nguyen, K.; Boncella, K.L.; Goodman, D.M.; Elliott, R.J.; Harral, J.W.; Bilodeaux, J.; Smith, B.J.; Yeager, M.E. Lung and Heart Biology of the Dp16 Mouse Model of down Syndrome: Implications for Studying Cardiopulmonary Disease. Genes 2023, 14, 1819. https://doi.org/10.3390/genes14091819
Colvin KL, Nguyen K, Boncella KL, Goodman DM, Elliott RJ, Harral JW, Bilodeaux J, Smith BJ, Yeager ME. Lung and Heart Biology of the Dp16 Mouse Model of down Syndrome: Implications for Studying Cardiopulmonary Disease. Genes. 2023; 14(9):1819. https://doi.org/10.3390/genes14091819
Chicago/Turabian StyleColvin, Kelley L., Kathleen Nguyen, Katie L. Boncella, Desiree M. Goodman, Robert J. Elliott, Julie W. Harral, Jill Bilodeaux, Bradford J. Smith, and Michael E. Yeager. 2023. "Lung and Heart Biology of the Dp16 Mouse Model of down Syndrome: Implications for Studying Cardiopulmonary Disease" Genes 14, no. 9: 1819. https://doi.org/10.3390/genes14091819
APA StyleColvin, K. L., Nguyen, K., Boncella, K. L., Goodman, D. M., Elliott, R. J., Harral, J. W., Bilodeaux, J., Smith, B. J., & Yeager, M. E. (2023). Lung and Heart Biology of the Dp16 Mouse Model of down Syndrome: Implications for Studying Cardiopulmonary Disease. Genes, 14(9), 1819. https://doi.org/10.3390/genes14091819