Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome
Abstract
:1. Background
2. Methods
2.1. LMNA Plasmid Construction
2.2. LMNA Stable Cell Lines
2.3. Immunocytochemistry and Nuclear Morphology Assessment
2.4. ImageJ
2.5. Statistical Analysis
3. Results
3.1. Case Presentation
3.2. Nuclear Morphology
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APS | Atypical progeria syndrome |
HGP | Hutchinson–Gilford progeria |
LADs | Lamina-associated domains |
LCPS | LMNA-associated cardiocutaneous progeria syndrome |
TAVR | Transcatheter aortic valve replacement |
References
- Camozzi, D.; Capanni, C.; Cenni, V.; Mattioli, E.; Columbaro, M.; Squarzoni, S.; Lattanzi, G. Diverse Lamin-Dependent Mechanisms Interact to Control Chromatin Dynamics. Nucleus 2014, 5, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Jo, I.; Kang, S.; Hong, S.; Kim, S.; Jeong, S.; Kim, Y.-H.; Park, B.-J.; Ha, N.-C. Structural Basis for Lamin Assembly at the Molecular Level. Nat. Commun. 2019, 10, 3757. [Google Scholar] [CrossRef]
- Crasto, S.; My, I.; Di Pasquale, E. The Broad Spectrum of LMNA Cardiac Diseases: From Molecular Mechanisms to Clinical Phenotype. Front. Physiol. 2020, 11, 761. [Google Scholar] [CrossRef] [PubMed]
- Kandhaya-Pillai, R.; Hisama, F.M.; Bucks, S.A.; Yarzar, S.; Korovou, H.; Martin, G.M.; Oshima, J. Novel LMNA Mutations in Greek and Myanmar Patients with Progeroid Features and Cardiac Manifestations. Aging Pathobiol. Ther. 2020, 2, 101–105. [Google Scholar] [CrossRef]
- Shah, P.P.; Lv, W.; Rhoades, J.H.; Poleshko, A.; Abbey, D.; Caporizzo, M.A.; Linares-Saldana, R.; Heffler, J.G.; Sayed, N.; Thomas, D.; et al. Pathogenic LMNA Variants Disrupt Cardiac Lamina-Chromatin Interactions and de-Repress Alternative Fate Genes. Cell Stem Cell 2021, 28, 938–954.e9. [Google Scholar] [CrossRef] [PubMed]
- Briand, N.; Collas, P. Lamina-Associated Domains: Peripheral Matters and Internal Affairs. Genome Biol. 2020, 21, 85. [Google Scholar] [CrossRef]
- Kane, M.S.; Lindsay, M.E.; Judge, D.P.; Barrowman, J.; Ap Rhys, C.; Simonson, L.; Dietz, H.C.; Michaelis, S. LMNA-Associated Cardiocutaneous Progeria: An Inherited Autosomal Dominant Premature Aging Syndrome with Late Onset. Am. J. Med. Genet. A. 2013, 161A, 1599–1611. [Google Scholar] [CrossRef]
- Garg, A.; Subramanyam, L.; Agarwal, A.K.; Simha, V.; Levine, B.; D’Apice, M.R.; Novelli, G.; Crow, Y. Atypical Progeroid Syndrome Due to Heterozygous Missense LMNA Mutations. J. Clin. Endocrinol. Metab. 2009, 94, 4971–4983. [Google Scholar] [CrossRef]
- Forouzandeh, F.; Lee, S.K.; Taylor, W.R.; Morris, D.C.; Lasser, L. Family with Premature Cardiovascular Aging: Lesser’s Syndrome. J. Med. Assoc. Ga. 2016, 105, 32–33. [Google Scholar]
- Eidet, J.R.; Pasovic, L.; Maria, R.; Jackson, C.J.; Utheim, T.P. Objective Assessment of Changes in Nuclear Morphology and Cell Distribution Following Induction of Apoptosis. Diagn. Pathol. 2014, 9, 92. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; et al. JASP: Graphical Statistical Software for Common Statistical Designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. Off. J. Am. Coll. Med. Genet. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Lin, E.W.; Brady, G.F.; Kwan, R.; Nesvizhskii, A.I.; Omary, M.B. Genotype-Phenotype Analysis of LMNA-Related Diseases Predicts Phenotype-Selective Alterations in Lamin Phosphorylation. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2020, 34, 9051–9073. [Google Scholar] [CrossRef]
- Lazarte, J.; Hegele, R.A. Lamin A/C Missense Variants: From Discovery to Functional Validation. Npj Genom. Med. 2021, 6, 1–2. [Google Scholar] [CrossRef]
- Gordon, L.B.; Brown, W.T.; Collins, F.S. Hutchinson-Gilford Progeria Syndrome. In GeneReviews®; Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Anderson, C.L.; Langer, E.R.; Routes, T.C.; McWilliams, S.F.; Bereslavskyy, I.; Kamp, T.J.; Eckhardt, L.L. Most Myopathic Lamin Variants Aggregate: A Functional Genomics Approach for Assessing Variants of Uncertain Significance. Npj Genom. Med. 2021, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Schultz, B.; Miller, D.D.; Maguiness, S. Diffuse, Mottled Hyperpigmentation and Mutations in LMNA Gene in a 5-Year-Old Boy, His Mother, and His Grandmother: Atypical Progeroid Syndrome. Pediatr. Dermatol. 2019, 36, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, G.P.; Browning, B.L. Consideration of Cosegregation in the Pathogenicity Classification of Genomic Variants. Am. J. Hum. Genet. 2016, 98, 1077–1081. [Google Scholar] [CrossRef]
- Fafián-Labora, J.A.; Morente-López, M.; de Toro, F.J.; Arufe, M.C. High-Throughput Screen Detects Calcium Signaling Dysfunction in Hutchinson-Gilford Progeria Syndrome. Int. J. Mol. Sci. 2021, 22, 7327. [Google Scholar] [CrossRef]
- Villa-Bellosta, R. ATP-Based Therapy Prevents Vascular Calcification and Extends Longevity in a Mouse Model of Hutchinson–Gilford Progeria Syndrome. Proc. Natl. Acad. Sci. USA 2019, 116, 23698–23704. [Google Scholar] [CrossRef]
- Villa-Bellosta, R.; Rivera-Torres, J.; Osorio, F.G.; Acín-Pérez, R.; Enriquez, J.A.; López-Otín, C.; Andrés, V. Defective Extracellular Pyrophosphate Metabolism Promotes Vascular Calcification in a Mouse Model of Hutchinson-Gilford Progeria Syndrome That Is Ameliorated on Pyrophosphate Treatment. Circulation 2013, 127, 2442–2451. [Google Scholar] [CrossRef]
- Benarroch, L.; Cohen, E.; Atalaia, A.; Ben Yaou, R.; Bonne, G.; Bertrand, A.T. Preclinical Advances of Therapies for Laminopathies. J. Clin. Med. 2021, 10, 4834. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Domínguez, D.; Epifano, C.; de Miguel, F.; Castaño, A.G.; Vilaplana-Martí, B.; Martín, A.; Amarilla-Quintana, S.; Bertrand, A.T.; Bonne, G.; Ramón-Azcón, J.; et al. Consequences of Lmna Exon 4 Mutations in Myoblast Function. Cells 2020, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
Oligonucleotides |
---|
Oligo 1 sequence: ATGTGACGAGCTTCATTTATATCCTTCGCGCGCCGGACCGGCCTCCACAACTCGAGCTCAAGCTTCGAATTCTGCAGTCGAC GGTACCGCGGGCCCGGGATCCGAATGGCCATGGAGACCCCGTCCCAGCGGCGCGCCAATAGAGGCCAAGTTCGATTCGTAC TCCGATGTACGATACAACAATGTGG |
Oligo 2 sequence (p.E2K; c.4G>A): ATGTGACGAGCTTCATTTATATCCTTCGCGCGCCGGACCGGCCTCCACAACTCGAGCTCAAGCTTCGAATTCTGCAGTCGA CGGTACCGCGGGCCCGGGATCCGAgccaccATGAAGACCCCGTCCCAGCGGCGCGCCAATAGAGGCCAAGTTCGATTCGTACTCCG ATGTACGATACAACAATGTGG |
Oligo 3 sequence (p.D300G; c.899A>G): GCCCGCCTGCAGCTGGAGCTGAGCAAAGTGCGTGAGGAGTTTAAGGAGCTGAAAGCGCGCAATACCAAGAAGGAGGGTG ACCTGATAGCTGCTCAGGCTCGGCTGAAGGACCTGGAGGCTCTGCTGAACTCCAAGGAGGCCGCACTGAGCACTGCTCTC AGTGAGAAGCGCACGCTGGAGGGCGAGCTGCATGATCTGCGGGGCCAGGTGGCCAAGCTTGAGGCAGCCCTAGGTGAGG CCAAGAAGCAACTTCAGGATGAGATGCTGCGGCGGGTGGATGCTGAGAACAGGCTGCAGACCATGAAGGAGGAACTGGA CTTCCAGAAGAACATCTACAGTGAGGAGCTGCGTGAGACCAAGCGCCGTCATGAGACCCGACTGGTGGAGATTGACAATG GGAAGCAGCGTGAGTTTGAGAGCCGGCTGGCGGATGCGCTGCAGGAACTGCGGGCCCAGCATGAGGACCAGGTGGAGCA GTATAAGAAGGAGCTGGAGAAGACTTATTCTGCCAAGCTGGACAATGCCAGGCAGTCTGCTGAGAGGAACAGCAACCTGG TGGGGGCTGCCCACGAGGAGCTGCAGCAGTCGCGCATCCGCATCGGCAGCCTCTCTGCCCAGCTCAGCCAGCTCCAGAAG CAGCTGGCAGC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilke, M.V.M.B.; Wick, M.; Schwab, T.L.; Starosta, R.T.; Clark, K.J.; Connolly, H.M.; Klee, E.W. Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome. Genes 2024, 15, 112. https://doi.org/10.3390/genes15010112
Wilke MVMB, Wick M, Schwab TL, Starosta RT, Clark KJ, Connolly HM, Klee EW. Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome. Genes. 2024; 15(1):112. https://doi.org/10.3390/genes15010112
Chicago/Turabian StyleWilke, Matheus V. M. B., Myra Wick, Tanya L. Schwab, Rodrigo Tzovenos Starosta, Karl J. Clark, Heidi M. Connolly, and Eric W. Klee. 2024. "Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome" Genes 15, no. 1: 112. https://doi.org/10.3390/genes15010112
APA StyleWilke, M. V. M. B., Wick, M., Schwab, T. L., Starosta, R. T., Clark, K. J., Connolly, H. M., & Klee, E. W. (2024). Nuclear Abnormalities in LMNA p.(Glu2Lys) Variant Segregating with LMNA-Associated Cardiocutaneous Progeria Syndrome. Genes, 15(1), 112. https://doi.org/10.3390/genes15010112