Leptin and Leptin Receptor Polymorphisms in Infants and Their Parents: Correlation with Preterm Birth
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Study Population
2.2. Allelic Frequencies
2.3. Genotypic Frequencies
2.4. Association between Neonates and Parents Polymorphism and Preterm Births
3. Discussion
4. Materials and Methods
4.1. Study Desig and Subjects
4.2. Buccal Swab Sampling
4.3. DNA Extraction and Genotyping Description
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seoane-Collazo, P.; Martínez-Sánchez, N.; Milbank, E.; Contreras, C. Incendiary Leptin. Nutrients 2020, 12, 472. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Sardo, A.; Rossi, L.; Benetti, S.; Savino, A.; Silvestro, L. Mother and Infant Body Mass Index, Breast Milk Leptin and Their Serum Leptin Values. Nutrients 2016, 8, 383. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Vilariño-García, T.; Fernández-Riejos, P.; Martín-González, J.; Segura-Egea, J.J.; Sánchez-Margalet, V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev. 2017, 35, 71–84. [Google Scholar] [CrossRef]
- Pérez-Pérez, A.; Toro, A.; Vilariño-García, T.; Maymó, J.; Guadix, P.; Dueñas, J.L.; Fernández-Sánchez, M.; Varone, C.; Sánchez-Margalet, V. Leptin action in normal and pathological pregnancies. J. Cell. Mol. Med. 2018, 22, 716–727. [Google Scholar] [CrossRef] [PubMed]
- Catteau, A.; Caillon, H.; Barrière, P.; Denis, M.G.; Masson, D.; Fréour, T. Leptin and its potential interest in assisted reproduction cycles. Hum. Reprod. Update 2016, 22, 320–341. [Google Scholar] [CrossRef]
- Xiao, W.Q.; He, J.R.; Shen, S.Y.; Lu, J.H.; Kuang, Y.S.; Wei, X.L.; Qiu, X. Maternal circulating leptin profile during pregnancy and gestational diabetes mellitus. Diabetes Res. Clin. Pract. 2020, 161, 108041. [Google Scholar] [CrossRef] [PubMed]
- Childs, G.V.; Odle, A.K.; MacNicol, M.C.; MacNicol, A.M. The Importance of Leptin to Reproduction. Endocrinology 2021, 162, bqaa204. [Google Scholar] [CrossRef]
- Dam, J. Trafic et signalisation du récepteur de la leptine [Traffic and signalisation of the leptin receptor]. Biol. Aujourdhui 2018, 212, 35–43. [Google Scholar] [CrossRef]
- Srinivasan, G.; Parida, S.; Pavithra, S.; Panigrahi, M.; Sahoo, M.; Singh, T.U.; Madhu, C.L.; Manickam, K.; Shyamkumar, T.S.; Kumar, D.; et al. Leptin receptor stimulation in late pregnant mouse uterine tissue inhibits spontaneous contractions by increasing NO and cGMP. Cytokine 2021, 137, 155341. [Google Scholar] [CrossRef]
- Saad, A.; Adam, I.; Elzaki, S.E.G.; Awooda, H.A.; Hamdan, H.Z. Leptin receptor gene polymorphisms c.668A>G and c.1968G>C in Sudanese women with preeclampsia: A case-control study. BMC Med. Genet. 2020, 21, 162. [Google Scholar] [CrossRef]
- Perin, J.; Mulick, A.; Yeung, D.; Villavicencio, F.; Lopez, G.; Strong, K.L.; Prieto-Merino, D.; Cousens, S.; E Black, R.; Liu, L. Global, regional, and national causes of under-5 mortality in 2000–19: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet Child Adolesc. Health 2022, 6, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Chawanpaiboon, S.; Vogel, J.P.; Moller, A.-B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S.; Jampathong, N.; Kongwattanakul, K.; Laopaiboon, M.; et al. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health 2019, 7, e37–e46. [Google Scholar] [CrossRef] [PubMed]
- Mead, E.C.; Wang, C.A.; Phung, J.; Fu, J.Y.; Williams, S.M.; Merialdi, M.; Jacobsson, B.; Lye, S.; Menon, R.; Pennell, C.E. The Role of Genetics in Preterm Birth. Reprod. Sci. 2023, 30, 3410–3427. [Google Scholar] [CrossRef] [PubMed]
- Salem, H.; Rosenfeld, T.; Altarescu, G.; Grisaru-Granovsky, S.; Birk, R. Maternal and neonatal leptin and leptin receptor polymorphisms associated with preterm birth. Gene 2016, 591, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Savino, F.; Rossi, L.; Di Stasio, L.; Galliano, I.; Montanari, P.; Bergallo, M. Mismatch Amplification Mutation Assay Real-Time PCR Analysis of the Leptin Gene G2548A and A19G Polymorphisms and Serum Leptin in Infancy: A Preliminary Investigation. Horm. Res. Paediatr. 2016, 85, 318–324. [Google Scholar] [CrossRef]
- Purisch, S.E.; Gyamfi-Bannerman, C. Epidemiology of preterm birth. Semin. Perinatol. 2017, 41, 387–391. [Google Scholar] [CrossRef]
- York, T.P.; Eaves, L.J.; Neale, M.C.; Strauss, J.F., 3rd. The contribution of genetic and environmental factors to the duration of pregnancy. Am. J. Obstet. Gynecol. 2014, 210, 398–405. [Google Scholar] [CrossRef]
- Yılmaz, Y.; Verdi, H.; Taneri, A.; Yazıcı, A.C.; Ecevit, A.N.; Karakaş, N.M.; Tarcan, A.; Haberal, A.; Ozbek, N.; Atac, F.B. Maternal-fetal proinflammatory cytokine gene polymorphism and preterm birth. DNA Cell Biol. 2012, 31, 92–97. [Google Scholar] [CrossRef]
- Henson, M.C.; Castracane, V.D. Leptin in pregnancy: An update. Biol. Reprod. 2006, 74, 218–229. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Greer, I.A.; Pirwani, I.; Gibson, J.; Wallace, A.M. Leptin levels in pregnancy: Marker for fat accumulation and mobilization? Acta Obstet. Gynecol. Scand. 1998, 77, 278–283. [Google Scholar] [CrossRef]
- Schanton, M.; Maymó, J.; Camisay, M.F.; Pérez-Pérez, A.; Casale, R.; Sánchez-Margalet, V.; Erlejman, A.; Varone, C. Crosstalk between estradiol and NFκB signaling pathways on placental leptin expression. Reproduction 2020, 160, 591–602. [Google Scholar] [CrossRef]
- Vázquez, M.J.; Romero-Ruiz, A.; Tena-Sempere, M. Roles of leptin in reproduction, pregnancy and polycystic ovary syndrome: Consensus knowledge and recent developments. Metabolism 2015, 64, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Strobel, A.; Issad, T.; Camoin, L.; Ozata, M.; Strosberg, A.D. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 1998, 18, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Marcello, M.A.; Calixto, A.R.; de Almeida, J.F.; Martins, M.B.; Cunha, L.L.; Cavalari, C.A.; Etchebehere, E.C.; da Assumpção, L.V.; Geloneze, B.; Carvalho, A.L.; et al. Polymorphism in LEP and LEPR May Modify Leptin Levels and Represent Risk Factors for Thyroid Cancer. Int. J. Endocrinol. 2015, 2015, 173218. [Google Scholar] [CrossRef]
- Savino, F.; Sardo, A.; Montanari, P.; Galliano, I.; Di Stasio, L.; Bergallo, M.; Silvestro, L. Polymorphisms in Lep and Lepr Genes in Infants: Correlation with Serum Leptin Values in the First 6 Months of Life. J. Am. Coll. Nutr. 2017, 36, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Poston, L. Leptin and preeclampsia. Semin. Reprod. Med. 2002, 20, 131–138. [Google Scholar] [CrossRef]
- Hui, T.J.; Burt, A. Estimating linkage disequilibrium from genotypes under Hardy-Weinberg equilibrium. BMC Genet. 2020, 21, 21. [Google Scholar] [CrossRef] [PubMed]
- Lucantoni, R.; Ponti, E.; Berselli, M.E.; Savia, G.; Minocci, A.; Calò, G.; de Medici, C.; Liuzzi, A.; Di Blasio, A.M. The A19G polymorphism in the 5’ untranslated region of the human obese gene does not affect leptin levels in severely obese patients. J. Clin. Endocrinol. Metab. 2000, 85, 3589–3591. [Google Scholar] [CrossRef] [PubMed]
- Llanos, A.A.; Brasky, T.M.; Mathew, J.; Makambi, K.H.; Marian, C.; Dumitrescu, R.G.; Freudenheim, J.L.; Shields, P.G. Genetic variation in adipokine genes and associations with adiponectin and leptin concentrations in plasma and breast tissue. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1559–1568. [Google Scholar] [CrossRef]
- Du Fossé, N.A.; van der Hoorn, M.P.; van Lith, J.M.M.; le Cessie, S.; Lashley, E.E.L.O. Advanced paternal age is associated with an increased risk of spontaneous miscarriage: A systematic review and meta-analysis. Hum. Reprod. Update 2020, 26, 650–669. [Google Scholar] [CrossRef]
- Bengtson, M.B.; Solberg, I.C.; Aamodt, G.; Jahnsen, J.; Moum, B.; Vatn, M.H.; IBSEN Study Group. Relationships between inflammatory bowel disease and perinatal factors: Both maternal and paternal disease are related to preterm birth of offspring. Inflamm. Bowel. Dis. 2010, 16, 847–855. [Google Scholar] [CrossRef] [PubMed]
- Tullius, Z.; Rankin, K.; DeSisto, C.; Collins, J.W., Jr. Adverse birth outcome across the generations: The contribution of paternal factors. Arch. Gynecol. Obstet. 2020, 302, 1151–1157. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Wu, Y.; Zhou, M.; Bai, H.; Liu, X.; Fan, P. Association between genetic polymorphisms of leptin receptor and preeclampsia in Chinese women. J. Matern. Fetal Neonatal Med. 2023, 36, 2207708. [Google Scholar] [CrossRef] [PubMed]
- Walker, S.M. Biological and neurodevelopmental implications of neonatal pain. Clin. Perinatol. 2013, 40, 471–491. [Google Scholar] [CrossRef] [PubMed]
- Hohmeister, J.; Kroll, A.; Wollgarten-Hadamek, I.; Zohsel, K.; Demirakça, S.; Flor, H.; Hermann, C. Cerebral processing of pain in school-aged children with neonatal nociceptive input: An exploratory fMRI study. Pain 2010, 150, 257–267. [Google Scholar] [CrossRef]
- Xu, Y.L.; Zhou, H.Y.; Xu, J.; Liu, N.P. Use of buccal swab as a source of genomic DNA for genetic screening in patients with age-related macular degeneration. Chin. J. Ophthalmol. 2012, 48, 114–118. (In Chinese) [Google Scholar]
- Tang, Z.; Tang, X.; Xue, L.; Guan, M. A non-invasive method for detecting mitochondrial tRNAThr15927G>A mutation. J. South. Med. Univ. 2021, 41, 151–156. (In Chinese) [Google Scholar] [CrossRef]
- Mesman, A.W.; Calderon, R.I.; Pollock, N.R.; Soto, M.; Mendoza, M.; Coit, J.; Zhang, Z.; Aliaga, J.; Lecca, L.; Holmberg, R.C.; et al. Molecular detection of Mycobacterium tuberculosis from buccal swabs among adult in Peru. Sci. Rep. 2020, 10, 22231. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chua, S., Jr. Leptin Function and Regulation. Compr. Physiol. 2017, 8, 351–369. [Google Scholar] [CrossRef]
Characterization | Preterm Group (n = 54) | At Term Group (n = 105) | p-Value |
---|---|---|---|
Gender of newborn % (male) | 38% | 50% | 0.39 |
Mean maternal age at birth, years | 32 (5.03) | 33.6 (4.19) | 0.26 |
Mean paternal age at birth, years | 35.6 (4.72) | 39.9 (4.43) | 0.94 |
Mean gestational age at delivery, weeks | 34.1 (2.87) | 39.3 (2.09) | 0.57 |
Mean number of pregnancies | 2.28 (1.07) | 1.22 (0.98) | 0.86 |
Mean number of live births | 2.43 (1.75) | 1.72 (1.03) | 0.74 |
Abortions | 0.10 (0.68) | 0.16 (0.93) | 0.93 |
Caesarean sections | 0.40 (1.02) | 0.25 (0.65) | 0.09 |
SNP Subjects | Allelic Frequencies in Preterm Group (%) | Allelic Frequencies in At-Term Group (%) | p-Value | |||
---|---|---|---|---|---|---|
G | A | G | A | |||
LEP G2548A | Infants | 45 | 55 | 42 | 58 | 0.84 |
Mothers | 56 | 44 | 58 | 42 | 0.83 | |
Fathers | 59 | 41 | 56 | 44 | 0.83 | |
LEP A19G | Infants | 77 | 23 | 76 | 24 | 1.00 |
Mothers | 67 | 33 | 79 | 21 | 0.16 | |
Fathers | 76 | 24 | 71 | 29 | 0.64 | |
LEPR A668G | Infants | 40 | 60 | 33 | 67 | 0.54 |
Mothers | 42 | 58 | 39 | 61 | 0.83 | |
Fathers | 35 | 65 | 27 | 73 | 0.75 |
SNP Subjects | Genotypic Frequencies in Preterm Group (%) | Genotypic Frequencies in At-Term Group (%) | p-Value | |||||
---|---|---|---|---|---|---|---|---|
GG | AG | AG | GG | AA | AG | |||
LEP G2548A | Infants | 15 | 25 | 60 | 11 | 28 | 61 | 0.97 |
Mothers | 33 | 22 | 45 | 39 | 22 | 39 | 0.90 | |
Fathers | 35 | 18 | 47 | 33 | 21 | 46 | 0.95 | |
LEP A19G | Infants | 55 | - | 45 | 53 | - | 47 | 1.00 |
Mothers | 33 | - | 67 | 58 | - | 42 | 0.68 | |
Fathers | 53 | - | 47 | 42 | - | 58 | 0.55 | |
LEPR A668G | Infants | 15 | 35 | 50 | 12 | 44 | 44 | 0.77 |
Mothers | 6 | 27 | 67 | 11 | 28 | 61 | 0.75 | |
Fathers | 18 | 47 | 35 | 6 | 52 | 42 | 0.42 |
SNP Subjects | Preterm Group (%) | Term Group (%) | p-Value | |||
---|---|---|---|---|---|---|
AA | AG+GG | AA | AG+GG | |||
LEP G2548A | Infants | 26 | 74 | 28 | 72 | 1.00 |
Mothers | 22 | 78 | 22 | 78 | 1.00 | |
Fathers | 18 | 82 | 21 | 79 | 0.92 | |
GG | AG+AA | GG | AG+AA | |||
LEPR A668G | Infants | 16 | 84 | 11 | 89 | 0.75 |
Mothers | 11 | 89 | 6 | 94 | 0.31 | |
Fathers | 18 | 82 | 6 | 94 | 0.0153 * * statistically significant |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savino, F.; Sardo, A.; Gambarino, S.; Dini, M.; Clemente, A.; Pau, A.; Galliano, I.; Bergallo, M. Leptin and Leptin Receptor Polymorphisms in Infants and Their Parents: Correlation with Preterm Birth. Genes 2024, 15, 139. https://doi.org/10.3390/genes15010139
Savino F, Sardo A, Gambarino S, Dini M, Clemente A, Pau A, Galliano I, Bergallo M. Leptin and Leptin Receptor Polymorphisms in Infants and Their Parents: Correlation with Preterm Birth. Genes. 2024; 15(1):139. https://doi.org/10.3390/genes15010139
Chicago/Turabian StyleSavino, Francesco, Allegra Sardo, Stefano Gambarino, Maddalena Dini, Anna Clemente, Anna Pau, Ilaria Galliano, and Massimiliano Bergallo. 2024. "Leptin and Leptin Receptor Polymorphisms in Infants and Their Parents: Correlation with Preterm Birth" Genes 15, no. 1: 139. https://doi.org/10.3390/genes15010139
APA StyleSavino, F., Sardo, A., Gambarino, S., Dini, M., Clemente, A., Pau, A., Galliano, I., & Bergallo, M. (2024). Leptin and Leptin Receptor Polymorphisms in Infants and Their Parents: Correlation with Preterm Birth. Genes, 15(1), 139. https://doi.org/10.3390/genes15010139