Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources and Plant Materials
2.2. Identification and Characterization of the Loquat SBP-Box Family Members
2.3. Chromosomal Location and Collinearity Analysis
2.4. Construction of a Phylogenetic Tree
2.5. Analysis of Gene Structure, Conserved Motifs, Cis-Elements, and Protein-Protein Interaction Network
2.6. Detection of Expression Patterns by Using Transcriptome Data
2.7. Real-Time PCR Analysis
2.8. Statistical Analysis
3. Results
3.1. Identification and Characterization of EjSBP Genes
3.2. Chromosomal Distribution of EjSBP Genes
3.3. Phylogenetic Analysis of SBP Proteins
3.4. Collinearity Analysis
3.5. Conserved Motifs and Gene Structures of EjSBP Genes
3.6. Cis-Elements in the Promoter Regions of EjSBP Genes
3.7. Protein–Protein Interaction Network of Homologs of EjSBP Proteins in A. thaliana
3.8. Expression Patterns of EjSBP Genes in Different Tissues
3.9. Differential Expression of EjSBP Genes between Yellow- and White-Fleshed Fruit
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yusuf, D.; Butland, S.; Newman, M.; Bolotin, E.; Ticoll, A.; Cheung, W.; Zhang, X.; Dickman, C.; Fulton, D.; Lim, J.; et al. The transcription factor encyclopedia. Genome Biol. 2012, 13, R24. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, K.; Kigawa, T.; Seki, M.; Shinozaki, K.; Yokoyama, S. DNA-binding domains of plant-specific transcription factors: Structure, function, and evolution. Trends Plant Sci. 2013, 18, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, X.; Gu, S.; Hu, Z.; Xu, H.; Xu, C. Comparative study of SBP-box gene family in Arabidopsis and rice. Gene 2008, 407, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Saedler, H.; Huijser, P. A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol. Gen. Genet. 1996, 250, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Z.; Liu, D.; Zhang, K.; Li, A.; Mao, L. SQUAMOSA promoter-binding protein-like transcription factors: Star players for plant growth and development. J. Integr. Plant Biol. 2010, 52, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Poethig, R.S. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006, 133, 3539–3547. [Google Scholar] [CrossRef] [PubMed]
- Manning, K.; Tor, M.; Poole, M.; Hong, Y.; Thompson, A.J.; King, G.J.; Giovannoni, J.J.; Seymour, G.B. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat. Genet. 2006, 38, 948–952. [Google Scholar] [CrossRef]
- Usami, T.; Horiguchi, G.; Yano, S.; Tsukaya, H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 2009, 136, 955–964. [Google Scholar] [CrossRef]
- Zhang, Y.; Schwarz, S.; Saedler, H.; Huijser, P. SPL8, a local regulator in a subset of gibberellin-mediated developmental processes in Arabidopsis. Plant Mol. Biol. 2007, 63, 429–439. [Google Scholar] [CrossRef]
- Yamaguchi, A.; Wu, M.F.; Yang, L.; Wu, G.; Poethig, R.S.; Wagner, D. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell 2009, 17, 268–278. [Google Scholar] [CrossRef]
- Preston, J.; Hileman, L. Functional evolution in the plant SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. Front. Plant Sci. 2013, 4, 80. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, H. The miR156/SPL module, a regulatory hub and versatile toolbox, gears up crops for enhanced agronomic traits. Mol. Plant 2015, 8, 677–688. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.-H.; Lee, H.-J.; Ryu, J.Y.; Park, C.-M. SPL3/4/5 integrate developmental aging and photoperiodic signals into the FT-FD module in Arabidopsis flowering. Mol. Plant 2016, 9, 1647–1659. [Google Scholar] [CrossRef] [PubMed]
- Shikata, M.; Koyama, T.; Mitsuda, N.; Ohme-Takagi, M. Arabidopsis SBP-box genes SPL10, SPL11 and SPL2 control morphological change in association with shoot maturation in the reproductive phase. Plant Cell Physiol. 2009, 50, 2133–2145. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, S.; Grande, A.V.; Bujdoso, N.; Saedler, H.; Huijser, P. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol. Biol. 2008, 67, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.M.; Liu, Y.Q.; Chen, D.Y.; Xue, X.Y.; Mao, Y.B.; Chen, X.Y. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage. Mol Plant 2017, 10, 735–748. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhao, X.; Li, J.; Cai, H.; Deng, X.W.; Li, L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. Plant Cell 2014, 26, 4933–4953. [Google Scholar] [CrossRef] [PubMed]
- Fraser, P.D.; Bramley, P.; Seymour, G.B. Effect of the Cnr mutation on carotenoid formation during tomato fruit ripening. Phytochemistry 2001, 58, 75–79. [Google Scholar] [CrossRef]
- Martel, C.; Vrebalov, J.; Tafelmeyer, P.; Giovannoni, J.J. The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol. 2011, 157, 1568–1579. [Google Scholar] [CrossRef]
- Li, J.; Sun, S.X.; Tu, M.Y.; Xie, H.J.; Jiang, G.L. Evaluation and application of ecological suitability for loquat in different ecological zones of Sichuan province in China. Acta Hortic. 2011, 887, 113–116. (In Chinese) [Google Scholar] [CrossRef]
- Wei, W.; Shahid, M.Q.; Zhang, Z.; Song, H.; Yang, X.; Shunquan, L. DNA markers based on PSY genes can differentiate yellow- and white-fleshed loquats. J. Am. Pomol. Soc. 2016, 70, 165–168. [Google Scholar]
- Chen, D.; Song, H.; Gong, R.; Li, J.; Tu, M.; Jiang, G.; Sun, S.; Tang, H. Comparative transcriptome analysis of different stages of fruit ripening between red- and white-flesh loquat. Mol. Plant Breed. 2017, 15, 2112–2118. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y. A draft genome, resequencing, and metabolomes reveal the genetic background and molecular basis of the nutritional and medicinal properties of loquat (Eriobotrya japonica (Thunb.) Lindl). Hortic. Res. 2021, 8, 231. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; An, H.; Xu, F.; Zhang, X. Chromosome-level genome assembly and annotation of the loquat (Eriobotrya japonica) genome. Gigascience 2020, 9, giaa015. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Jing, Y.; Lin, S.; Yue, Z.; Yang, X.; Xu, J.; Wu, J.; Zhang, Z.; Xia, R.; Zhu, J.; et al. Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proc. Natl. Acad. Sci. USA 2021, 118, e2101767118. [Google Scholar] [CrossRef] [PubMed]
- Jing, D.; Liu, X.; He, Q.; Dang, J.; Hu, R.; Xia, Y.; Wu, D.; Wang, S.; Zhang, Y.; Xia, Q.; et al. Genome assembly of wild loquat (Eriobotrya japonica) and resequencing provide new insights into the genomic evolution and fruit domestication in loquat. Hortic. Res. 2023, 10, uhac265. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, D.; Jiang, G.-l.; Song, H.-y.; Tu, M.-y.; Sun, S.-x. Molecular cloning and expression analysis of EjSWEET15, enconding for a sugar transporter from loquat. Sci. Hortic. 2020, 272, 109552. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2020, 49, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.L.; Tosatto, S.C.E.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, 412–419. [Google Scholar] [CrossRef]
- Lu, S.; Wang, J.; Chitsaz, F.; Derbyshire, M.K.; Geer, R.C.; Gonzales, N.R.; Gwadz, M.; Hurwitz, D.I.; Marchler, G.H.; Song, J.S.; et al. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 2020, 48, 265–268. [Google Scholar] [CrossRef]
- Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784–3788. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.; Frank, M.; He, Y.; Xia, R. TBtools—An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, H.; Debarry, J.D.; Tan, X.; Li, J.; Wang, X.; Lee, T.H.; Jin, H.; Marler, B.; Guo, H.; et al. MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 2012, 40, e49. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Snel, B.; Lehmann, G.; Bork, P.; Huynen, M.A. STRING: A web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res. 2000, 28, 3442–3444. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Cardon, G.H.; Höhmann, S.; Nettesheim, K.; Saedler, H.; Huijser, P. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: A novel gene involved in the floral transition. Plant J. 1997, 12, 367–377. [Google Scholar] [CrossRef]
- Salinas, M.; Xing, S.; Höhmann, S.; Berndtgen, R.; Huijser, P. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato. Planta 2012, 235, 1171–1184. [Google Scholar] [CrossRef]
- Han, Y.Y.; Ma, Y.Q.; Li, D.Z.; Yao, J.W.; Xu, Z.Q. Characterization and phylogenetic analysis of fifteen NtabSPL genes in Nicotiana tabacum L. cv. Qinyan95. Dev. Genes Evol. 2016, 226, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.K.; Goel, R.; Kumari, S.; Dahuja, A. Genomic organization, phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean. Dev. Genes Evol. 2017, 227, 101–119. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, R.; Wu, B.; Ji, X.; Hao, C. Genome-wide identification and functional exploration of SBP-box gene family in black pepper (Piper nigrum L.). Genes 2021, 12, 1740. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hou, H.; Li, X.; Xiang, J.; Yin, X.; Gao, H.; Zheng, Y.; Bassett, C.L.; Wang, X. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus x domestica Borkh.). Plant Physiol. Biochem. 2013, 70, 100–114. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.D.; Ling, L.Z. Genome-wide identification and evolutionary analysis of the SBP-box gene family in castor bean. PLoS ONE 2014, 9, e86688. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Lu, S. Molecular characterization of the SPL gene family in Populus trichocarpa. BMC Plant Biol. 2014, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, S.; Chen, F.; Liu, B.; Wu, L.; Li, F.; Zhang, J.; Bao, M.; Liu, G. Genome-wide identification and characterization of the SBP-box gene family in Petunia. BMC Genom. 2018, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, X.; Zhang, X.; Liu, C. Dynamic expansion and functional evolutionary profiles of plant conservative gene family SBP-Box in twenty two flowering plants and the origin of miR156. Biomolecules 2020, 10, 757. [Google Scholar] [CrossRef]
- Tan, H.W.; Song, X.M.; Duan, W.K.; Wang, Y.; Hou, X.L. Genome-wide analysis of the SBP-box gene family in Chinese cabbage (Brassica rapa subsp. pekinensis). Genome 2015, 58, 463–477. [Google Scholar] [CrossRef]
- Lee, D.; Redfern, O.; Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 2007, 8, 995–1005. [Google Scholar] [CrossRef]
- Cai, J.; Chen, T.; Zhang, Z.; Li, B.; Qin, G.; Tian, S. Metabolic dynamics during loquat fruit ripening and postharvest technologies. Front. Plant Sci. 2019, 10, 619. [Google Scholar] [CrossRef]
- Zhong, C. Analysis of Molecular and Physiological Mechanisms on the Quality Formation in Loquat (Eriobotrya japonica) Fruits. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2016. (In Chinese). [Google Scholar]
- Deng, C.; Chen, Z.; Zhang, X.; Zhang, L.; Xie, L.; Zhen, S.; Zhang, X.; Lin, Q.; Wei, X.; Xu, Q.; et al. Dicersity analysis of fruit description characteristics of Loquat germplasm resources. Fujian Fruits 2009, 2, 42–47. (In Chinese) [Google Scholar]
- Zhang, L.; Zhang, Z.; Zheng, T.; Wei, W.; Zhu, Y.; Gao, Y.; Yang, X.; Lin, S. Characterization of carotenoid accumulation and carotenogenic gene expression during fruit development in yellow and white loquat fruit. Hortic. Plant J. 2016, 2, 9–15. [Google Scholar] [CrossRef]
- Fu, X.; Chao, F.; Wang, C.; Yin, X.; Lu, P.; Grierson, D.; Xu, C.-J.; Chen, K. Involvement of multiple phytoene synthase genes in tissue- and cultivar-specific accumulation of carotenoids in loquat. J. Exp. Bot. 2014, 65, eru257. [Google Scholar] [CrossRef]
Gene Name | Gene ID | Length (aa) | MV (kDa) | pI | Subcellular Localization |
---|---|---|---|---|---|
EjSBP01 | Ej00000266 | 173 | 19685.18 | 5.21 | nucl |
EjSBP02 | Ej00015513 | 932 | 103687.92 | 7.09 | nucl |
EjSBP03 | Ej00016783 | 217 | 23673.22 | 7.64 | nucl |
EjSBP04 | Ej00026056 | 510 | 55835.29 | 8.13 | nucl |
EjSBP05 | Ej00034062 | 971 | 107095.03 | 6.71 | nucl |
EjSBP06 | Ej00034149 | 983 | 109556.47 | 6.24 | nucl |
EjSBP07 | Ej00034777 | 477 | 53066.69 | 6.47 | nucl |
EjSBP08 | Ej00035634 | 189 | 21196.41 | 8.97 | nucl |
EjSBP09 | Ej00048187 | 414 | 45313.99 | 8.28 | nucl |
EjSBP10 | Ej00062526 | 551 | 61179.21 | 6.74 | nucl |
EjSBP11 | Ej00064408 | 555 | 61188.51 | 7.29 | nucl |
EjSBP12 | Ej00065062 | 1077 | 119141.49 | 7.96 | nucl |
EjSBP13 | Ej00065226 | 510 | 55835.29 | 8.13 | nucl |
EjSBP14 | Ej00066329 | 817 | 91470.01 | 6.55 | nucl |
EjSBP15 | Ej00068286 | 414 | 45179.21 | 8.99 | nucl |
EjSBP16 | Ej00069183 | 1515 | 168555.71 | 5.51 | mito |
EjSBP17 | Ej00069236 | 1278 | 140862.49 | 5.37 | nucl |
EjSBP18 | Ej00069499 | 1062 | 118128.02 | 5.4 | chlo |
EjSBP19 | Ej00069727 | 182 | 20781.38 | 9.53 | nucl |
EjSBP20 | Ej00074396 | 334 | 37715.64 | 9.06 | nucl |
EjSBP21 | Ej00075258 | 393 | 42171.64 | 9.14 | nucl |
EjSBP22 | Ej00081025 | 816 | 91901.24 | 7.23 | nucl |
EjSBP23 | Ej00083560 | 191 | 21437.61 | 9.21 | nucl |
EjSBP24 | Ej00085592 | 1003 | 111523.92 | 6.34 | nucl |
EjSBP25 | Ej00085893 | 308 | 34705.86 | 9.43 | nucl |
EjSBP26 | Ej00085904 | 1029 | 113860.22 | 6.71 | nucl |
EjSBP27 | Ej00086049 | 475 | 52086.43 | 6.55 | nucl |
EjSBP28 | Ej00096159 | 135 | 15343.05 | 9.77 | nucl |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Zhao, K.; Jiang, G.; Sun, S.; Li, J.; Tu, M.; Wang, L.; Xie, H.; Chen, D. Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development. Genes 2024, 15, 23. https://doi.org/10.3390/genes15010023
Song H, Zhao K, Jiang G, Sun S, Li J, Tu M, Wang L, Xie H, Chen D. Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development. Genes. 2024; 15(1):23. https://doi.org/10.3390/genes15010023
Chicago/Turabian StyleSong, Haiyan, Ke Zhao, Guoliang Jiang, Shuxia Sun, Jing Li, Meiyan Tu, Lingli Wang, Hongjiang Xie, and Dong Chen. 2024. "Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development" Genes 15, no. 1: 23. https://doi.org/10.3390/genes15010023
APA StyleSong, H., Zhao, K., Jiang, G., Sun, S., Li, J., Tu, M., Wang, L., Xie, H., & Chen, D. (2024). Genome-Wide Identification and Expression Analysis of the SBP-Box Gene Family in Loquat Fruit Development. Genes, 15(1), 23. https://doi.org/10.3390/genes15010023