Polymorphic Loci of Adaptively Significant Genes Selection for Determining Nucleotide Polymorphism of Pinus sylvestris L. Populations in the Urals
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal forest health and global change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, N.F.; Klushevskaya, E.S.; Amineva, E.Y. Highly productive pine forests in a changing climate. Lesn. Zh 2021, 6, 9–23. [Google Scholar] [CrossRef]
- Eriksson, G. Evolutionary forces influencing variation among populations of Pinus sylvestris. Silva Fenn. 1998, 32, 694. [Google Scholar] [CrossRef]
- Namkoong, G. Forest genetics: Pattern and complexity. Can. J. For. Res. 2001, 31, 623–632. [Google Scholar] [CrossRef]
- Gonzalez-Martinez, S.C.; Krutovsky, K.V.; Neale, D.B. Forest-tree population genomics and adaptive evolution. New Phytol. 2006, 170, 227–238. [Google Scholar] [CrossRef]
- Sheller, M.; Tóth, E.G.; Ciocîrlan, E.; Mikhaylov, P.; Kulakov, S.; Kulakova, N.; Melnichenko, N.; Ibe, A.; Sukhikh, T.; Curtu, A.L. Genetic diversity and population structure of scots pine (Pinus sylvestris L.) in middle siberia. Forests 2023, 14, 66–71. [Google Scholar] [CrossRef]
- Floran, V.; Sestras, R.E.; GarcÍA Gil, M.R. Organelle genetic diversity and phylogeography of scots pine (Pinus sylvestris L.). Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 317–322. [Google Scholar] [CrossRef]
- Mirov, N. The Genus Pinus; The Ronald Press Company: New York, NY, USA, 1967; Available online: https://biblio.ie/book/genus-pinus-n-mirov/d/1191675207. (accessed on 18 August 2024).
- Hebda, A.; Wójkiewicz, B.; Wachowiak, W. Genetic characteristics of scots pine in poland and reference populations based on nuclear and chloroplast microsatellite markers. Silva Fenn. 2017, 51, 1721. [Google Scholar] [CrossRef]
- Tóth, E.G.; Vendramin, G.G.; Bagnoli, F.; Cseke, K.; Höhn, M. High genetic diversity and distinct origin of recently fragmented scots pine (Pinus sylvestris L.) populations along the carpathians and the pannonian basin. Tree Genet. Genomes 2017, 13, 47. [Google Scholar] [CrossRef]
- Tyrmi, J.S.; Vuosku, J.; Acosta, J.J.; Li, Z.; Sterck, L.; Cervera, M.T.; Savolainen, O.; Pyhajarvi, T. Genomics of clinal local adaptation in Pinus sylvestris under continuous environmental and spatial genetic setting. G3 2020, 10, 2683–2696. [Google Scholar] [CrossRef] [PubMed]
- Shvarts, E.A.; Karpachevskiy, M.L.; Shmatkov, N.M.; Baybar, A.S. Reforming forest policies and management in russia: Problems and challenges. Forests 2023, 14, 100–143. [Google Scholar] [CrossRef]
- Hogberg, P.; Nordgren, A.; Buchmann, N.; Taylor, A.F.; Ekblad, A.; Hogberg, M.N.; Nyberg, G.; Ottosson-Lofvenius, M.; Read, D.J. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 2001, 411, 789–792. [Google Scholar] [CrossRef] [PubMed]
- Lindén, A.; Heinonsalo, J.; Buchmann, N.; Oinonen, M.; Sonninen, E.; Hilasvuori, E.; Pumpanen, J. Contrasting effects of increased carbon input on boreal som decomposition with and without presence of living root system of Pinus sylvestris L. Plant Soil 2013, 377, 145–158. [Google Scholar] [CrossRef]
- Kavaliauskas, D.; Danusevičius, D.; Baliuckas, V. New insight into genetic structure and diversity of scots pine (Pinus sylvestris L.) populations in lithuania based on nuclear, chloroplast and mitochondrial DNA markers. Forests 2022, 13, 1179. [Google Scholar] [CrossRef]
- Chertov, N. Analysis of genetic diversity, structure and differentiation of Pinus sylvestris L. Populations inf the urals. Bull. Perm Univ. Biol. 2024, 2, 221–230. [Google Scholar] [CrossRef]
- De La Torre, A.R.; Sekhwal, M.K.; Puiu, D.; Salzberg, S.L.; Scott, A.D.; Allen, B.; Neale, D.B.; Chin, A.R.O.; Buckley, T.N. Genome-wide association identifies candidate genes for drought tolerance in coast redwood and giant sequoia. Plant J. 2022, 109, 7–22. [Google Scholar] [CrossRef]
- George, J.P.; Schueler, S.; Grabner, M.; Karanitsch-Ackerl, S.; Mayer, K.; Stierschneider, M.; Weissenbacher, L.; van Loo, M. Looking for the needle in a downsized haystack: Whole-exome sequencing unravels genomic signals of climatic adaptation in douglas-fir (Pseudotsuga menziesii). Ecol. Evol. 2021, 11, 8238–8253. [Google Scholar] [CrossRef]
- Lu, M.; Seeve, C.M.; Loopstra, C.A.; Krutovsky, K.V. Exploring the genetic basis of gene transcript abundance and metabolite levels in loblolly pine (Pinus taeda L.) using association mapping and network construction. BMC Genet. 2018, 19, 100. [Google Scholar] [CrossRef]
- Arif, I.A.; Bakir, M.A.; Khan, H.A.; Al Farhan, A.H.; Al Homaidan, A.A.; Bahkali, A.H.; Sadoon, M.A.; Shobrak, M. A brief review of molecular techniques to assess plant diversity. Int. J. Mol. Sci. 2010, 11, 2079–2096. [Google Scholar] [CrossRef]
- Dorogina, O.V.; Zhmud, E.V. Molecular-genetic methods in plant ecology. Contemp. Probl. Ecol. 2020, 13, 333–345. [Google Scholar] [CrossRef]
- Wachowiak, W.; Perry, A.; Zaborowska, J.; González-Martínez, S.C.; Cavers, S. Admixture and selection patterns across the european distribution of scots pine, Pinus sylvestris (pinaceae). Bot. J. Linn. Soc. 2022, 200, 416–432. [Google Scholar] [CrossRef]
- Bruxaux, J.; Zhao, W.; Hall, D.; Curtu, A.L.; Androsiuk, P.; Drouzas, A.D.; Gailing, O.; Konrad, H.; Sullivan, A.R.; Semerikov, V.; et al. Scots pine—panmixia and the elusive signal of genetic adaptation. New Phytol. 2024, 243, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Baldi, P.; La Porta, N. Toward the genetic improvement of drought tolerance in conifers: An integrated approach. Forests 2022, 13, 2016. [Google Scholar] [CrossRef]
- Amineva, E.Y.; Gureev, A.P.; Tabatskaya, T.M.; Mashkina, O.S.; Popov, V.N. Genotypic variability of Pinus sylvestris L. On the drought-resistance attribute. Vavilov J. Genet. Breed. 2019, 23, 15–23. [Google Scholar] [CrossRef]
- Zhou, C.; Bo, W.; El-Kassaby, Y.A.; Li, W. Transcriptome profiles reveal response mechanisms and key role of psnac1 in Pinus sylvestris var. Mongolica to drought stress. BMC Plant Biol. 2024, 24, 343. [Google Scholar] [CrossRef]
- Moran, E.; Lauder, J.; Musser, C.; Stathos, A.; Shu, M. The genetics of drought tolerance in conifers. New Phytol. 2017, 216, 1034–1048. [Google Scholar] [CrossRef]
- Kalendar, R.; Ivanov, K.I.; Samuilova, O.; Kairov, U.; Zamyatnin, A.A., Jr. Isolation of high-molecular-weight DNA for long-read sequencing using a high-salt gel electroelution trap. Anal. Chem. 2023, 95, 17818–17825. [Google Scholar] [CrossRef]
- Kalendar, R.; Ivanov, K.I.; Akhmetollayev, I.; Kairov, U.; Samuilova, O.; Burster, T.; Zamyatnin, A.A., Jr. An improved method and device for nucleic acid isolation using a high-salt gel electroelution trap. Anal. Chem. 2024, 96, 15526–15530. [Google Scholar] [CrossRef]
- Kalendar, R.; Boronnikova, S.; Seppanen, M. Isolation and purification of DNA from complicated biological samples. Methods Mol. Biol. 2021, 2222, 57–67. [Google Scholar] [CrossRef]
- Kastally, C.; Niskanen, A.K.; Perry, A.; Kujala, S.T.; Avia, K.; Cervantes, S.; Haapanen, M.; Kesalahti, R.; Kumpula, T.A.; Mattila, T.M.; et al. Taming the massive genome of scots pine with pisy50k, a new genotyping array for conifer research. Plant J. 2022, 109, 1337–1350. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. Interproscan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Khassenov, B.; Ramankulov, Y.; Samuilova, O.; Ivanov, K.I. Fastpcr: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics 2017, 109, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Kalendar, R.; Shevtsov, A.; Otarbay, Z.; Ismailova, A. In silico pcr analysis: A comprehensive bioinformatics tool for enhancing nucleic acid amplification assays. Front. Bioinform. 2024, 4, 1464197. [Google Scholar] [CrossRef]
- Rose, R.; Golosova, O.; Sukhomlinov, D.; Tiunov, A.; Prosperi, M. Flexible design of multiple metagenomics classification pipelines with ugene. Bioinformatics 2019, 35, 1963–1965. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. Dnasp v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: Chichester, NY, USA, 1987; Volume 1, p. 514. [Google Scholar] [CrossRef]
- Watterson, G.A. On the number of segregating sites in genetical models without recombination. Theor. Popul. Biol. 1975, 7, 256–276. [Google Scholar] [CrossRef]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Prishnivskaya, Y.; Nassonova, E.; Vasileva, Y.; Boronnikova, S. Selecting of polymorphic loci of genome for identification of populations of Pinus sylvestris L. On east europe plain. Bull. Sci. Pract. 2019, 5, 25–30. [Google Scholar] [CrossRef]
- Wachowiak, W.; Szczepański, S.; Lasek, M.; Maciejewski, Z.; Łabiszak, B. Genetic perspective on forest management of scots pine (Pinus sylvestris L.) in protected areas. For. Ecol. Manag. 2024, 568, 122127. [Google Scholar] [CrossRef]
- Wachowiak, W.; Wόjkiewicz, B.; Cavers, S.; Lewandowski, A. High genetic similarity between polish and north european scots pine (Pinus sylvestris L.) populations at nuclear gene loci. Tree Genet. Genomes 2014, 10, 1015–1025. [Google Scholar] [CrossRef]
- Wachowiak, W.; Iason, G.R.; Cavers, S. Among population differentiation at nuclear genes in native scots pine (Pinus sylvestris L.) in scotland. Flora-Morphol. Distrib. Funct. Ecol. Plants 2013, 208, 79–86. [Google Scholar] [CrossRef]
- Lou, X.; Yao, S.; Chen, P.; Wang, D.; Agassin, R.H.; Hou, Y.; Zhang, C.; Ji, K. Transcriptome identification of r2r3-myb gene family members in pinus massoniana and pmmyb4 response to drought stress. Forests 2023, 14, 410. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, H.; Yu, H.; Wang, C.; Zhang, S.; Hao, J.; Wang, J.; Zhang, H.; Zhang, L. Function of myb8 in larch under peg simulated drought stress. Sci. Rep. 2024, 14, 11290. [Google Scholar] [CrossRef]
Locus | Primer Sequences (Forward/Reverse) | Gene Ontology Identificatory | Expected Product Size, bp |
---|---|---|---|
Pinus-1 | AGTTCAAGGGTGGGTTGCAA/ GGTATGTGGTAGGATGGCCG | GO:0009788 negative regulation of abscisic acid-activated signaling pathway | 601 |
Pinus-2 | TTTGGGTGGCTGTCTGTGTT/ TCTGGTGCCAAAAACCCCAT | GO:0009788 negative regulation of abscisic acid-activated signaling pathway | 587 |
Pinus-3 | GCTGGAGCTGTTTGACACAA/ CACCGCACAAACAGTTCCAG | GO:0009415 response to water | 592 |
Pinus-4 | GTCACTCAGCAAGCGCAAAA/ CTTGCCACAGTCTTTGCCAC | GO:0071277 cellular response to calcium ion | 590 |
Pinus-5 | GGCAAAGGACAAGACCCAGA/ GATCCGTCGGCTCACATTCA | GO:0009415 response to water | 565 |
Pinus-6 | GTTCTGCTGCACTCTGGTCT/ GGAGCAGGTGCCTGAAGAAT | GO:0006952 defense response | 587 |
Pinus-7 | CCAGTCCGCGAATCCGATAA/ AACTCCGGCGTAAAGACTCC | GO:0009788 negative regulation of abscisic acid-activated signaling pathway | 573 |
Pinus-8 | TCTGTCGAAATGTGCACCGA/ TCATTGGCCTTCACTGACCC | GO:0009269 response to desiccation | 518 |
Pinus-9 | TCTATGAGCGATTCGGTGGC/ CAAAACCCGGGCTGAAACTG | GO:0009269 response to desiccation | 533 |
Pinus-10 | CCGCGGATAGTTATGCCCAT/ CATGCTCGATACCTGGCAGT | GO:0009788 negative regulation of abscisic acid-activated signaling pathway | 579 |
Pinus-11 | ATTCGACTTGCCCGGACTTT/ GAACGACAGTCTCAGGCCAA | GO:0009408 response to heat | 504 |
Pinus-12 | TCGCGAGTGAAGCTTCTGTT/ TTCCGGTGCATTGCTCTCTT | GO:0009408 response to heat | 597 |
Pinus-13 | TCGAGCGATGAAGAGGAGGA/ AATCACAACCCCACAACACG | GO:0009408 response to heat | 502 |
Pinus-14 | CCCTATCCTGGTTGCCGTTT/ AGCTCGCATTTACCTGTGCT | GO:0009788 negative regulation of abscisic acid-activated signaling pathway | 575 |
Pinus-15 | AGGCATTTGTGGTTTGGTGC/ CCTCCTTTTCTGGGCTCGTT | GO:0009408 response to heat | 503 |
Pinus-16 | TCGCACACAGAGAAGAGAGG/ TGGCAAATCATAACGCGCAG | GO:0009408 response to heat | 574 |
Locus | Primer Sequences (Forward/Reverse) | PCR Conditions |
---|---|---|
Pinus-11 | ATTCGACTTGCCCGGACTTT/ GAACGACAGTCTCAGGCCAA | Denaturation: 94 °C—5 min; 30 cycles: 94 °C—30 s, 60 °C—45 s, 72 °C—2 min, final elongation: 72 °C—10 min |
Pinus-12 | TCGCGAGTGAAGCTTCTGTT/ TTCCGGTGCATTGCTCTCTT | Denaturation: 94 °C—5 min; 30 cycles: 94 °C—30 s, 57 °C—45 s, 72 °C—2 min, final elongation: 72 °C—10 min |
Pinus-15 | AGGCATTTGTGGTTTGGTGC/ CCTCCTTTTCTGGGCTCGTT | Denaturation: 94 °C—5 min; 30 cycles: 94 °C—1 min, 55,7 °C—30 s, 72 °C—2 min, final elongation 72 °C—10 min |
Locus | Product | Gene Ontology (GO) |
---|---|---|
Pinus-11 | Small heat shock protein | GO:0009408 response to heat |
Pinus-12 | α-Crystallin domain of small heat shock protein | GO:0009408 response to heat |
Pinus-15 | MYB transcription factor | GO:0009408 response to heat |
Locus/Population * | Gn | Ch | Rm | Ar | Bl | Kr | Mh | Pr | Sl | Pl | Uk | Ln | Sk | Total | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Pinus-11 | hn | 4 | 4 | 4 | 6 | 6 | 5 | 6 | 3 | 4 | 4 | 4 | 3 | 4 | 19 |
S | 4 | 3 | 3 | 6 | 6 | 5 | 4 | 2 | 3 | 3 | 3 | 2 | 4 | 10 | |
Pinus-12 | hn | 2 | 7 | 9 | 4 | 6 | 8 | 7 | 2 | 4 | 7 | 7 | 6 | 4 | 45 |
S | 1 | 9 | 36 | 3 | 6 | 18 | 10 | 1 | 5 | 9 | 16 | 8 | 5 | 84 | |
Pinus-15 | hn | 4 | 3 | 2 | 3 | 2 | 0 | 2 | 3 | 3 | 3 | 3 | 5 | 2 | 6 |
S | 2 | 2 | 1 | 2 | 1 | 0 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | 3 |
Locus * | Hd | π | θW | DT |
---|---|---|---|---|
Pinus-11 | 0.737 (0.028) | 0.004 (0.000) | 0.006 | −0.890 |
Pinus-12 | 0.630 (0.040) | 0.005 (0.001) | 0.032 | −2.615 |
Pinus-15 | 0.620 (0.025) | 0.003 (0.000) | 0.002 | 0.925 |
Mean | 0.662 (0.010) | 0.004 (0.002) | 0.013 | - |
Indicators * | PS_Ch | PS_Rm | PS_Kr | PS_Pl | PS_Pr | PS_Sk | PS_Sl |
Hd | 0.661 | 0.675 | 0.533 | 0.653 | 0.478 | 0.589 | 0.592 |
π | 0.004 | 0.003 | 0.007 | 0.004 | 0.004 | 0.002 | 0.002 |
θW | 0.003 | 0.003 | 0.009 | 0.006 | 0.004 | 0.001 | 0.002 |
Indicators * | PS_Uk | PS_Gn | PS_Ln | PR_Ar | PS_Bl | PS_Mh | Total |
Hd | 0.659 | 0.472 | 0.614 | 0.697 | 0.692 | 0.650 | 0.662 |
π | 0.003 | 0.005 | 0.002 | 0.003 | 0.003 | 0.003 | 0.004 |
θW | 0.003 | 0.005 | 0.002 | 0.003 | 0.003 | 0.004 | 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chertov, N.; Sboeva, Y.; Nechaeva, Y.; Boronnikova, S.; Zhulanov, A.; Pechenkina, V.; Kalendar, R. Polymorphic Loci of Adaptively Significant Genes Selection for Determining Nucleotide Polymorphism of Pinus sylvestris L. Populations in the Urals. Genes 2024, 15, 1343. https://doi.org/10.3390/genes15101343
Chertov N, Sboeva Y, Nechaeva Y, Boronnikova S, Zhulanov A, Pechenkina V, Kalendar R. Polymorphic Loci of Adaptively Significant Genes Selection for Determining Nucleotide Polymorphism of Pinus sylvestris L. Populations in the Urals. Genes. 2024; 15(10):1343. https://doi.org/10.3390/genes15101343
Chicago/Turabian StyleChertov, Nikita, Yana Sboeva, Yulia Nechaeva, Svetlana Boronnikova, Andrei Zhulanov, Victoria Pechenkina, and Ruslan Kalendar. 2024. "Polymorphic Loci of Adaptively Significant Genes Selection for Determining Nucleotide Polymorphism of Pinus sylvestris L. Populations in the Urals" Genes 15, no. 10: 1343. https://doi.org/10.3390/genes15101343
APA StyleChertov, N., Sboeva, Y., Nechaeva, Y., Boronnikova, S., Zhulanov, A., Pechenkina, V., & Kalendar, R. (2024). Polymorphic Loci of Adaptively Significant Genes Selection for Determining Nucleotide Polymorphism of Pinus sylvestris L. Populations in the Urals. Genes, 15(10), 1343. https://doi.org/10.3390/genes15101343