Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome
Abstract
:1. Introduction
2. Methods for Literature Search
3. Diagnostic and Management Challenges
4. Molecular Mechanisms and Pathophysiology
5. MNDs with Prominent Lower Motor Neuron Involvement
5.1. Spinal Muscular Atrophy (SMA)
5.2. Type 0 SMA (Congenital SMA)
5.3. Type I SMA (Severe SMA or Werdnig–Hoffmann Disease)
5.4. Type II SMA (Intermediate SMA or Dubowitz Disease)
5.5. Type III SMA (Mild SMA or Kugelberg–Welander Disease)
5.6. Type IV SMA (Adult Form)
6. Summary of Characteristics
7. MNDs with Prominent Lower Motor Neuron Involvement with Additional Features (Sma-like or Sma-Plus or Atypical Sma)
7.1. Spinal Muscular Atrophy with Respiratory Distress (SMARD)—Diaphragmatic SMA
7.2. SMA with Arthrogryposis
- The survival motor neuron 1 (SMN1) gene;
- The thyroid hormone receptor interactor 4 (TRIP4) gene;
- The activating signal cointegrator 1 complex subunit 1 (ASCC1) gene;
- The ubiquitin-like modifier-activating enzyme 1 (UBA1) gene.
7.3. X-Linked SMA and Arthrogryposis (XL-SMA, SMAX2)
7.4. Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD) or Congenital Arthrogryposis with Anterior Horn Cell Disease; CAAHD
7.5. Lethal Congenital Contracture Syndrome 1 (LCCS1) or Multiple Contracture Syndrome, Finnish Type
7.6. Lethal Congenital Contracture Syndrome 2 (LCCS2) or Multiple Contracture Syndrome, Israeli Bedouin Type A
7.7. Lethal Congenital Contracture Syndrome 3 (LCCS3) or Multiple Contracture Syndrome, Israeli Bedouin Type B
7.8. Lethal Congenital Contractural Syndrome 4 (LCCS4)
7.9. SMA Plus Syndromes Linked to Mitochondrial Disorders
7.10. Brown–Vialetto–Van Laere (BVVL) Syndrome
7.11. Fazio-Londe Syndrome
7.12. Pontocerebellar Hypoplasia with Spinal Muscular Atrophy (PCH1)
7.13. Spinal Muscular Atrophy with Progressive Myoclonic Epilepsy (SMAPME)
7.14. Spinal Muscular Atrophy with Lower Extremity Predominance (SMA-LED)
7.15. Scapuloperoneal Spinal Muscular Atrophy (SPSMA)
8. MNDs with Prominent Upper Motor Neuron Involvement
Hereditary Spastic Paraplegia (HSP)
9. MNDs with Prominent Mixed Upper and Lower Motor Neuron Involvement
Amyotrophic Lateral Sclerosis (ALS) Associated with Presentation in Childhood
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foster, L.A.; Salajegheh, M.K. Motor Neuron Disease: Pathophysiology, Diagnosis, and Management. Am. J. Med. 2019, 132, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Zayia, L.C.; Tadi, P. Neuroanatomy, motor neuron. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Verber, N.S.; Shepheard, S.R.; Sassani, M.; McDonough, H.E.; Moore, S.A.; Alix, J.J.P.; Wilkinson, I.D.; Jenkins, T.M.; Shaw, P.J. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front. Neurol. 2019, 10, 291. [Google Scholar] [CrossRef] [PubMed]
- James, P.A.; Talbot, K. The molecular genetics of non-ALS motor neuron diseases. Biochim. Biophys. Acta 2006, 1762, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Muela, N. Autophagy in motor neuron diseases. Prog. Mol. Biol. Transl. Sci. 2020, 172, 157–202. [Google Scholar] [CrossRef]
- McDermott, C.J.; Shaw, P.J. Diagnosis and management of motor neurone disease. BMJ (Clin. Res. Ed.) 2008, 336, 658–662. [Google Scholar] [CrossRef]
- Chaudhary, R.; Agarwal, V.; Rehman, M.; Kaushik, A.S.; Mishra, V. Genetic architecture of motor neuron diseases. J. Neurol. Sci. 2022, 434, 120099. [Google Scholar] [CrossRef]
- Srivastava, S.; Love-Nichols, J.A.; Dies, K.A.; Ledbetter, D.H.; Martin, C.L.; Chung, W.K.; Firth, H.V.; Frazier, T.; Hansen, R.L.; Prock, L.; et al. Meta-analysis and multidisciplinary consensus statement: Exome sequencing is a first-tier clinical diagnostic test for individuals with neurodevelopmental disorders. Genet. Med. Off. J. Am. Coll. Med. Genet. 2019, 21, 2413–2421. [Google Scholar] [CrossRef]
- Dion, P.A.; Daoud, H.; Rouleau, G.A. Genetics of motor neuron disorders: New insights into pathogenic mechanisms. Nat. Rev. Genet. 2009, 10, 769–782. [Google Scholar] [CrossRef]
- Ruffo, P.; Cavallaro, S.; Conforti, F.L. The advent of omics sciences in clinical trials of motor neuron diseases. J. Pers. Med. 2022, 12, 758. [Google Scholar] [CrossRef]
- Waung, M.W.; Ma, F.; Wheeler, A.G.; Zai, C.C.; So, J. The Diagnostic Landscape of Adult Neurogenetic Disorders. Biology 2023, 12, 1459. [Google Scholar] [CrossRef]
- Chamakioti, M.; Karantzelis, N.; Taraviras, S. Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int. J. Mol. Sci. 2022, 23, 4824. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, J.; Strong, M.J. Challenges in the Understanding and Treatment of Amyotrophic Lateral Sclerosis/Motor Neuron Disease. Neurother. J. Am. Soc. Exp. NeuroTherapeutics 2015, 12, 317–325. [Google Scholar] [CrossRef]
- Baethge, C.; Goldbeck-Wood, S.; Mertens, S. SANRA—A scale for the quality assessment of narrative review articles. Res. Integr. Peer Rev. 2019, 4, 5. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Gavriilaki, M.; Papaliagkas, V.; Stamperna, A.; Moschou, M.; Notas, K.; Papagiannopoulos, S.; Arnaoutoglou, M.; Kimiskidis, V.K. Biomarkers of therapeutic efficacy in adolescents and adults with 5q spinal muscular atrophy: A systematic review. Acta Neurol. Belg. 2023, 123, 1735–1745. [Google Scholar] [CrossRef] [PubMed]
- Vacchiano, V.; Morabito, F.; Faini, C.; Nocera, G.; Not, R.; Scarpini, G.; Romagnoli, M.; Pini, A.; Liguori, R. Motor unit number estimation via MScanFit MUNE in spinal muscular atrophy. Muscle Nerve 2024, 70, 71–81. [Google Scholar] [CrossRef]
- Jacobsen, A.B.; Bostock, H.; Tankisi, H. Following disease progression in motor neuron disorders with 3 motor unit number estimation methods. Muscle Nerve 2019, 59, 82–87. [Google Scholar] [CrossRef]
- Teoh, H.L.; Carey, K.; Sampaio, H.; Mowat, D.; Roscioli, T.; Farrar, M. Inherited Paediatric Motor Neuron Disorders: Beyond Spinal Muscular Atrophy. Neural Plast. 2017, 2017, 6509493. [Google Scholar] [CrossRef]
- Satam, H.; Joshi, K.; Mangrolia, U.; Waghoo, S.; Zaidi, G.; Rawool, S.; Thakare, R.P.; Banday, S.; Mishra, A.K.; Das, G.; et al. Next-Generation Sequencing Technology: Current Trends and Advancements. Biology 2023, 12, 997. [Google Scholar] [CrossRef]
- Kriss, A.; Jenkins, T. Muscle MRI in motor neuron diseases: A systematic review. Amyotroph. Lateral Scler. Front. Degener. 2022, 23, 161–175. [Google Scholar] [CrossRef]
- Christidi, F.; Karavasilis, E.; Argyropoulos, G.D.; Velonakis, G.; Zouvelou, V.; Murad, A.; Evdokimidis, I.; Rentzos, M.; Seimenis, I.; Bede, P. Neurometabolic Alterations in Motor Neuron Disease: Insights from Magnetic Resonance Spectroscopy. J. Integr. Neurosci. 2022, 21, 87. [Google Scholar] [CrossRef] [PubMed]
- Kurtishi, A.; Rosen, B.; Patil, K.S.; Alves, G.W.; Møller, S.G. Cellular Proteostasis in Neurodegeneration. Mol. Neurobiol. 2019, 56, 3676–3689. [Google Scholar] [CrossRef] [PubMed]
- Lamark, T.; Johansen, T. Mechanisms of Selective Autophagy. Annu. Rev. Cell Dev. Biol. 2021, 37, 143–169. [Google Scholar] [CrossRef]
- Mizushima, N. The ATG conjugation systems in autophagy. Curr. Opin. Cell Biol. 2020, 63, 1–10. [Google Scholar] [CrossRef]
- Vance, C.; Rogelj, B.; Hortobágyi, T.; De Vos, K.J.; Nishimura, A.L.; Sreedharan, J.; Hu, X.; Smith, B.; Ruddy, D.; Wright, P.; et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009, 323, 1208–1211. [Google Scholar] [CrossRef]
- Smith, B.N.; Topp, S.D.; Fallini, C.; Shibata, H.; Chen, H.-J.; Troakes, C.; King, A.; Ticozzi, N.; Kenna, K.P.; Soragia-Gkazi, A.; et al. Mutations in the vesicular trafficking protein annexin A11 are associated with amyotrophic lateral sclerosis. Sci. Transl. Med. 2017, 9, eaad9157. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, B.; Ferrari, V.; Cozzi, M.; Chierichetti, M.; Casarotto, E.; Pramaggiore, P.; Mina, F.; Piccolella, M.; Cristofani, R.; Crippa, V.; et al. The role of autophagy-lysosomal pathway in motor neuron diseases. Biochem. Soc. Trans. 2022, 50, 1489–1503. [Google Scholar] [CrossRef]
- Kolb, S.J.; Kissel, J.T. Spinal muscular atrophy: A timely review. Arch. Neurol. 2011, 68, 979–984. [Google Scholar] [CrossRef] [PubMed]
- Coratti, G.; Ricci, M.; Capasso, A.; D’Amico, A.; Sansone, V.; Bruno, C.; Messina, S.; Ricci, F.; Mongini, T.; Coccia, M.; et al. Prevalence of Spinal Muscular Atrophy in the Era of Disease-Modifying Therapies: An Italian Nationwide Survey. Neurology 2023, 100, 522–528. [Google Scholar] [CrossRef]
- Trabacca, A.; Lucarelli, E.; Pacifico, R.; Vespino, T.; Di Liddo, A.; Losito, L. The International Classification of Functioning, Disability and Health-Children and Youth as a framework for the management of spinal muscular atrophy in the era of gene therapy: A proof-of-concept study. Eur. J. Phys. Rehabil. Med. 2020, 56, 243–251. [Google Scholar] [CrossRef]
- Aslesh, T.; Yokota, T. Restoring SMN expression: An overview of the therapeutic developments for the treatment of spinal muscular atrophy. Cells 2022, 11, 417. [Google Scholar] [CrossRef] [PubMed]
- Dubowitz, V. Very severe spinal muscular atrophy (SMA type 0): An expanding clinical phenotype. Eur. J. Paediatr. Neurol. EJPN Off. J. Eur. Paediatr. Neurol. Soc. 1999, 3, 49–51. [Google Scholar] [CrossRef]
- Thomas, N.H.; Dubowitz, V. The natural history of type I (severe) spinal muscular atrophy. Neuromuscul. Disord. NMD 1994, 4, 497–502. [Google Scholar] [CrossRef] [PubMed]
- Mailman, M.D.; Heinz, J.W.; Papp, A.C.; Snyder, P.J.; Sedra, M.S.; Wirth, B.; Burghes, A.H.; Prior, T.W. Molecular analysis of spinal muscular atrophy and modification of the phenotype by SMN2. Genet. Med. Off. J. Am. Coll. Med. Genet. 2002, 4, 20–26. [Google Scholar] [CrossRef]
- Giannotta, G.; Ruggiero, M.; De Rinaldis, M.; Trabacca, A. Exploring variability in cognitive functioning in patients with spinal muscular atrophy: A scoping review. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2024, 45, 3699–3710. [Google Scholar] [CrossRef]
- Zerres, K.; Rudnik-Schöneborn, S.; Forrest, E.; Lusakowska, A.; Borkowska, J.; Hausmanowa-Petrusewicz, I. A collaborative study on the natural history of childhood and juvenile onset proximal spinal muscular atrophy (type II and III SMA): 569 patients. J. Neurol. Sci. 1997, 146, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Kolb, S.J.; Kissel, J.T. Spinal Muscular Atrophy. Neurol. Clin. 2015, 33, 831–846. [Google Scholar] [CrossRef]
- Trabacca, A. Neuromuscular diseases rehabilitation in the era of gene therapy. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2020, 41, 1971–1972. [Google Scholar] [CrossRef]
- Gowda, V.L.; Fernandez-Garcia, M.A.; Jungbluth, H.; Wraige, E. New treatments in spinal muscular atrophy. Arch. Dis. Child. 2023, 108, 511–517. [Google Scholar] [CrossRef]
- Hoy, S.M. Nusinersen: A Review in 5q Spinal Muscular Atrophy. CNS Drugs 2021, 35, 1317–1328. [Google Scholar] [CrossRef]
- Hoy, S.M. Onasemnogene Abeparvovec: First Global Approval. Drugs 2019, 79, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Risdiplam: First Approval. Drugs 2020, 80, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Tizzano, E.F.; Finkel, R.S. Spinal muscular atrophy: A changing phenotype beyond the clinical trials. Neuromuscul. Disord. 2017, 27, 883–889. [Google Scholar] [CrossRef] [PubMed]
- Zerres, K.; Rudnik-Schöneborn, S. 93rd ENMC international workshop: Non-5q-spinal muscular atrophies (SMA)–clinical picture (6–8 April 2001, Naarden, The Netherlands). Neuromuscul. Disord. 2003, 13, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Leśniak, A.; Glińska, M.; Patalan, M.; Ostrowska, I.; Świrska-Sobolewska, M.; Giżewska-Kacprzak, K.; Kotkowiak, A.; Leśniak, A.; Walczak, M.; Śmigiel, R.; et al. The Clinical Heterogeneity of Spinal Muscular Atrophy with Respiratory Distress Type 1 (SMARD1)-A Report of Three Cases, Including Twins. Genes 2024, 15, 997. [Google Scholar] [CrossRef] [PubMed]
- Grohmann, K.; Schuelke, M.; Diers, A.; Hoffmann, K.; Lucke, B.; Adams, C.; Bertini, E.; Leonhardt-Horti, H.; Muntoni, F.; Ouvrier, R.; et al. Mutations in the gene encoding immunoglobulin mu-binding protein 2 cause spinal muscular atrophy with respiratory distress type 1. Nat. Genet. 2001, 29, 75–77. [Google Scholar] [CrossRef]
- Rudnik-Schöneborn, S.; Stolz, P.; Varon, R.; Grohmann, K.; Schächtele, M.; Ketelsen, U.P.; Stavrou, D.; Kurz, H.; Hübner, C.; Zerres, K. Long-term observations of patients with infantile spinal muscular atrophy with respiratory distress type 1 (SMARD1). Neuropediatrics 2004, 35, 174–182. [Google Scholar] [CrossRef]
- Butterfield, R.J.; Stevenson, T.J.; Xing, L.; Newcomb, T.M.; Nelson, B.; Zeng, W.; Li, X.; Lu, H.M.; Lu, H.; Farwell Gonzalez, K.D.; et al. Congenital lethal motor neuron disease with a novel defect in ribosome biogenesis. Neurology 2014, 82, 1322–1330. [Google Scholar] [CrossRef]
- Courtens, W.; Johansson, A.B.; Dachy, B.; Avni, F.; Telerman-Toppet, N.; Scheffer, H. Infantile spinal muscular atrophy variant with congenital fractures in a female neonate: Evidence for autosomal recessive inheritance. J. Med. Genet. 2002, 39, 74–77. [Google Scholar] [CrossRef]
- Ramser, J.; Ahearn, M.E.; Lenski, C.; Yariz, K.O.; Hellebrand, H.; von Rhein, M.; Clark, R.D.; Schmutzler, R.K.; Lichtner, P.; Hoffman, E.P.; et al. Rare missense and synonymous variants in UBE1 are associated with X-linked infantile spinal muscular atrophy. Am. J. Hum. Genet. 2008, 82, 188–193. [Google Scholar] [CrossRef]
- Kobayashi, H.; Baumbach, L.; Matise, T.C.; Schiavi, A.; Greenberg, F.; Hoffman, E. A gene for a severe lethal form of X-linked arthrogryposis (X-linked infantile spinal muscular atrophy) maps to human chromosome Xp11. 3–q11. 2. Hum. Mol. Genet. 1995, 4, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Pakkasjärvi, N.; Ritvanen, A.; Herva, R.; Peltonen, L.; Kestilä, M.; Ignatius, J. Lethal congenital contracture syndrome (LCCS) and other lethal arthrogryposes in Finland—An epidemiological study. Am. J. Med. Genet. Part A 2006, 140a, 1834–1839. [Google Scholar] [CrossRef] [PubMed]
- Nousiainen, H.O.; Kestilä, M.; Pakkasjärvi, N.; Honkala, H.; Kuure, S.; Tallila, J.; Vuopala, K.; Ignatius, J.; Herva, R.; Peltonen, L. Mutations in mRNA export mediator GLE1 result in a fetal motoneuron disease. Nat. Genet. 2008, 40, 155–157. [Google Scholar] [CrossRef] [PubMed]
- Narkis, G.; Ofir, R.; Manor, E.; Landau, D.; Elbedour, K.; Birk, O.S. Lethal congenital contractural syndrome type 2 (LCCS2) is caused by a mutation in ERBB3 (Her3), a modulator of the phosphatidylinositol-3-kinase/Akt pathway. Am. J. Hum. Genet. 2007, 81, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Narkis, G.; Ofir, R.; Landau, D.; Manor, E.; Volokita, M.; Hershkowitz, R.; Elbedour, K.; Birk, O.S. Lethal contractural syndrome type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKIγ of the phophatidylinsitol pathway. Am. J. Hum. Genet. 2007, 81, 530–539. [Google Scholar] [CrossRef]
- Markus, B.; Narkis, G.; Landau, D.; Birk, R.Z.; Cohen, I.; Birk, O.S. Autosomal recessive lethal congenital contractural syndrome type 4 (LCCS4) caused by a mutation in MYBPC1. Hum. Mutat. 2012, 33, 1435–1438. [Google Scholar] [CrossRef]
- Freisinger, P.; Horvath, R.; Macmillan, C.; Peters, J.; Jaksch, M. Reversion of hypertrophic cardiomyopathy in a patient with deficiency of the mitochondrial copper binding protein Sco2: Is there a potential effect of copper? J. Inherit. Metab. Dis. 2004, 27, 67–79. [Google Scholar] [CrossRef]
- Joost, K.; Rodenburg, R.; Piirsoo, A.; van den Heuvel, B.; Zordania, R.; Õunap, K. A novel mutation in the SCO2 gene in a neonate with early-onset cardioencephalomyopathy. Pediatr. Neurol. 2010, 42, 227–230. [Google Scholar] [CrossRef]
- Mancuso, M.; Ferraris, S.; Pancrudo, J.; Feigenbaum, A.; Raiman, J.; Christodoulou, J.; Thorburn, D.R.; DiMauro, S. New DGK gene mutations in the hepatocerebral form of mitochondrial DNA depletion syndrome. Arch. Neurol. 2005, 62, 745–747. [Google Scholar] [CrossRef]
- Mancuso, M.; Salviati, L.; Sacconi, S.; Otaegui, D.; Camano, P.; Marina, A.; Bacman, S.; Moraes, C.; Carlo, J.; Garcia, M. Mitochondrial DNA depletion: Mutations in thymidine kinase gene with myopathy and SMA. Neurology 2002, 59, 1197–1202. [Google Scholar] [CrossRef]
- Sathasivam, S. Brown-Vialetto-Van Laere syndrome. Orphanet J. Rare Dis. 2008, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Mégarbané, A.; Desguerres, I.; Rizkallah, E.; Delague, V.; Nabbout, R.; Barois, A.; Urtizberea, A. Brown-Vialetto-Van Laere syndrome in a large inbred Lebanese family: Confirmation of autosomal recessive inheritance? Am. J. Med. Genet. 2000, 92, 117–121. [Google Scholar]
- Foley, A.R.; Menezes, M.P.; Pandraud, A.; Gonzalez, M.A.; Al-Odaib, A.; Abrams, A.J.; Sugano, K.; Yonezawa, A.; Manzur, A.Y.; Burns, J. Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2. Brain 2014, 137, 44–56. [Google Scholar] [CrossRef]
- González-Pérez, P.; Lu, Y.; Chian, R.J.; Sapp, P.C.; Tanzi, R.E.; Bertram, L.; McKenna-Yasek, D.; Gao, F.B.; Brown, R.H., Jr. Association of UBQLN1 mutation with Brown-Vialetto-Van Laere syndrome but not typical ALS. Neurobiol. Dis. 2012, 48, 391–398. [Google Scholar] [CrossRef] [PubMed]
- Bosch, A.M.; Abeling, N.G.; Ijlst, L.; Knoester, H.; van der Pol, W.L.; Stroomer, A.E.; Wanders, R.J.; Visser, G.; Wijburg, F.A.; Duran, M.; et al. Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: A new inborn error of metabolism with potential treatment. J. Inherit. Metab. Dis. 2011, 34, 159–164. [Google Scholar] [CrossRef]
- Varadarajan, P.; Thayanathi, V.; Pauline, L.C. Fazio Londe syndrome: A treatable disorder. Ann. Indian Acad. Neurol. 2015, 18, 87–89. [Google Scholar] [CrossRef]
- Rudnik-Schöneborn, S.; Barth, P.G.; Zerres, K. Pontocerebellar hypoplasia. Am. J. Med. Genet. Part C Semin. Med. Genet. 2014, 166c, 173–183. [Google Scholar] [CrossRef]
- Renbaum, P.; Kellerman, E.; Jaron, R.; Geiger, D.; Segel, R.; Lee, M.; King, M.C.; Levy-Lahad, E. Spinal muscular atrophy with pontocerebellar hypoplasia is caused by a mutation in the VRK1 gene. Am. J. Hum. Genet. 2009, 85, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Yourshaw, M.; Mamsa, H.; Rudnik-Schöneborn, S.; Menezes, M.P.; Hong, J.E.; Leong, D.W.; Senderek, J.; Salman, M.S.; Chitayat, D.; et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat. Genet. 2012, 44, 704–708. [Google Scholar] [CrossRef]
- Boczonadi, V.; Müller, J.S.; Pyle, A.; Munkley, J.; Dor, T.; Quartararo, J.; Ferrero, I.; Karcagi, V.; Giunta, M.; Polvikoski, T.; et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat. Commun. 2014, 5, 4287. [Google Scholar] [CrossRef]
- Wan, J.; Steffen, J.; Yourshaw, M.; Mamsa, H.; Andersen, E.; Rudnik-Schöneborn, S.; Pope, K.; Howell, K.B.; McLean, C.A.; Kornberg, A.J.; et al. Loss of function of SLC25A46 causes lethal congenital pontocerebellar hypoplasia. Brain 2016, 139, 2877–2890. [Google Scholar] [CrossRef] [PubMed]
- Schottmann, G.; Wagner, C.; Seifert, F.; Stenzel, W.; Schuelke, M. MORC2 mutation causes severe spinal muscular atrophy-phenotype, cerebellar atrophy, and diaphragmatic paralysis. Brain 2016, 139, e70. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Tawk, M.; Tiziano, F.D.; Veillet, J.; Bayes, M.; Nolent, F.; Garcia, V.; Servidei, S.; Bertini, E.; Castro-Giner, F.; et al. Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am. J. Hum. Genet. 2012, 91, 5–14. [Google Scholar] [CrossRef] [PubMed]
- Scoto, M.; Rossor, A.M.; Harms, M.B.; Cirak, S.; Calissano, M.; Robb, S.; Manzur, A.Y.; Martínez Arroyo, A.; Rodriguez Sanz, A.; Mansour, S.; et al. Novel mutations expand the clinical spectrum of DYNC1H1-associated spinal muscular atrophy. Neurology 2015, 84, 668–679. [Google Scholar] [CrossRef]
- Rossor, A.M.; Oates, E.C.; Salter, H.K.; Liu, Y.; Murphy, S.M.; Schule, R.; Gonzalez, M.A.; Scoto, M.; Phadke, R.; Sewry, C.A.; et al. Phenotypic and molecular insights into spinal muscular atrophy due to mutations in BICD2. Brain 2015, 138, 293–310. [Google Scholar] [CrossRef]
- Biasini, F.; Portaro, S.; Mazzeo, A.; Vita, G.; Fabrizi, G.M.; Taioli, F.; Toscano, A.; Rodolico, C. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul. Disord. NMD 2016, 26, 312–315. [Google Scholar] [CrossRef]
- Mathis, S.; Beauvais, D.; Duval, F.; Solé, G.; Le Masson, G. The various forms of hereditary motor neuron disorders and their historical descriptions. J. Neurol. 2024, 271, 3978–3990. [Google Scholar] [CrossRef]
- Hedera, P. Hereditary Spastic Paraplegia Overview. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Ebrahimi-Fakhari, D.; Saffari, A.; Pearl, P.L. Childhood-onset hereditary spastic paraplegia and its treatable mimics. Mol. Genet. Metab. 2022, 137, 436–444. [Google Scholar] [CrossRef]
- Parodi, L.; Rydning, S.L.; Tallaksen, C.; Durr, A. Spastic Paraplegia 4. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Hedera, P. Spastic Paraplegia 3A. In GeneReviews(®); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Liao, P.; Yuan, Y.; Liu, Z.; Hou, X.; Li, W.; Wen, J.; Zhang, K.; Jiao, B.; Shen, L.; Jiang, H.; et al. Association of variants in the KIF1A gene with amyotrophic lateral sclerosis. Transl. Neurodegener. 2022, 11, 46. [Google Scholar] [CrossRef]
- Simone, M.; Trabacca, A.; Panzeri, E.; Losito, L.; Citterio, A.; Bassi, M.T. KIF5A and ALS2 Variants in a Family With Hereditary Spastic Paraplegia and Amyotrophic Lateral Sclerosis. Front. Neurol. 2018, 9, 1078. [Google Scholar] [CrossRef]
- Panwala, T.F.; Garcia-Santibanez, R.; Vizcarra, J.A.; Garcia, A.G.; Verma, S. Childhood-Onset Hereditary Spastic Paraplegia (HSP): A Case Series and Review of Literature. Pediatr. Neurol. 2022, 130, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pashaei, M.; Davarzani, A.; Hajati, R.; Zamani, B.; Nafissi, S.; Larti, F.; Nilipour, Y.; Rohani, M.; Alavi, A. Description of clinical features and genetic analysis of one ultra-rare (SPG64) and two common forms (SPG5A and SPG15) of hereditary spastic paraplegia families. J. Neurogenet. 2021, 35, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Mead, R.J.; Shan, N.; Reiser, H.J.; Marshall, F.; Shaw, P.J. Amyotrophic lateral sclerosis: A neurodegenerative disorder poised for successful therapeutic translation. Nat. Rev. Drug Discov. 2023, 22, 185–212. [Google Scholar] [CrossRef]
- Sheerin, U.M.; Schneider, S.A.; Carr, L.; Deuschl, G.; Hopfner, F.; Stamelou, M.; Wood, N.W.; Bhatia, K.P. ALS2 mutations: Juvenile amyotrophic lateral sclerosis and generalized dystonia. Neurology 2014, 82, 1065–1067. [Google Scholar] [CrossRef]
- Sprute, R.; Jergas, H.; Ölmez, A.; Alawbathani, S.; Karasoy, H.; Dafsari, H.S.; Becker, K.; Daimagüler, H.S.; Nürnberg, P.; Muntoni, F.; et al. Genotype-phenotype correlation in seven motor neuron disease families with novel ALS2 mutations. Am. J. Med. Genet. Part A 2021, 185, 344–354. [Google Scholar] [CrossRef]
- Tsui, A.; Kouznetsova, V.L.; Kesari, S.; Fiala, M.; Tsigelny, I.F. Role of Senataxin in Amyotrophic Lateral Sclerosis. J. Mol. Neurosci. MN 2023, 73, 996–1009. [Google Scholar] [CrossRef]
- Grunseich, C.; Patankar, A.; Amaya, J.; Watts, J.A.; Li, D.; Ramirez, P.; Schindler, A.B.; Fischbeck, K.H.; Cheung, V.G. Clinical and Molecular Aspects of Senataxin Mutations in Amyotrophic Lateral Sclerosis 4. Ann. Neurol. 2020, 87, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Montecchiani, C.; Pedace, L.; Lo Giudice, T.; Casella, A.; Mearini, M.; Gaudiello, F.; Pedroso, J.L.; Terracciano, C.; Caltagirone, C.; Massa, R.; et al. ALS5/SPG11/KIAA1840 mutations cause autosomal recessive axonal Charcot-Marie-Tooth disease. Brain 2016, 139, 73–85. [Google Scholar] [CrossRef]
- Mishra, H.K.; Prots, I.; Havlicek, S.; Kohl, Z.; Perez-Branguli, F.; Boerstler, T.; Anneser, L.; Minakaki, G.; Wend, H.; Hampl, M.; et al. GSK3ß-dependent dysregulation of neurodevelopment in SPG11-patient induced pluripotent stem cell model. Ann. Neurol. 2016, 79, 826–840. [Google Scholar] [CrossRef]
- Assoni, A.F.; Foijer, F.; Zatz, M. Amyotrophic Lateral Sclerosis, FUS and Protein Synthesis Defects. Stem Cell Rev. Rep. 2023, 19, 625–638. [Google Scholar] [CrossRef]
- Wong, A.Y.; Hristova, E.; Ahlskog, N.; Tasse, L.A.; Ngsee, J.K.; Chudalayandi, P.; Bergeron, R. Aberrant Subcellular Dynamics of Sigma-1 Receptor Mutants Underlying Neuromuscular Diseases. Mol. Pharmacol. 2016, 90, 238–253. [Google Scholar] [CrossRef] [PubMed]
- Butterfield, R.J.; Ramachandran, D.; Hasstedt, S.J.; Otterud, B.E.; Leppert, M.F.; Swoboda, K.J.; Flanigan, K.M. A novel form of juvenile recessive ALS maps to loci on 6p25 and 21q22. Neuromuscul. Disord. NMD 2009, 19, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 2011, 70, 913–919. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.; Beghi, E.; Vial, C.; Bernard, E.; Lautrette, G.; Clavelou, P.; Guy, N.; Lemasson, G.; Debruxelles, S.; Cintas, P.; et al. Evaluation of the application of the European guidelines for the diagnosis and clinical care of amyotrophic lateral sclerosis (ALS) patients in six French ALS centres. Eur. J. Neurol. 2016, 23, 787–795. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.G.; Jackson, C.E.; Kasarskis, E.J.; England, J.D.; Forshew, D.; Johnston, W.; Kalra, S.; Katz, J.S.; Mitsumoto, H.; Rosenfeld, J.; et al. Practice parameter update: The care of the patient with amyotrophic lateral sclerosis: Drug, nutritional, and respiratory therapies (an evidence-based review): Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2009, 73, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Bensimon, G.; Lacomblez, L.; Meininger, V. A controlled trial of riluzole in amyotrophic lateral sclerosis. ALS/Riluzole Study Group. N. Engl. J. Med. 1994, 330, 585–591. [Google Scholar] [CrossRef]
- Lacomblez, L.; Bensimon, G.; Leigh, P.N.; Guillet, P.; Meininger, V. Dose-ranging study of riluzole in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis/Riluzole Study Group II. Lancet 1996, 347, 1425–1431. [Google Scholar] [CrossRef]
- Li, H.-F.; Wu, Z.-Y. Genotype-phenotype correlations of amyotrophic lateral sclerosis. Transl. Neurodegener. 2016, 5, 3. [Google Scholar] [CrossRef]
- Blair, H.A. Tofersen: First Approval. Drugs 2023, 83, 1039–1043. [Google Scholar] [CrossRef]
- Saini, A.; Chawla, P.A. Breaking barriers with tofersen: Enhancing therapeutic opportunities in amyotrophic lateral sclerosis. Eur. J. Neurol. 2024, 31, e16140. [Google Scholar] [CrossRef]
- Cantara, S.; Simoncelli, G.; Ricci, C. Antisense oligonucleotides (ASOs) in motor neuron diseases: A road to cure in light and shade. Int. J. Mol. Sci. 2024, 25, 4809. [Google Scholar] [CrossRef] [PubMed]
Type | Onset | Gene | Location | Inheritance | |
---|---|---|---|---|---|
MN diseases with prominent lower motor neuron involvement | |||||
Classical infantile spinal muscular atrophy | Spinal muscular atrophy (SMA 0) | Antenatal | SMN1 | 5q13 | AR |
Spinal muscular atrophy (SMA 1) Werdnig–Hoffman disease | Neonatal | SMN1 | 5q13 | AR | |
Spinal muscular atrophy (SMA 2) Dubowitz disease | Infancy | SMN1 | 5q13 | AR | |
Spinal muscular atrophy (SMA 3) Kugelbert–Welander disease | Infancy | SMN1 | 5q13 | AR | |
MNDs with prominent lower motor neuron involvement with additional features (Sma-like or Sma-plus or atypical Sma) | |||||
Distal infantile SMA with diaphragm paralysis (DSMA1 or SMARD1) | Neonatal | IGHMBP2 | 11q13.3 | AR | |
SMA with respiratory failure 2 (SMARD2) | Neonatal | LAS1L | Xq12 | X-linked | |
SMA with arthrogryposis | Antenatal Neonatal | SMN1 | 5q13 | AR | |
Antenatal Neonatal | TRIP4 | 15q22.31 | AR | ||
Antenatal Neonatal | ASCC1 | 10q22.1 | AR | ||
Antenatal Neonatal | UBA1 | Xp11.3 | X-linked | ||
Scapuloperoneal spinal muscular atrophy (SPSMA) | Infancy to childhood | TRPV4 | 12q23-q24.1 | AD | |
X-linked spinal muscular atrophy-2 (SMAX2) | Birth or infancy | UBE1 | Xp11 | X-linked recessive | |
Lethal Arthrogryposis with Anterior Horn Cell Disease (LAAHD) or Congenital Arthrogryposis with Anterior Horn Cell Disease (CAAHD) | Antenatal | GLE1 | 9q34.11 | AR | |
Lethal Congenital Contracture Syndrome 1 (LCCS1) or Multiple Contracture Syndrome, Finnish Type | Antenatal | GLE1 | 9q34.11 | AR | |
Lethal Congenital Contracture Syndrome 2 (LCCS2) or Multiple Contracture Syndrome, Israeli Bedouin Type A | Antenatal | ERBB3 | 12q13.2 | AR | |
Lethal Congenital Contracture Syndrome 3 (LCCS3) or Multiple Contracture Syndrome, Israeli Bedouin Type B | Antenatal | PIP5K1C | 19p13.3 | AR | |
Lethal Congenital Contractural Syndrome 4 (LCCS4) | Antenatal | MYBPC1 | 12q23.2 | AR | |
SMA plus syndromes linked to mitochondrial disorders | Neonatal | SCO2 | 22q13.33 | AR | |
Neonatal | DGUOK | 2p13.1 | AR | ||
Infancy | TK2 | 16q21 | AR | ||
Brown–Vialetto–Van Laere (BVVL) syndrome | BVVLS1 | Infancy | SLC52A3 | 20p13 | AR |
BVVLS2 | Infancy | SLC52A2 | 8q24 | AR | |
Childhood | UBQLN1 | 9q21 | AR | ||
Fazio–Londe syndrome | Infancy | SLC52A3 | 20p13 | AR | |
Pontocerebellar Hypoplasia with Spinal Muscular Atrophy (PCH1) | PCH 1A | Infancy | VRK1 | 14q32.2 | AR |
PCH 1B | Infancy | EXOCS3 | 9p13.2 | AR | |
PCH1C | Infancy | EXOCS8 | 13q13.3 | AR | |
PCH1D | Birth/infancy | EXOSC9 | 4q27 | AR | |
PCH1E | Neonatal | SLC25A46 | 5q22.1 | AR | |
Infancy | MORC2 | 22q12.2 | AD—de novo | ||
Spinal Muscular Atrophy with Progressive Myoclonic Epilepsy (SMAPME) | Childhood | ASAH1 | 8p22 | AR | |
Spinal Muscular Atrophy with Lower Extremity Predominance (SMA-LED) | SMA-LED1 | Congenital to childhood | DYNC1H1 | 14q32.31 | AD |
SMA-LED2 | Congenital to childhood | BICD2 | 9q22.31 | AD | |
Scapuloperoneal Spinal Muscular Atrophy (SPSMA) | Congenital to childhood | TRPV4 | 12q24.11 | AD | |
MN diseases with prominent upper motor neuron involvement | |||||
Hereditary spastic paraplegia (HSP) | SPG5 | Childhood | CYP7B1 | 8q12 | AR |
SPG7 | Childhood | SPG7 | 16q24.3 | AR | |
SPG11 | Childhood | SPG11 | 15 | AR | |
SPG15 | Childhood or early adulthood | ZFYVE26 | 14q22-q24 | AR | |
SPG18 | Childhood | ERLIN2 | 8p11 | AR | |
SPG21 | Childhood | ACP33 | 15q22.31 | AR | |
SPG26 | Childhood | B4GALNT1 | 12q13.3 | AR | |
SPG28 | Childhood | DDHD1 | 14q22.1 | AR | |
SPG35 | Childhood | FA2H | 16q23.1 | AR | |
SPG46 | Childhood | GBA2 | 9p13.3 | AR | |
SPG47 | Childhood | AP4B1 | 1p13.2 | AR | |
SPG50 | Childhood | AP4M1 | 7q22.1 | AR | |
SPG51 | Childhood | AP4S1 | 14q12 | AR | |
SPG52 | Childhood | AP4E1 | 15q21.2 | AR | |
SPG49 | Childhood | TECPR2 | 14q32.33 | AR | |
SPG54 | Childhood | DDHD2 | 8p11.23 | AR | |
SPG55 | Childhood | C12orf65 | 12q24.31 | AR | |
SPG56 | Childhood | CYP2U1 | 4q25 | AR | |
SPG3A | Infantile to childhood | ATL1 | 14q22.1 | AD | |
SPG4 | Infantile to adulthood | SPAST | 2p22.3 | AD | |
SPG30 | Juvenile to adulthood | KIF1A | 2q37.3 | AD | |
MN diseases with prominent mixed upper and lower motor neuron involvement | |||||
Amyotrophic Lateral Sclerosis (ALS) associated with presentation in childhood | ALS2 | Infancy | Alsin | 2q33 | AR |
ALS4 | Childhood | Senataxin | 9q34 | AD | |
ALS5 | Childhood | Spatacsin | 15q21 | AR | |
ALS6 | Childhood | FUS | 16p11 | AD/AR | |
ALS6-21 | Infancy | 6p25 and 21q22 | AR | ||
ALS16 | Infancy | SIGMAR1 | 9p13 | AR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trabacca, A.; Ferrante, C.; Oliva, M.C.; Fanizza, I.; Gallo, I.; De Rinaldis, M. Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome. Genes 2024, 15, 1346. https://doi.org/10.3390/genes15101346
Trabacca A, Ferrante C, Oliva MC, Fanizza I, Gallo I, De Rinaldis M. Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome. Genes. 2024; 15(10):1346. https://doi.org/10.3390/genes15101346
Chicago/Turabian StyleTrabacca, Antonio, Camilla Ferrante, Maria Carmela Oliva, Isabella Fanizza, Ivana Gallo, and Marta De Rinaldis. 2024. "Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome" Genes 15, no. 10: 1346. https://doi.org/10.3390/genes15101346
APA StyleTrabacca, A., Ferrante, C., Oliva, M. C., Fanizza, I., Gallo, I., & De Rinaldis, M. (2024). Update on Inherited Pediatric Motor Neuron Diseases: Clinical Features and Outcome. Genes, 15(10), 1346. https://doi.org/10.3390/genes15101346