Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Brain Processing and RNA Extraction
2.3. Analysis Microarray
2.4. Gene Ontology and KEGG Pathway Enrichment Analysis
2.5. Network of Protein–Protein Interaction and Functional Analysis
2.6. Validation of the Microarray by Quantitative Real-Time PCR
2.7. Statistical Analysis
3. Results
3.1. Changes in the Gene Expression Profiles of SAMR1 and SAMP8 Mice at Different Ages
3.2. Gene Ontology (GO) Enrichment Analysis
3.3. KEGG Pathway Analysis
3.4. Protein–Protein Interaction (PPI) Network Integration
3.5. Change in the Expression of Genes Involved in Alzheimer’s Disease
3.6. Validation of the Microarray Expression Data
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glenner, G.G.; Wong, C.W. Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 1984, 120, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Kosik, K.S. Tau protein and neurodegeneration. Mol. Neurobiol. 1990, 4, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sun, G.; Tian, E.; Zhang, M.; Davtyan, H.; Beach, T.G.; Reiman, E.M.; Blurton-Jones, M.; Holtzman, D.M.; Shi, Y. Modeling Sporadic Alzheimer’s Disease in Human Brain Organoids under Serum Exposure. Adv. Sci. 2021, 8, e2101462. [Google Scholar] [CrossRef] [PubMed]
- Dorszewska, J.; Prendecki, M.; Oczkowska, A.; Dezor, M.; Kozubski, W. Molecular Basis of Familial and Sporadic Alzheimer’s Disease. Curr. Alzheimer Res. 2016, 13, 952–963. [Google Scholar] [CrossRef]
- Armstrong, R.A. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019, 57, 87–105. [Google Scholar] [CrossRef]
- Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimer’s Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef]
- Griñán-Ferré, C.; Corpas, R.; Puigoriol-Illamola, D.; Palomera-Ávalos, V.; Sanfeliu, C.; Pallàs, M. Understanding Epigenetics in the Neurodegeneration of Alzheimer’s Disease: SAMP8 Mouse Model. J. Alzheimer’s Dis. JAD 2018, 62, 943–963. [Google Scholar] [CrossRef]
- Akiguchi, I.; Pallàs, M.; Budka, H.; Akiyama, H.; Ueno, M.; Han, J.; Yagi, H.; Nishikawa, T.; Chiba, Y.; Sugiyama, H.; et al. SAMP8 mice as a neuropathological model of accelerated brain aging and dementia: Toshio Takeda’s legacy and future directions. Neuropathol. Off. J. Jpn. Soc. Neuropathol. 2017, 37, 293–305. [Google Scholar] [CrossRef]
- Wang, J.; Lei, X.; Xie, Z.; Zhang, X.; Cheng, X.; Zhou, W.; Zhang, Y. CA-30, an oligosaccharide fraction derived from Liuwei Dihuang decoction, ameliorates cognitive deterioration via the intestinal microbiome in the senescence-accelerated mouse prone 8 strain. Aging 2019, 11, 3463–3486. [Google Scholar] [CrossRef]
- Takeda, T.; Hosokawa, M.; Takeshita, S.; Irino, M.; Higuchi, K.; Matsushita, T.; Tomita, Y.; Yasuhira, K.; Hamamoto, H.; Shimizu, K.; et al. A new murine model of accelerated senescence. Mech. Ageing Dev. 1981, 17, 183–194. [Google Scholar] [CrossRef]
- Okuma, Y.; Nomura, Y. Senescence-accelerated mouse (SAM) as an animal model of senile dementia: Pharmacological, neurochemical and molecular biological approach. Jpn. J. Pharmacol. 1998, 78, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Shi, J.S. SAMP8 Mice as a Model of Age-Related Cognition Decline with Underlying Mechanisms in Alzheimer’s Disease. J. Alzheimer’s Dis. JAD 2020, 75, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Mayorquín, A.E.; Torres-Ruíz, N.M.; Ortuño-Sahagún, D.; Gudiño-Cabrera, G. Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2008, 237, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Ortuño-Sahagún, D.; Rivera-Cervantes, M.C.; Gudiño-Cabrera, G.; Junyent, F.; Verdaguer, E.; Auladell, C.; Pallàs, M.; Camins, A.; Beas-Zárate, C. Microarray analysis of rat hippocampus exposed to excitotoxicity: Reversal Na(+)/Ca(2+) exchanger NCX3 is overexpressed in glial cells. Hippocampus 2012, 22, 128–140. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Mayen, A.P.; Corral-Guillé, G.; Riego-Ruíz, L.; Coello Coutino, G. La Herramienta de Análisis de Microarrays del Paquete “GenArise” (API) Versión 1.7.3. 2006. Available online: http://www.ifc.unam.mx/genarise/ (accessed on 3 April 2023).
- Sherman, B.T.; Hao, M.; Qiu, J.; Jiao, X.; Baseler, M.W.; Lane, H.C.; Imamichi, T.; Chang, W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022, 50, W216–W221. [Google Scholar] [CrossRef]
- Dai, L.; Zou, L.; Meng, L.; Qiang, G.; Yan, M.; Zhang, Z. Cholesterol Metabolism in Neurodegenerative Diseases: Molecular Mechanisms and Therapeutic Targets. Mol. Neurobiol. 2021, 58, 2183–2201. [Google Scholar] [CrossRef]
- Butterfield, D.A.; Halliwell, B. Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat. Rev. Neurosci. 2019, 20, 148–160. [Google Scholar] [CrossRef]
- Cheng, A.; Hou, Y.; Mattson, M.P. Mitochondria and neuroplasticity. ASN Neuro 2010, 2, e00045. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Ortuño-Sahagún, D.; Pallàs, M.; Rojas-Mayorquín, A.E. Oxidative stress in aging: Advances in proteomic approaches. Oxidative Med. Cell. Longev. 2014, 2014, 573208. [Google Scholar] [CrossRef]
- Blake, J.A.; Baldarelli, R.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J.; Mouse Genome Database Group. Mouse Genome Database (MGD): Knowledgebase for mouse-human comparative biology. Nucleic Acids Res. 2021, 49, D981–D987. [Google Scholar] [CrossRef] [PubMed]
- Kahlhöfer, F.; Gansen, M.; Zickermann, V. Accessory Subunits of the Matrix Arm of Mitochondrial Complex I with a Focus on Subunit NDUFS4 and Its Role in Complex I Function and Assembly. Life 2021, 11, 455. [Google Scholar] [CrossRef] [PubMed]
- Aho, V.T.E.; Houser, M.C.; Pereira, P.A.B.; Chang, J.; Rudi, K.; Paulin, L.; Hertzberg, V.; Auvinen, P.; Tansey, M.G.; Scheperjans, F. Relationships of gut microbiota, short-chain fatty acids, inflammation, and the gut barrier in Parkinson’s disease. Mol. Neurodegener. 2021, 16, 6. [Google Scholar] [CrossRef]
- Bettcher, B.M.; Tansey, M.G.; Dorothée, G.; Heneka, M.T. Peripheral and central immune system crosstalk in Alzheimer disease—A research prospectus. Nat. Rev. Neurol. 2021, 17, 689–701. [Google Scholar] [CrossRef]
- Lainšček, D.; Šuštar, U.; Carter, R.N.; Morton, N.M.; Horvat, S. Tst gene mediates protection against palmitate-induced inflammation in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 2020, 527, 1008–1013. [Google Scholar] [CrossRef]
- Luo, Y.; Chatre, L.; Melhem, S.; Al-Dahmani, Z.M.; Homer NZ, M.; Miedema, A.; Deelman, L.E.; Groves, M.R.; Feelisch, M.; Morton, N.M.; et al. Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain. Redox Biol. 2023, 68, 102965. [Google Scholar] [CrossRef]
- Fernández, A.; Quintana, E.; Velasco, P.; Moreno-Jimenez, B.; de Andrés, B.; Gaspar, M.L.; Liste, I.; Vilar, M.; Mira, H.; Cano, E. Senescent accelerated prone 8 (SAMP8) mice as a model of age dependent neuroinflammation. J. Neuroinflamm. 2021, 18, 75. [Google Scholar] [CrossRef] [PubMed]
- Griñan-Ferré, C.; Palomera-Ávalos, V.; Puigoriol-Illamola, D.; Camins, A.; Porquet, D.; Plá, V.; Aguado, F.; Pallàs, M. Behaviour and cognitive changes correlated with hippocampal neuroinflammaging and neuronal markers in female SAMP8, a model of accelerated senescence. Exp. Gerontol. 2016, 80, 57–69. [Google Scholar] [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatry 2021, 26, 5481–5503. [Google Scholar] [CrossRef]
- Lotfi, R.; Nasiri Kalmarzi, R.; Rajabinejad, M.; Hasani, S.; Zamani, F. The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int. Immunopharmacol. 2021, 95, 107556. [Google Scholar] [CrossRef]
- Du, H.; Xu, Y.; Zhu, L. Role of Semaphorins in Ischemic Stroke. Front. Mol. Neurosci. 2022, 15, 848506. [Google Scholar] [CrossRef] [PubMed]
- Bernard, F.; Moreau-Fauvarque, C.; Heitz-Marchaland, C.; Zagar, Y.; Dumas, L.; Fouquet, S.; Lee, X.; Shao, Z.; Mi, S.; Chédotal, A. Role of transmembrane semaphorin Sema6A in oligodendrocyte differentiation and myelination. Glia 2012, 60, 1590–1604. [Google Scholar] [CrossRef] [PubMed]
- Shimada, A.; Hasegawa-Ishii, S. Senescence-accelerated Mice (SAMs) as a Model for Brain Aging and Immunosenescence. Aging Dis. 2011, 2, 414–435. [Google Scholar] [PubMed]
- Barber, R.; Scheltens, P.; Gholkar, A.; Ballard, C.; McKeith, I.; Ince, P.; Perry, R.; O’Brien, J. White matter lesions on magnetic resonance imaging in dementia with Lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. J. Neurol. Neurosurg. Psychiatry 1999, 67, 66–72. [Google Scholar] [CrossRef]
- McAleese, K.E.; Firbank, M.; Dey, M.; Colloby, S.J.; Walker, L.; Johnson, M.; Beverley, J.R.; Taylor, J.P.; Thomas, A.J.; O’Brien, J.T.; et al. Cortical tau load is associated with white matter hyperintensities. Acta Neuropathol. Commun. 2015, 3, 60. [Google Scholar] [CrossRef]
- Loria, R.; Bon, G.; Perotti, V.; Gallo, E.; Bersani, I.; Baldassari, P.; Porru, M.; Leonetti, C.; Di Carlo, S.; Visca, P.; et al. Sema6A and Mical1 control cell growth and survival of BRAFV600E human melanoma cells. Oncotarget 2015, 6, 2779–2793. [Google Scholar] [CrossRef]
- Lim, H.S.; Kim, C.S.; Kim, J.S.; Yu, S.K.; Go, D.S.; Lee, S.A.; Moon, S.M.; Chun, H.S.; Kim, S.G.; Kim, D.K. Suppression of Oral Carcinoma Oncogenic Activity by microRNA-203 via Down-regulation of SEMA6A. Anticancer. Res. 2017, 37, 5425–5433. [Google Scholar] [CrossRef]
- Maiese, K.; Li, F.; Chong, Z.Z.; Shang, Y.C. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol. Ther. 2008, 118, 58–81. [Google Scholar] [CrossRef]
- Inestrosa, N.C.; Tapia-Rojas, C.; Lindsay, C.B.; Zolezzi, J.M. Wnt Signaling Pathway Dysregulation in the Aging Brain: Lessons from the Octodon degus. Front. Cell Dev. Biol. 2020, 8, 734. [Google Scholar] [CrossRef]
- Fujiwara, M.; Ferdousi, F.; Isoda, H. Investigation into Molecular Brain Aging in Senescence-Accelerated Mouse (SAM) Model Employing Whole Transcriptomic Analysis in Search of Potential Molecular Targets for Therapeutic Interventions. Int. J. Mol. Sci. 2023, 24, 13867. [Google Scholar] [CrossRef]
- Sanada, Y.; Ikuta, Y.; Ding, C.; Shinohara, M.; Yimiti, D.; Ishitobi, H.; Nagira, K.; Lee, M.; Akimoto, T.; Shibata, S. Senescence-Accelerated Mice Prone 8 (SAMP8) in Male as a Spontaneous Osteoarthritis Model. Arthritis Res. Ther. 2022, 24, 235. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Cui, D.; Liu, J.; Shi, J.-S. Transcriptome Analysis of the Aged SAMP8 Mouse Model of Alzheimer’s Disease Reveals Novel Molecular Targets of Formononetin Protection. Front. Pharmacol. 2024, 15, 1440515. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhou, Y.; Du, G.; Qin, X.; Gao, L. Bioinformatic Analysis Reveals Key Genes and Pathways in Aging Brain of Senescence-Accelerated Mouse P8 (SAMP8). CNS Neurol. Disord.-Drug Targets 2018, 17, 712–722. [Google Scholar] [CrossRef] [PubMed]
- Cosín-Tomás, M.; Álvarez-López, M.J.; Companys-Alemany, J.; Kaliman, P.; González-Castillo, C.; Ortuño-Sahagún, D.; Pallàs, M.; Griñán-Ferré, C. Temporal Integrative Analysis of MRNA and MicroRNAs Expression Profiles and Epigenetic Alterations in Female SAMP8, a Model of Age-Related Cognitive Decline. Front. Genet. 2018, 9, 596. [Google Scholar] [CrossRef]
Downregulated Genes | Upregulated Genes | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
3-Month-Old SAMP8 | 7-Month-Old SAMP8 | 9-Month-Old SAMP8 | 3-Month-Old SAMP8 | 7-Month-Old SAMP8 | 9-Month-Old SAMP8 | ||||||
Gene | Z- Score | Gene | Z- Score | Gene | Z- Score | Gene | Z- Score | Gene | Z- Score | Gene | Z- Score |
Spire1 | −4.14 | 0610039K10Rik | −6.47 | Gpr39 | −5.36 | Rnu5g | 4.80 | Rn18s | 4.82 | D16605 | 4.86 |
Or8c9 | −4.09 | Pclaf | −6.42 | Inha | −4.72 | Cyp24a1 | 4.73 | Dnmt3a | 4.73 | Rny1 | 4.45 |
5430421F17Rik | −3.92 | Mm2pr | −6.35 | Neb | −4.71 | Npff | 4.53 | X56974 | 4.25 | Tnks2 | 4.27 |
UGT2b37 | −3.89 | M63850 | −6.33 | Psmd14 | −4.55 | A930007I19Rik | 4.52 | Stmn3 | 4.24 | Sval1 | 4.21 |
Agbl3 | −3.82 | Slc6a21 | −5.76 | Agtr1a | −4.50 | Rn18s | 4.47 | Kcnc1 | 4.13 | Def6 | 4.19 |
Dbr1 | −3.81 | S100pbp | −5.58 | Tbca | −4.45 | Xlr | 4.39 | Add2 | 04.09 | Rn18s | 4.16 |
1700001J11Rik | −3.53 | 4930545L23Rik | −5.58 | Sp6 | −4.40 | M19226 | 4.37 | 2610306M01Rik | 3.96 | Vpreb3 | 04.03 |
Il22b | −3.51 | Gabrb1 | −5.32 | Trappc2b | −4.36 | L37414 | 4.34 | Anpep | 3.82 | Slc28a3 | 3.93 |
IL22b | −3.51 | 1700011C11Rik | −5.27 | Invs | −4.34 | Bbs9 | 4.32 | 5830462O15Rik | 3.77 | Krtap19-5 | 3.92 |
AJ231271 | −3.48 | S69343 | −4.99 | Med13I | −4.33 | U24680 | 4.31 | BE534640 | 3.75 | Rny3 | 3.83 |
DISEASE | GENES |
---|---|
AGING | Pik3ca, Irs4, Mtor, Tsc1, Sesn3, Pik3r2, Atf4, Rela, Ins1, Kl, Nfkb1, Eif4ebp1, Prkaca |
ALZHEIMER’S DISEASE | Adam10, Cycs, Grin2b, Lrp1, Plcb3, Snca, Ndufs4, Ern1, Uqcrb, Cox7c, Cox8b, Il1b, Cox4i1, Cox5b, Cox7a1, Eif2ak3, Mapt, Ndufa1, Cox6a1, Ppp3cc, Capn2, Ndufa2, Atp2a3, Ndufb8, Atp5a1, Grin1, Mme, Plcb1, Ndufa12, Cacna1c, Cox6a2, Ndufb2, Casp12, Itpr1, Hsd17b10 |
MITOCHONDRIA | Gykl1, Rhot1, Tdh, Mrpl40, Slc25a14, Casp8ap2, Mrpl2, Tst, Pnkd, Mrpl10, Sox4, Hap1, Mrps12, Car5a, Rab11b, Pus1, Clpb, Slc25a20, Dnajc5, Prodh, Pex11b, Gnpat, Stap1, Suclg1, Cyp24a1, Dnajc4, Rad51, Gabarapl1, Pdk4, Fkbp8, Eln, 1700123O20Rik, Ldhb, Smcp, Cryab, Slc25a26, Gcat, Emc8, Nipsnap1, Stoml2, Rai1, Endog, Ung, Uqcc2, Aldh2, Timm9, Slc25a30, Cbr2, Shmt1, Maff, Nme4, Sox4 |
APOPTOSIS | Pml, Casp6, Phlda1, Pglyrp1, Unc5c, Rabep1, Tgfbr1 Apip, Cycs, Zc3h8, Purb, Dfna5, Fkbp8 Mycs, Cul7 Prkd1, Rnf130, Sema6a, Dffb Inpp5d, Edar, Hipk3, Cdip1, Rassf7, Epb41l3, Csnk2a2, S100a14, Fem1b Melk, Aktip, Rybp, Sh3kbp1, Plscr1, Map2k7, Rtkn, Dcc, Tgfbr2, Polr2g, Ebag9, Fam188a, Rfk, Casp14, Vdac1, Ppid, Nfkb1, Emc4, Itgb3bp, Ercc2, Fam188a, Ctsc, Hyal |
INFLAMMATORY RESPONSE | Hyal, Krt16, Kng, Tbxa Bdkr Chst, Rxra, Chil, Elf, Pik, Ciita, Csf, Prkd, Nos, Tlr Tnfr, Anxa, Il Ccl, Ucn Il Ccl Lxn, P Ptg, Klk, Cxcl Il, Npp, Cd Il, Ccl, Rela Il Ccl Il, Cd, Ccr, Itg, Agtr, Axl, Cnr, Cd, Cnr, Il Itg, Axl, Sdc, Cxcr, Nlr, Axl, Ly Cd, Nfkb, Myd, Bdkr, Ccl, Cnr, Ccl, Mif, Cx, Tg, Sdc, Ltb, Clec, Ccr |
OXIDATIVE STRESS | Prnp, Msrb, Car, St, Ucn, Rps, Park, Jak, Gpx, Ndu, Chr, Psmb, Sel, Txnip, Ercc |
IMMUNE | Endou, Mcpt, Vpre, Ct, Tin, Tlr, Zap, Tnf, Fth, Vpre, Ct Cc, l Cd H, Il Tinagl, Ccl, Tnfr Cd, Ltbr Il, Ccl, Vpre, Tnfsf11, Map, Mcpt, H Fth, Cxcl Il, Vpre, Cd Enpp, Il, Ccl, Ctsw, Il, Cd, Tnfsf8, H Azgp, Cd, Nfil, H Clnk, Nfil Prg, Myd Fcgr Vpre, Cxcl, Ccl, Bmpr, Vav, Ccr, Ccl, Cd274, Cx3cl Prg, H Q, W |
PATHWAYS OF CANCER | Pml, Csf, Bdkr, Tgfbr, Cxcr, Wnt, Roc, Fzd, Mit Run, Gna, Mmp, Ret, Plcb, Cycs, Rxr, Mtor, Spi, Pik, Wnt, Rad, Smad, Bmp, Tgfb, Ral, Nkx, Gnb, Msh, Nos, Fzd, Fgf, Wnt, Map, Cycs, Fgf, Map, Pik, Gnb, Wnt, Fgf, Hhip, Veg, Rad, Jun, Pik, Msh, Ptge, Tcf, Nkx, Wnt, Gng, Smad, Plcb, Rela, Ptge, Itga, Birc, Run, Bmp, Hhip, Wnt, Mdm, Itga, Ptge, Dcc, Edn, Tgf, Col, Cs, Ct, Fzd, Gng, Rb, Col, Wnt, Max, Itga, Edn, Nfk, Hsp, Fgf, Bdkr, Tcf, Cxc, Ptk, Brca, Cd, Prk, Plcg, Wnt, Lamb, Fgf, Fgf, Tg, Gli, Fzd, Chu, Hsp |
KEGG Enrichment Analyses of the Differentially Expressed Genes in the Clusters. | ||||||
---|---|---|---|---|---|---|
Cluster | Description | Gene Count | Background Count | Strength | False Discovery Rate | Matching Proteins in Your Network (Labels) |
1 | Metabolic pathways | 16 | 1536 | 0.75 | 2.07 × 10−6 | Hk2, Ndufa2, Shmt1, Ndufs4, Glud1, Cox8b, Car3, Ldhb, Cox4i1, Cyp24a1, Tst, Idh3g, Aadat, Cox7a1, Cox7c, Tusc3 |
Parkinson’s disease | 7 | 239 | 1.2 | 3.52 × 10−5 | Ndufa2, Ndufs4, Cox8b, Cox4i1, Cox7a1, Mapt, Cox7c | |
Prion disease | 7 | 264 | 1.15 | 4.05 × 10−5 | Hspa1l, Ndufa2, Ndufs4, Cox8b, Cox4i1, Cox7a1, Cox7c | |
Alzheimer’s disease | 7 | 359 | 1.02 | 0.00022 | Ndufa2, Ndufs4, Cox8b, Cox4i1, Cox7a1, Mapt, Cox7c | |
Pathways in cancer | 10 | 528 | 0.98 | 2.64 × 10−5 | Wnt3a, Fgf9, Nkx3-1, Msh2, Smad4, Rad51, Pik3r2, Ptger2, Col4a3, Wnt11 | |
Huntington’s disease | 6 | 296 | 1.04 | 0.00078 | Ndufa2, Ndufs4, Cox8b, Cox4i1, Cox7a1, Cox7c | |
Amyotrophic lateral sclerosis | 6 | 364 | 0.95 | 0.0019 | Ndufa2, Ndufs4, Cox8b, Cox4i1, Cox7a1, Cox7c | |
2 | Pathways in cancer | 10 | 528 | 0.98 | 2.64 × 10−5 | Wnt3a, Fgf9, Nkx3-1, Msh2, Smad4, Rad51, Pik3r2, Ptger2, Col4a3, Wnt11 |
Amoebiasis | 5 | 105 | 1.38 | 0.00043 | Il1b, Pik3r2, Cd1d2, Cd14, Col4a3 | |
Gastric cancer | 5 | 147 | 1.23 | 0.0014 | Wnt3a, Fgf9, Smad4, Pik3r2, Wnt11 | |
Toll-like receptor signaling pathway | 4 | 98 | 1.31 | 0.0042 | Ccl3, Il1b, Pik3r2, Cd14 | |
AGE-RAGE signaling pathway in diabetic complications | 4 | 101 | 1.3 | 0.0042 | Smad4, Il1b, Pik3r2, Col4a3 | |
Proteoglycans in cancer | 5 | 199 | 1.1 | 0.0042 | Vav1, Wnt3a, Sdc1, Pik3r2, Wnt11 | |
Cytokine–cytokine receptor interaction | 5 | 279 | 0.95 | 0.0084 | Ccl3, Il17a, Il1b, Tnfrsf1b, Cd40lg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Griñán-Ferré, C.; Servin-Muñoz, I.V.; Palomera-Ávalos, V.; Martínez-Fernández, C.; Companys-Alemany, J.; Muñoz-Villanova, A.; Ortuño-Sahagún, D.; Pallàs, M.; Bellver-Sanchis, A. Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer’s Disease. Genes 2024, 15, 1411. https://doi.org/10.3390/genes15111411
Griñán-Ferré C, Servin-Muñoz IV, Palomera-Ávalos V, Martínez-Fernández C, Companys-Alemany J, Muñoz-Villanova A, Ortuño-Sahagún D, Pallàs M, Bellver-Sanchis A. Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer’s Disease. Genes. 2024; 15(11):1411. https://doi.org/10.3390/genes15111411
Chicago/Turabian StyleGriñán-Ferré, Christian, Iris Valeria Servin-Muñoz, Verónica Palomera-Ávalos, Carmen Martínez-Fernández, Júlia Companys-Alemany, Amalia Muñoz-Villanova, Daniel Ortuño-Sahagún, Mercè Pallàs, and Aina Bellver-Sanchis. 2024. "Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer’s Disease" Genes 15, no. 11: 1411. https://doi.org/10.3390/genes15111411
APA StyleGriñán-Ferré, C., Servin-Muñoz, I. V., Palomera-Ávalos, V., Martínez-Fernández, C., Companys-Alemany, J., Muñoz-Villanova, A., Ortuño-Sahagún, D., Pallàs, M., & Bellver-Sanchis, A. (2024). Changes in Gene Expression Profile with Age in SAMP8: Identifying Transcripts Involved in Cognitive Decline and Sporadic Alzheimer’s Disease. Genes, 15(11), 1411. https://doi.org/10.3390/genes15111411