An Orthologics Study of the Notch Signaling Pathway
Abstract
:1. Introduction
2. Methods
3. Results
Exploring the Deep Evolutionary Origins of the Notch, DLL, and JAG Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reichrath, J.; Reichrath, S. Notch Signaling and Tissue Patterning in Embryology: An Introduction. In Notch Signaling in Embryology and Cancer; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2020; Volume 1218, pp. 1–7. [Google Scholar] [CrossRef]
- Poscente, M.; Tolomeo, D.; Arshadi, A.; Agostini, A.; L’Abbate, A.; Solimando, A.G.; Palumbo, O.; Carella, M.; Palumbo, P.; González, T.; et al. Aggressive Systemic Mastocytosis with the Co-Occurrence of PRKG2::PDGFRB, KAT6A::NCOA2, and RXRA::NOTCH1 Fusion Transcripts and a Heterozygous RUNX1 Frameshift Mutation. Cancer Genet. 2024, 284, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Xue, C.; Zeng, Y.; Yuan, X.; Chu, Q.; Jiang, S.; Wang, J.; Zhang, Y.; Zhu, D.; Li, L. Notch Signaling Pathway in Cancer: From Mechanistic Insights to Targeted Therapies. Signal Transduct. Target. Ther. 2024, 9, 128. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Wang, T.; Li, Y.-F.; Deng, Y.-N.; Shen, F.-G. Roles of the Notch Signaling Pathway and Microglia in Autism. Behav. Brain Res. 2023, 437, 114131. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Xiong, Y.; Zhu, X.; Gao, H.; Yin, S.; Wang, J.; Chen, G.; Wang, C.; Xiang, L.; Wang, P.; et al. Icariin Improves Osteoporosis, Inhibits the Expression of PPARγ, C/EBPα, FABP4 mRNA, N1ICD and Jagged1 Proteins, and Increases Notch2 mRNA in Ovariectomized Rats. Exp. Ther. Med. 2017, 13, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Zhang, H.; Xu, B.; Li, Y.; Qin, H.; Yu, S.; He, J. Jag2bNotch3/1b-mediated Neuron-to-glia Crosstalk Controls Retinal Gliogenesis. EMBO Rep. 2022, 23, e54922. [Google Scholar] [CrossRef] [PubMed]
- Eng, J.W.-L.; Kato, Y.; Adachi, Y.; Swaminathan, B.; Naiche, L.A.; Vadakath, R.; Sakamoto, Y.; Nakazawa, Y.; Tachino, S.; Ito, K.; et al. Inhibition of Notch4 Using Novel Neutralizing Antibodies Reduces Tumor Growth in Murine Cancer Models by Targeting the Tumor Endothelium. Cancer Res. Commun. 2024, 4, 1881–1893. [Google Scholar] [CrossRef]
- MacGrogan, D.; Münch, J.; de la Pompa, J.L. Notch and Interacting Signalling Pathways in Cardiac Development, Disease, and Regeneration. Nat. Rev. Cardiol. 2018, 15, 685–704. [Google Scholar] [CrossRef]
- Kuriyama, K.; Kodama, Y.; Shiokawa, M.; Nishikawa, Y.; Marui, S.; Kuwada, T.; Sogabe, Y.; Kakiuchi, N.; Tomono, T.; Matsumori, T.; et al. Essential Role of Notch/Hes1 Signaling in Postnatal Pancreatic Exocrine Development. J. Gastroenterol. 2021, 56, 673–687. [Google Scholar] [CrossRef]
- Demitrack, E.S.; Samuelson, L.C. Notch Regulation of Gastrointestinal Stem Cells. J. Physiol. 2016, 594, 4791–4803. [Google Scholar] [CrossRef]
- Chen, W.; Wei, W.; Yu, L.; Ye, Z.; Huang, F.; Zhang, L.; Hu, S.; Cai, C. Mammary Development and Breast Cancer: A Notch Perspective. J. Mammary Gland Biol. Neoplasia 2021, 26, 309–320. [Google Scholar] [CrossRef]
- Kiyokawa, H.; Morimoto, M. Notch Signaling in the Mammalian Respiratory System, Specifically the Trachea and Lungs, in Development, Homeostasis, Regeneration, and Disease. Dev. Growth Differ. 2020, 62, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Ehebauer, M.; Hayward, P.; Arias, A.M. Notch, a Universal Arbiter of Cell Fate Decisions. Science 2006, 314, 1414–1415. [Google Scholar] [CrossRef] [PubMed]
- Newman, S.A. ‘Biogeneric’ Developmental Processes: Drivers of Major Transitions in Animal Evolution. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150443. [Google Scholar] [CrossRef] [PubMed]
- Radtke, F.; Fasnacht, N.; MacDonald, H.R. Notch Signaling in the Immune System. Immunity 2010, 32, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Buske, P.; Galle, J.; Barker, N.; Aust, G.; Clevers, H.; Loeffler, M. A Comprehensive Model of the Spatio-Temporal Stem Cell and Tissue Organisation in the Intestinal Crypt. PLoS Comput. Biol. 2011, 7, e1001045. [Google Scholar] [CrossRef]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate Decision of Mesenchymal Stem Cells: Adipocytes or Osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef]
- Sirin, Y.; Susztak, K. Notch in the kidney: Development and disease. J. Pathol. 2012, 226, 394–403. [Google Scholar] [CrossRef]
- Gazave, E.; Lapébie, P.; Richards, G.S.; Brunet, F.; Ereskovsky, A.V.; Degnan, B.M.; Borchiellini, C.; Vervoort, M.; Renard, E. Origin and Evolution of the Notch Signalling Pathway: An Overview from Eukaryotic Genomes. BMC Evol. Biol. 2009, 9, 249. [Google Scholar] [CrossRef]
- Lv, Y.; Pang, X.; Cao, Z.; Song, C.; Liu, B.; Wu, W.; Pang, Q. Evolution and Function of the Notch Signaling Pathway: An Invertebrate Perspective. Int. J. Mol. Sci. 2024, 25, 3322. [Google Scholar] [CrossRef]
- Zema, S.; Pelullo, M.; Nardozza, F.; Felli, M.P.; Screpanti, I.; Bellavia, D. A Dynamic Role of Mastermind-Like 1: A Journey Through the Main (Path)Ways Between Development and Cancer. Front. Cell Dev. Biol. 2020, 8, 613557. [Google Scholar] [CrossRef]
- Babonis, L.S.; Martindale, M.Q. Phylogenetic Evidence for the Modular Evolution of Metazoan Signalling Pathways. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20150477. [Google Scholar] [CrossRef] [PubMed]
- Liongue, C.; Ward, A.C. Evolution of the JAK-STAT Pathway. JAK-STAT 2013, 2, e22756. [Google Scholar] [CrossRef] [PubMed]
- Holstein, T.W. The Evolution of the Wnt Pathway. Cold Spring Harb. Perspect. Biol. 2012, 4, a007922. [Google Scholar] [CrossRef] [PubMed]
- Domazet-Lošo, T.; Tautz, D. Phylostratigraphic Tracking of Cancer Genes Suggests a Link to the Emergence of Multicellularity in Metazoa. BMC Biol. 2010, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Fiddes, I.T.; Lodewijk, G.A.; Mooring, M.; Bosworth, C.M.; Ewing, A.D.; Mantalas, G.L.; Novak, A.M.; van den Bout, A.; Bishara, A.; Rosenkrantz, J.L.; et al. Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis. Cell 2018, 173, 1356–1369. [Google Scholar] [CrossRef]
- Bertrand, S.; Petillon, Y.L.; Somorjai, I.M.L.; Escriva, H. Developmental Cell-Cell Communication Pathways in the Cephalochordate Amphioxus: Actors and Functions. Int. J. Dev. Biol. 2017, 61, 697–722. [Google Scholar] [CrossRef]
- Sánchez-Iranzo, H.; Halavatyi, A.; Diz-Muñoz, A. Strength of Interactions in the Notch Gene Regulatory Network Determines Patterning and Fate in the Notochord. eLife 2022, 11, e75429. [Google Scholar] [CrossRef]
- Materna, M.; Delmonte, O.M.; Bosticardo, M.; Momenilandi, M.; Conrey, P.E.; Muylder, B.C.-D.; Bravetti, C.; Bellworthy, R.; Cederholm, A.; Staels, F.; et al. The Immunopathological Landscape of Human Pre-TCRα Deficiency: From Rare to Common Variants. Science 2024, 383, eadh4059. [Google Scholar] [CrossRef]
- Zuma, A.A.; de Souza, W. Histone Deacetylases as Targets for Antitrypanosomal Drugs. Future Sci. OA 2018, 4, FSO325. [Google Scholar] [CrossRef]
- Převorovský, M.; Půta, F.; Folk, P. Fungal CSL Transcription Factors. BMC Genom. 2007, 8, 233. [Google Scholar] [CrossRef]
- Oravcová, M.; Teska, M.; Půta, F.; Folk, P.; Převorovský, M. Fission Yeast CSL Proteins Function as Transcription Factors. PLoS ONE 2013, 8, e59435. [Google Scholar] [CrossRef] [PubMed]
- Hálová, M.; Gahura, O.; Převorovský, M.; Cit, Z.; Novotný, M.; Valentová, A.; Abrhámová, K.; Půta, F.; Folk, P. Nineteen Complex–Related Factor Prp45 Is Required for the Early Stages of Cotranscriptional Spliceosome Assembly. RNA 2017, 23, 1512–1524. [Google Scholar] [CrossRef] [PubMed]
- Schenkelaars, Q.; Pratlong, M.; Kodjabachian, L.; Fierro-Constain, L.; Vacelet, J.; Bivic, A.L.; Renard, E.; Borchiellini, C. Animal Multicellularity and Polarity without Wnt Signaling. Sci. Rep. 2017, 7, 15383. [Google Scholar] [CrossRef] [PubMed]
- Richards, G.S.; Degnan, B.M. The Dawn of Developmental Signaling in the Metazoa. Cold Spring Harb. Symp. Quant. Biol. 2009, 74, 81–90. [Google Scholar] [CrossRef]
- Richards, G.S.; Degnan, B.M. The Expression of Delta Ligands in the Sponge Amphimedon Queenslandica Suggests an Ancient Role for Notch Signaling in Metazoan Development. EvoDevo 2012, 3, 15. [Google Scholar] [CrossRef]
- Musser, J.M.; Schippers, K.J.; Nickel, M.; Mizzon, G.; Kohn, A.B.; Pape, C.; Ronchi, P.; Papadopoulos, N.; Tarashansky, A.J.; Hammel, J.U.; et al. Profiling Cellular Diversity in Sponges Informs Animal Cell Type and Nervous System Evolution. Science 2021, 374, 717–723. [Google Scholar] [CrossRef]
- Pan, Q.; Mercker, M.; Klimovich, A.; Wittlieb, J.; Marciniak-Czochra, A.; Böttger, A. Genetic Interference with HvNotch Provides New Insights into the Role of the Notch-Signalling Pathway for Developmental Pattern Formation in Hydra. Sci. Rep. 2024, 14, 8553. [Google Scholar] [CrossRef]
- Jin, S.; Guerrero-Juarez, C.F.; Zhang, L.; Chang, I.; Ramos, R.; Kuan, C.-H.; Myung, P.; Plikus, M.V.; Nie, Q. Inference and Analysis of Cell-Cell Communication Using CellChat. Nat. Commun. 2021, 12, 1088. [Google Scholar] [CrossRef]
- Appella, E.; Weber, I.T.; Blasi, F. Structure and Function of Epidermal Growth Factor-like Regions in Proteins. FEBS Lett. 1988, 231, 1–4. [Google Scholar] [CrossRef]
- Suga, H.; Dacre, M.; de Mendoza, A.; Shalchian-Tabrizi, K.; Manning, G.; Ruiz-Trillo, I. Genomic Survey of Premetazoans Shows Deep Conservation of Cytoplasmic Tyrosine Kinases and Multiple Radiations of Receptor Tyrosine Kinases. Sci. Signal. 2012, 5, ra35. [Google Scholar] [CrossRef]
- Li, E.; Hristova, K. Receptor tyrosine kinase transmembrane domains: Function, dimer structure and dimerization energetics. Cell Adhes. Migr. 2010, 4, 249–254. [Google Scholar] [CrossRef] [PubMed]
- McLennan, D.A. The Concept of Co-Option: Why Evolution Often Looks Miraculous. Evol. Educ. Outreach 2008, 1, 247–258. [Google Scholar] [CrossRef]
- Litman, T.; Stein, W.D. Ancient Lineages of the Keratin-Associated Protein (KRTAP) Genes and Their Co-Option in the Evolution of the Hair Follicle. BMC Ecol. Evol. 2023, 23, 7. [Google Scholar] [CrossRef] [PubMed]
Phylostratum Number | Clade Beginning to Onset of Next | Examples of Phylostratum Members |
---|---|---|
1 | All life up to Eukaryota | Eubacteria and bacteria |
2 | Eukaryota to Opisthokonta | Unicellular nucleated cells |
3 | Opisthokonta to Holozoa | Yeasts and molds |
4 | Holozoa to Metazoa | Choanoflagellates |
5 | Metazoa to Eumetazoa | Sponges and jellyfish |
6 | Eumetazoa to Bilateria | Sea anemones |
7 | Bilateria to Deuterostomia | Worms, limpets and octopus |
8 | Deuterostomia to Chordata | Sea urchins |
9 | Chordata to Olfactores | Lancelets |
10 | Olfactores to Craniata | Sea squirts |
11 | Craniata to Euteleostomi | Lampreys |
12 | Euteleostomi to Tetrapoda | Jawed fish |
13 | Tetrapoda to Amniota | Frogs and toads |
14 | Amniota to Mammalia | Birds and reptiles |
15 | Mammalia to Eutheria | Platypus (15.1); Opossum (15.2) |
16 | Eutheria to Boreotheria | Early placental animals (elephant, armadillo) |
17 | Boreotheria to Euarchontoglires | Hoofed and pawed animals |
18 | Euarchontaglires to Primata | Rabbits and rodents |
19 | Primata | Monkeys (19.1); great apes (19.2) |
(a) | ||||
HGNC (or Name on WP268) | Uniprot | Ortholog Found in the Following: | PSn * | E Value ** |
ADAM17 | P78536 | Branchiostomatidae | 9 | 6.00E-178 |
APH1A | Q96BI3 | Fungi | 3 | 1.00E-34 |
APH1B | Q8WW43 | Fungi | 3 | 3.00E-40 |
CIR1 (CIR) | Q86X95 | Porifera | 5 | 1.00E-63 |
CREBBP | Q92793 | Porifera | 5 | 0.00E+00 |
CTBP1 | Q13363 | Bilateria | 7 | 0.00E+00 |
CTBP2 | P56545 | Branchiostomatidae | 9 | 0.00E+00 |
DLL1 | O00548 | Cnidaria | 6 | 2.0010-110 |
DLL3 | Q9NYJ7 | Elasmobranchi sharks and rays | 12 | 1.0010-111 |
DLL4 | Q9NR61 | Branchiostomatidae | 9 | 3.0010-180 |
DTX1 | Q86Y01 | Bilateria | 7 | 5.0010-100 |
DTX2 | Q86UW9 | Porifera | 5 | 6.0010-83 |
DTX3 | Q8N9I9 | Porifera | 5 | 8.001010-63 |
DTX3L | Q8TDB6 | Elasmobranchi sharks and rays | 12 | 9.001010-59 |
DTX4 | Q9Y2E6 | Cnidaria | 6 | 2.001010-87 |
DVL1 | O14640 | Elasmobranchi sharks and rays | 12 | 0.001010+00 |
DVL2 | O14641 | Elasmobranchi sharks and rays | 12 | 0.001010+00 |
DVL3 | Q92997 | Cyclostomata | 11 | 0.001010+00 |
KAT2A (GCN5L2) | Q92830 | Porifera | 5 | 0.001010+00 |
HDAC1 | Q13547 | Fungi | 3 | 0.001010+00 |
HDAC2 | Q92769 | Protista | 2 | 0.001010+00 |
HES1 | Q14469 | Cnidaria | 6 | 6.001010-50 |
HES5 | Q5TA89 | Elasmobranchi sharks and rays | 12 | 5.001010-43 |
(b) | ||||
HGNC (and Name on WP268) | Uniprot | Ortholog Found in the Following: | PSn * | 10 Valu10 ** |
JAG1 | P78504 | Cnidaria | 6 | 0.0010+00 |
JAG2 | Q9Y219 | Elasmobranchi sharks and rays | 12 | 0.0010+00 |
LFNG | Q8NES3 | Porifera | 5 | 8.0010-51 |
MAML1 | Q92585 | Elasmobranchi sharks and rays | 12 | 0.0010+00 |
MAML3 | Q96JK9 | Elasmobranchi sharks and rays | 12 | 0.0010+00 |
MFNG | O00587 | Cnidaria | 6 | 3.0010-91 |
NCOR2 | Q9Y618 | Cnidaria | 6 | 2.2010-117 |
NCSTN | Q92542 | Porifera | 5 | 1.0010-106 |
NOTCH1 | P46531 | Cnidaria | 6 | 0.0010+00 |
NOTCH2 | Q04721 | Porifera | 5 | 0.0010+00 |
NOTCH2NLA | Q7Z3S9 | Humans | 19 | Idntical |
NOTCH2NLB | P0DPK3 | Humans | 19 | Idntical |
NOTCH2NLC | P0DPK4 | Humans | 19 | Idntical |
NOTCH3 | Q9UM47 | Elasmobranchi sharks and rays | 12 | 0.0010+00 |
NOTCH4 | Q99466 | Amphibia | 13 | 0.0010+00 |
NUMB | P49757 | Porifera | 5 | 2.0010-47 |
NUMBL | Q9Y6R0 | Bilateria | 7 | 4.0010-111 |
KAT2B (PCAF) | Q92831 | Cnidaria | 6 | 0 |
PSEN1 | P49768 | Porifera | 5 | 210-132 as PSN |
PSEN2 | P49810 | Porifera | 5 | 310-122 |
PTCRA | Q6ISU1 | Amniota | 14 | 1.0010-34 |
RBPJ | Q06330 | Fungus | 3 | 9.0010-53 |
RBPJL (RBPSUHL) | Q9UBG7 | Porifera | 5 | 2.0010-150 |
RFNG | Q9Y644 | Cnidaria | 6 | 7.0010-88 |
SNW1 (SKIP) | Q13573 | Fungus | 3 | 210-170 |
TNF | P01375 | Elasmobranchi sharks and rays | 12 | 5.0010-34 |
CLADE | Sender Cell Membrane | FNG Family | Notch Family | γ-Secretase Complex | Co-Repressor Complex | Transcription Factors | |
---|---|---|---|---|---|---|---|
Eumetazoa (Cnidaria) | DLL1 JAG1 | RFNG MFNG | NOTCH1 | DTX4 | PCAF NCOR2 CREBBP | HES1 | |
Metazoa (Porifera) | [DLL] | LFNG | NOTCH2 | NUMB PSEN1 PSEN2 NCSTN | DTX2 DTX3 | GCN5L2 RBPSUHL CIR | |
Eukaryota (Fungi) | APH1A APH1B | RBPJ HDAC1 HDAC2 SNW1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stein, W.D. An Orthologics Study of the Notch Signaling Pathway. Genes 2024, 15, 1452. https://doi.org/10.3390/genes15111452
Stein WD. An Orthologics Study of the Notch Signaling Pathway. Genes. 2024; 15(11):1452. https://doi.org/10.3390/genes15111452
Chicago/Turabian StyleStein, Wilfred Donald. 2024. "An Orthologics Study of the Notch Signaling Pathway" Genes 15, no. 11: 1452. https://doi.org/10.3390/genes15111452
APA StyleStein, W. D. (2024). An Orthologics Study of the Notch Signaling Pathway. Genes, 15(11), 1452. https://doi.org/10.3390/genes15111452