Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goat Skin Sample Collection
2.2. Cell Lines and Cell Culture
2.3. Oligonucleotides, Plasmid Construct, and Adenovirus Transfection
2.4. RNA Extraction and Quantitative RT-PCR
2.5. Western Blot Analysis
2.6. Verification the Sites of Target Gene
2.7. Statistical Analysis
3. Results
3.1. The Expression of Lhx2 and miR-144 in Goat Tissues
3.2. miR-144-3p Targets Multiple Sites in Lhx2 3′ UTR
3.3. miR-144 Cloning into Adenoviruses and Validation
3.4. miR-144 Plays Its Biological Function by Targeting Lhx2 in DPCs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rahmani, W.; Abbasi, S.; Hagner, A.; Raharjo, E.; Kumar, R.; Hotta, A.; Magness, S.; Metzger, D.; Biernaskie, J. Hair Follicle Dermal Stem Cells Regenerate the Dermal Sheath, Repopulate the Dermal Papilla, and Modulate Hair Type. Dev. Cell 2014, 31, 543–558. [Google Scholar] [CrossRef] [PubMed]
- Morgan, B.A. The Dermal Papilla: An Instructive Niche for Epithelial Stem and Progenitor Cells in Development and Regeneration of the Hair Follicle. Csh Perspect. Med. 2014, 4, a015180. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, R.; Zhao, C.; Che, T.Y.; Guo, J.T.; Xie, Y.C.; Wang, Z.X.; Li, J.Q.; Liu, Z.H. Single-cell sequencing reveals the new existence form of dermal papilla cells in the hair follicle regeneration of cashmere goats. Genomics 2022, 114, 110316. [Google Scholar] [CrossRef] [PubMed]
- Roh, C.; Tao, Q.F.; Lyle, S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human skin. Physiol. Genom. 2004, 19, 207–217. [Google Scholar] [CrossRef]
- Li, J.L.; Zhao, B.H.; Yao, S.Y.; Dai, Y.Y.; Zhang, X.Y.; Yang, N.S.; Bao, Z.Y.; Cai, J.W.; Chen, Y.; Wu, X.S. Dermal PapillaCell-Derived Exosomes Regulate Hair Follicle Stem Cell Proliferation via LEF1. Int. J. Mol. Sci. 2023, 24, 3961. [Google Scholar] [CrossRef]
- Gebert, L.F.R.; MacRae, I.J. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Bio. 2019, 20, 21–37. [Google Scholar] [CrossRef]
- Pu, M.F.; Chen, J.; Tao, Z.T.; Miao, L.L.; Qi, X.M.; Wang, Y.Z.; Ren, J. Regulatory network of miRNA on its target: Coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol. Life Sci. 2019, 76, 441–451. [Google Scholar] [CrossRef]
- Lv, X.Y.; Chen, W.H.; Wang, S.H.; Cao, X.K.; Yuan, Z.H.; Getachew, T.; Mwacharo, J.M.; Haile, A.; Sun, W. Integrated Hair Follicle Profiles of microRNAs and mRNAs to Reveal the Pattern Formation of Hu Sheep Lambskin. Genes 2022, 13, 342. [Google Scholar] [CrossRef]
- Zhao, B.H.; Li, J.L.; Zhang, X.Y.; Dai, Y.Y.; Yang, N.S.; Bao, Z.Y.; Chen, Y.; Wu, X.S. Exosomal miRNA-181a-5p from the cells of the hair follicle dermal papilla promotes the hair follicle growth and development via the Wnt/β-catenin signaling pathway. Int. J. Biol. Macromol. 2022, 207, 110–120. [Google Scholar] [CrossRef]
- Wang, M.L.; Dai, H.; Sheng, S.D.; Liu, Y.L.; Zhang, S.Y.; Bai, W.L.; Xue, H.L. Discovery and Functional Analysis of Secondary Hair Follicle miRNAs during Annual Cashmere Growth. Int. J. Mol. Sci. 2023, 24, 1063. [Google Scholar] [CrossRef]
- Paul, S.; Licona-Vázquez, I.; Serrano-Cano, F.I.; Frías-Reid, N.; Pacheco-Dorantes, C.; Pathak, S.; Chakraborty, S.; Srivastava, A. Current insight into the functions of microRNAs in common human hair loss disorders: A mini review. Hum. Cell 2021, 34, 1040–1050. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Wang, X.L.; Geng, R.Q.; He, X.L.; Qu, L.; Chen, Y.L. Discovery of cashmere goat () microRNAs in skin and hair follicles by Solexa sequencing. BMC Genom. 2013, 14, 511. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Geng, J.N.; Wei, X.J.; Zhang, R.R.; Jiang, S.W. MiR-144-3p regulates osteogenic differentiation and proliferation of murine mesenchymal stem cells by specifically targeting. Febs Lett. 2016, 590, 795–807. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Wang, Y.; Zhou, G.X.; Ding, Y.; Yang, Y.X.; Wang, X.L.; Zhang, E.P.; Chen, Y.L. Synchronous profiling and analysis of mRNAs and ncRNAs in the dermal papilla cells from cashmere goats. BMC Genom. 2019, 20, 512. [Google Scholar] [CrossRef]
- Porter, F.D.; Drago, J.; Xu, Y.; Cheema, S.S.; Wassif, C.; Huang, S.-P.; Lee, E.; Grinberg, A.; Massalas, J.S.; Bodine, D.; et al. Lhx2, a LIM homeobox gene, is required for eye, forebrain, and definitive erythrocyte development. Development 1997, 124, 2935–2944. [Google Scholar] [CrossRef]
- Takaya, K.; Sunohara, A.; Aramaki-Hattori, N.; Sakai, S.; Okabe, K.; Kishi, K. Downregulation of Lhx2 Markedly Impairs Wound Healing in Mouse Fetus. Biomedicines 2022, 10, 2132. [Google Scholar] [CrossRef]
- Rhee, H.; Polak, L.; Fuchs, E. Lhx2 maintains stem cell character in hair follicles. Science 2006, 312, 1946–1949. [Google Scholar] [CrossRef]
- Törnqvist, G.; Sandberg, A.; Hägglund, A.C.; Carisson, L. Cyclic Expression of Lhx2 Regulates Hair Formation. PLoS Genet. 2010, 6, e1000904. [Google Scholar] [CrossRef]
- Quan, R.F.; Zheng, X.; Ni, Y.M.; Xie, S.J.; Li, C.M. Culture and characterization of rat hair follicle stem cells. Cytotechnology 2016, 68, 621–628. [Google Scholar] [CrossRef]
- Zhang, K.W.; Yin, X.M.; Shi, K.T.; Zhang, S.H.; Wang, J.; Zhao, S.S.; Deng, H.; Zhang, C.; Wu, Z.H.; Li, Y.; et al. A high-efficiency method for site-directed mutagenesis of large plasmids based on large DNA fragment amplification and recombinational ligation. Sci. Rep.-UK 2021, 11, 10454. [Google Scholar] [CrossRef]
- Geng, R.Q.; Wang, L.P.; Wang, X.L.; Chen, Y.L. Cyclic expression of Lhx2 is involved in secondary hair follicle development in cashmere goat. Gene Expr. Patterns 2014, 16, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Polkoff, K.M.; Gupta, N.K.; Green, A.J.; Murphy, Y.; Chung, J.; Gleason, K.L.; Simpson, S.G.; Walker, D.M.; Collins, B.; Piedrahita, J.A. LGR5 is a conserved marker of hair follicle stem cells in multiple species and is present early and throughout follicle morphogenesis. Sci. Rep.-UK 2022, 12, 9104. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Liu, Y.H.; He, J.; Wang, J.R.; Chen, X.D.; Yang, R.H. Regulation of signaling pathways in hair follicle stem cells. Burn. Trauma. 2022, 10, tkac022. [Google Scholar] [CrossRef] [PubMed]
- Das, D.; Fletcher, R.B.; Ngai, J. Cellular mechanisms of epithelial stem cell self-renewal and differentiation during homeostasis and repair. WIREs Dev. Biol. 2019, 9, e361. [Google Scholar] [CrossRef] [PubMed]
- Sartaj, R.; Chee, R.I.; Yang, J.; Wan, P.X.; Liu, A.H.; Guaiquil, V.; Fuchs, E.; Rosenblatt, M.I. LIM Homeobox Domain 2 Is Required for Corneal Epithelial Homeostasis. Stem Cells 2016, 34, 493–503. [Google Scholar] [CrossRef]
- Kitajima, K.; Kawaguchi, M.; Iacovino, M.; Kyba, M.; Hara, T. Molecular Functions of the LIM-Homeobox Transcription Factor Lhx2 in Hematopoietic Progenitor Cells Derived from Mouse Embryonic Stem Cells. Stem Cells 2013, 31, 2680–2689. [Google Scholar] [CrossRef]
- Mardaryev, A.N.; Meier, N.; Poterlowicz, K.; Sharov, A.A.; Sharova, T.Y.; Ahmed, M.I.; Rapisarda, V.; Lewis, C.; Fessing, M.Y.; Ruenger, T.M.; et al. Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development 2011, 138, 4843–4852. [Google Scholar] [CrossRef]
- Botchkareva, N.V.; Ahluwalia, G.; Shander, D. Apoptosis in the hair follicle. J. Investig. Dermatol. 2006, 126, 258–264. [Google Scholar] [CrossRef]
- Zhang, J.W.; He, X.C.; Tong, W.G.; Johnson, T.; Wiedemann, L.M.; Mishina, Y.; Feng, J.Q.; Li, L.H. Bone morphogenetic protein signaling inhibits hair follicle anagen induction by restricting epithelial stem/progenitor cell activation and expansion. Stem Cells 2006, 24, 2826–2839. [Google Scholar] [CrossRef]
- Chu, S.Y.; Chu, C.H.; Huang, H.D.; Yen, M.H.; Hong, H.C.; Chao, P.H.; Wang, Y.H.; Chen, P.Y.; Nian, S.X.; Chen, Y.R.; et al. Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nat. Commun. 2019, 10, 1524. [Google Scholar] [CrossRef]
- Huelsken, J.; Vogel, R.; Erdmann, B.; Cotsarelis, G.; Birchmeier, W. β-Catenin Controls Hair Follicle Morphogenesis and Stem Cell Differentiation in the Skin. Cell 2001, 105, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.S.; Zhang, Y.H.; Xu, M.G.; Yang, Y.G.; Ito, M.; Peng, T.; Cui, Z.; Nagy, A.; Hadjantonakis, A.K.; Lang, R.A.; et al. Distinct Functions for Wnt/β-Catenin in Hair Follicle Stem Cell Proliferation and Survival and Interfollicular Epidermal Homeostasis. Cell Stem Cell 2013, 13, 720–733. [Google Scholar] [CrossRef] [PubMed]
- Greco, V.; Chen, T.; Rendl, M.; Schober, M.; Pasolli, A.; Stokes, N.; Dela Cruz-Racelis, J.; Fuchs, E. A two-step mechanism for stem cell activation during hair regeneration. J. Investig. Dermatol. 2010, 130, S102. [Google Scholar]
- Kulessa, H. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 2000, 19, 6664–6674. [Google Scholar] [CrossRef]
- Foitzik, K.; Lindner, G.; Mueller-Roever, S.; Maurer, M.; Botchkareva, N.; Botchkarev, V.; Handjiski, B.; Metz, M.; Hibino, T.; Soma, T.; et al. Control of murine hair follicle regression (catagen) by TGF-β1in vivo. FASEB J. 2000, 14, 752–760. [Google Scholar] [CrossRef]
- Paus, R.; Foitzik, K.; Welker, P.; Bulfone-Paus, S.; Eichmuller, S. Transforming growth factor-beta receptor type I and type II expression during murine hair follicle development and cycling. J. Investig. Dermatol. 1997, 109, 518–526. [Google Scholar] [CrossRef]
Primer | Sequence (5′~3′) | Size (bp) |
---|---|---|
WT-Lhx2-F1 | CCGCTCGAGTGACTCTCGGCCCCGCAC (Xho I) | 424 |
WT-Lhx2-R1 | ATAAGAATGCGGCCGCTACATTTTTGCTCTGGTC (Not I) | |
MT-Lhx2-FoC | CTGCCACGTGCCTTAGGAACACCGCTTTATCTCCATACTTTGG | 424 |
MT-Lhx2-RoC | CCAAAGTATGGAGATAAAGCGGTGTTCCTAAGGCACGTGGCAG | |
MT-Lhx2-FoB | AGCTTCGTGCTCTTCAAAGACTGCCACGTGCCTTAG | 424 |
MT-Lhx2-RoB | CTTTGAAGAGCACGAAGCTCTAGCCAACTTAAATTA | |
MT-Lhx2-FoA | ACATGGATGTCATCTTACAGTTTTGTGGACTGAGC | 424 |
MT-Lhx2-RoA | GTAAGATGACATCCATGTTGTGTTGCAGATAGATC | |
qmiR-144-RT | GTCGTATCCAGTGCAGGGTCCGAGGTATTCGCACTGGATACGACTACATC | |
qmiR-144-F | TGGCGGTACAGTATAGATG | |
qmiR-144-R | GTGCAGGGTCCGAGGT | |
U6-F | CTCGCTTCGGCAGCACA | 94- |
U6-R | AACGCTTCACGAATTTGCGT | |
ACTB-F | TCTGGCACCACACCTTCTAC | 102 |
ACTB-R | TCTTCTCACGGTTGGCCTTG | |
Lhx2-qF | CAACCCTCTGGGTCTTCCCTACT | 186 |
Lhx2-qR | CGCTTCGTCTTCTGGCTGCTC | |
Lgr5-qF1 | AGCTTGGTGGTTCTAGGATTTCA | 174 |
Lgr5-qR1 | GGCGCCATTCAAAGTCAGTG | |
Sox9-qF1 | GCCCAACGCCATCTTCAAGG | 294 |
Sox9-qR1 | TACTGGTCGAACTCGTGGAC | |
β-catenin-qF1 | TATTGGTGCCCAGGGAGAAC | 297 |
β-catenin-qR1 | ACAGGCCAATCACAATGCAAG | |
Fgf7-qF1 | AAGTTGCACAGGGCAGACAA | 94 |
Fgf7-qR1 | GTTGCTGAGATGCTGTTTGCT | |
Fgf10-qF1 | GGAAAGGTCAGCGGTACCAA | 244 |
Fgf10-qR1 | ACATTTGCCTCCCATTGTGC | |
Bmp4-qF1 | TCCCCAAAGCCTGTTGTGTT | 121 |
Bmp4-qR1 | CGGCAACCACATCCCTCTAC | |
Bmp2-F1 | CTACATGCTGGACTTGTACC | 232 |
Bmp2-R1 | CCGAAAGACCTGAAGTTCTG | |
Tgfβ3-qF1 | ACAGTGATGATGATCCGGGC | 203 |
Tgfβ3-qR1 | GTCAATGTAGAGAGGGCGCA | |
Tgfβ2-qF1 | GCGCTACATCGACAGCAAAG | 82 |
Tgfβ2-qR1 | TTCGTGAACAGCATCGGTGA | |
Tgfβ1-F1 | CTAGCTCGCACAGCATATAC | 277 |
Tgfβ1-R1 | CGAAAGCCCTCTATTTCCTC | |
Nog-qF1 | CACTATCTCCACATCCGCCC | 153 |
Nog-qR1 | CATGAAACCCGGGTCGTAGT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, G.; Wang, X.; Chen, Y.; Kang, D. Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2. Genes 2024, 15, 1454. https://doi.org/10.3390/genes15111454
Zhou G, Wang X, Chen Y, Kang D. Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2. Genes. 2024; 15(11):1454. https://doi.org/10.3390/genes15111454
Chicago/Turabian StyleZhou, Guangxian, Xiaolong Wang, Yulin Chen, and Danju Kang. 2024. "Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2" Genes 15, no. 11: 1454. https://doi.org/10.3390/genes15111454
APA StyleZhou, G., Wang, X., Chen, Y., & Kang, D. (2024). Potential Involvement of miR-144 in the Regulation of Hair Follicle Development and Cycle Through Interaction with Lhx2. Genes, 15(11), 1454. https://doi.org/10.3390/genes15111454