Complete Chloroplast Genomes and Phylogenetic Analysis of Woody Climbing Genus Phanera (Leguminosae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Extraction of Genomic DNA
2.2. DNA Sequencing, Assembly, and Annotation
2.3. Codon Usage Bias Analysis
2.4. Repeat Sequences Analysis
2.5. Chloroplast Genomes Comparison
2.6. Phylogenetic Tree Construction
3. Results
3.1. Chloroplast Genomes Features
3.2. Relative Synonymous Codon Usage Analysis
3.3. Dispersed Repeats and SSRs Analysis
3.4. Boundaries of Junction Sites Analysis
3.5. Sequence Variation Analysis
3.6. Phylogenetic Analysis
4. Discussion
4.1. Composition and Structural Characteristics of Chloroplast Genome
4.2. Phylogenetic Relationships
4.3. Development of DNA Markers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hao, G.; Zhang, D.X.; Zhang, M.Y.; Guo, L.X.; Li, S.J. Phylogenetics of Bauhinia subgenus Phanera (Leguminosae: Caesalpinioideae) based on ITS sequences of nuclear ribosomal DNA. Bot. Bull. Acad. Sin. 2003, 44, 223–228. [Google Scholar]
- Mackinder, B.A.; Clark, R. A synopsis of the Asian and Australasian genus Phanera Lour. (Cercideae: Caesalpinioideae: Leguminosae) including 19 new combinations. Phytotaxa 2014, 166, 49–68. [Google Scholar] [CrossRef]
- Sinou, C.; Cardinal-McTeague, W.; Bruneau, A. Testing generic limits in Cercidoideae (Leguminosae): Insights from plastid and duplicated nuclear gene sequences. Taxon 2020, 69, 67–86. [Google Scholar] [CrossRef]
- Loureiro, J.O.D. Phanera. In Flora Cochinchinensis: Sistens Plantas in Regno Cochinchina Nascentes. Quibus Accedunt Aliae Observatae in Sinensi Imperio, Africa Orientali, Indiaeque Locis Variis: Omnes Dispositae Secundum Systema Sexuale Linnaeanum; Ulyssipone Typis, et expensis Academicis: Lisbon, Portugal, 1790; Volume 1, pp. 37–38. [Google Scholar]
- Lewis, G.; Forest, F. Cercideae. In Legumes of the World; Lewis, G., Schrire, B., Mackinder, B., Lock, M., Eds.; Royal Botanic Gardens, Kew: Surrey, UK, 2005; pp. 57–67. [Google Scholar]
- Qin, X.Y.; Luo, J.Y.; Gao, Z.G. Yao Ethnic Medicinals in China; Ethnic Publish House: Beijing, China, 2002; p. 57. [Google Scholar]
- Xu, W.; Huang, M.Q.; Zhang, Y.Q.; Li, H.; Zheng, H.Y.; Yu, L.S.; Chu, K.D. Extracts of Bauhinia championii (Benth.) Benth. inhibit NF-κB-signaling in a rat model of collagen-induced arthritis and primary synovial cells. J. Ethnopharmacol. 2016, 185, 140–146. [Google Scholar] [CrossRef]
- Farag, M.A.; Sakna, S.T.; El-fiky, N.M.; Shabana, M.M.; Wessjohann, L.A. Phytochemical, antioxidant and antidiabetic evaluation of eight Bauhinia L. species from Egypt using UHPLC-PDA-qTOE-MS and chemometrics. Phytochemistry 2015, 119, 41–50. [Google Scholar] [CrossRef]
- Ramya, K.B.; Thaakur, S. Herbs containing L- Dopa: An update. Anc. Sci. Life 2007, 27, 50–55. [Google Scholar] [PubMed]
- Xu, W.; Chu, K.; Li, H.; Zhang, Y.; Zheng, H.; Chen, R.; Chen, L. Ionic liquid-based microwave-assisted extraction of flavonoids from Bauhinia championii (Benth.) Benth. Molecules 2012, 17, 14323–14335. [Google Scholar] [CrossRef]
- Hua, L.P.; Zhang, Y.Q.; Ye, M.; Xu, W.; Wang, X.Y.; Fu, Y.H.; Xu, W. A new polyoxygenated abietane diterpenoid from the rattans of Bauhinia championii (Benth.) Benth. Nat. Prod. Res. 2018, 32, 2577–2582. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, G.; Sun, C.; Li, H.; Fu, Y.; Xu, W. Apoptosis Effects of Dihydrokaempferol Isolated from Bauhinia championii on Synoviocytes. Evid. Based Complement. Altern. Med. Ecam 2018, 2018, 9806160. [Google Scholar] [CrossRef]
- Li, J.; Huang, X.; He, K.; Wu, S. The kidney antifibrotic effects of 5,7,3′,4′,5′-pentamethoxyflavone from Bauhinia championii in streptozotocin-induced diabetic rats: In vivo and in vitro experiments. Pharm. Biol. 2023, 61, 938–948. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, W.Y.; Chung, C.H.; Kuo, C.L.; Lee, A.S. Cardiac protection of Bauhinia championii against reperfusion injury. Environ. Toxicol. 2020, 35, 774–782. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Chu, K.; Li, H.; Zhang, Y.; Huang, M.; Zheng, H.; Sha, M.; Zhang, X.; Chen, L. Bauhinia championii extraction treatment of collagen-induced arthritis via downregulation of the expression of TLR4, MyD88 and NF-κB. Am. J. Chin. Med. 2013, 41, 379–390. [Google Scholar] [CrossRef] [PubMed]
- Gudavalli, D.; Pandey, K.; Ede, V.G.; Sable, D.; Ghagare, A.S.; Kate, A.S. Phytochemistry and pharmacological activities of five species of Bauhinia genus: A review. Fitoterapia 2024, 174, 105830. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Cheng, S.H.; Yang, J.; Xiang, F.F.; Zhou, Z.; Zhang, Q.H.; Pang, Y.Z.; Zhou, W.B.; Abliz, Z. Metabolomics reveals the intervention effect of Zhuang medicine Longzuantongbi granules on a collagen-induced arthritis rat model by using UPLC-MS/MS. J. Ethnopharmacol. 2022, 294, 115325. [Google Scholar] [CrossRef]
- Trethowan, L.A.; Clark, R.P.; Mackinder, B.A. A synopsis of the neotropical genus Schnella (Cercideae: Caesalpinioideae: Leguminosae) including 12 new combinations. Phytotaxa 2015, 204, 237–252. [Google Scholar] [CrossRef]
- Wunderlin, R.; Larsen, K.; Larsen, S.S. Reorganization of the Cercideae (Fabaceae: Caesalpinioideae); Det kongelige Danske videnskabernes selskab; Munksgaard: Copenhagen, Denmark, 1987; pp. 1–40. [Google Scholar]
- Flajoulot, S.; Ronfort, J.; Baudouin, P.; Barre, P.; Huguet, T.; Huyghe, C.; Julier, B. Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a breeding program, using SSR markers. Theor. Appl. Genet. 2005, 111, 1420–1429. [Google Scholar] [CrossRef]
- Sinou, C.; Forest, F.; Lewis, G.P.; Bruneau, A. The genus Bauhinia s.l. (Leguminosae): A phylogeny based on the plastid trnL-trnF region. Botany 2009, 87, 947–960. [Google Scholar] [CrossRef]
- Wunderlin, R.P. New combinations in Schnella (Fabaceae: Caesalpinioideae: Cercideae). Phytoneuron 2010, 49, 1–5. [Google Scholar]
- Wunderlin, R.P. Reorganization of the Cercideae (Fabaceae: Caesalpinioideae). Phytoneuron 2010, 48, 1–5. [Google Scholar]
- Clark, R.P.; Mackinder, B.A.; Banks, H. Cheniella gen. nov. (Leguminosae: Cercidoideae) from southern China, Indochina and Malesia. Eur. J. Taxon. 2017, 360, 1–37. [Google Scholar] [CrossRef]
- Gu, S.R.; Zeng, Q.B.; Clark, R.; Jiang, K.W.; Perez-Escobar, O.A.; Li, S.J.; Tan, W.N.; Xie, Z.; Mattapha, S.; Shi, M.M.; et al. Phylogeny and re-circumscription of Cheniella (Leguminosae: Cercidoideae) based on plastome data and morphology, with description of three new species. Taxon 2024, 73, 475–502. [Google Scholar] [CrossRef]
- Azani, N.; Babineau, M.; Bailey, C.D.; Banks, H.; Barbosa, A.R.; Pinto, R.B.; Boatwright, J.S.; Borges, L.M.; Brown, G.K.; Bruneau, A.; et al. A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny: The Legume Phylogeny Working Group (LPWG). Taxon 2017, 66, 44–77. [Google Scholar] [CrossRef]
- Peng, X.; Jiang, K.W.; Fang, T.S.; Gu, Q.Y.; Gu, S.R.; Xie, Z.; Duan, L.; Li, S.J.; Wang, X.P.; Shi, M.M.; et al. Cheniella tsoongii (Leguminosae: Cercidoideae), a rare, critically endangered new species from southern China. Phytotaxa 2024, 646, 193–202. [Google Scholar] [CrossRef]
- Dobrogojski, J.; Adamiec, M.; Luciński, R. The chloroplast genome: A review. Acta Physiol. Plant. 2020, 42, 98. [Google Scholar] [CrossRef]
- Li, X.W.; Yang, Y.; Henry, R.J.; Rossetto, M.; Wang, Y.T.; Chen, S.L. Plant DNA barcoding: From gene to genome. Biol. Rev. 2015, 90, 157–166. [Google Scholar] [CrossRef]
- Antil, S.; Abraham, J.S.; Sripoorna, S.; Maurya, S.; Dagar, J.; Makhija, S.; Bhagat, P.; Gupta, R.; Sood, U.; Lal, R.; et al. DNA barcoding, an effective tool for species identification: A review. Mol. Biol. Rep. 2023, 50, 761–775. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Zhou, Y.Q.; Chen, Y.R.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, 884–890. [Google Scholar] [CrossRef]
- Jin, J.J.; Yu, W.B.; Yang, J.B.; Song, Y.; dePamphilis, C.W.; Yi, T.S.; Li, D.Z. GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 2020, 21, 241. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Shi, L.C.; Chen, H.M.; Jiang, M.; Wang, L.Q.; Wu, X.; Huang, L.F.; Liu, C. CPGAVAS2, an integrated plastome sequence annotator and analyzer. Nucleic Acids Res. 2019, 47, W65–W73. [Google Scholar] [CrossRef]
- Lowe, T.M.; Eddy, S.R. tRNAscan-SE: A Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. Nucleic Acids Res. 1997, 25, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Ni, Y.; Li, J.L.; Zhang, X.Y.; Yang, H.Y.; Chen, H.M.; Liu, C. CPGView: A package for visualizing detailed chloroplast genome structures. Mol. Ecol. Resour. 2023, 23, 694–704. [Google Scholar] [CrossRef] [PubMed]
- Parvathy, S.T.; Udayasuriyan, V.; Bhadana, V. Codon usage bias. Mol. Biol. Rep. 2022, 49, 539–565. [Google Scholar] [CrossRef] [PubMed]
- Sharp, P.M.; Li, W.H. Codon usage in regulatory genes in Escherichia coli does not reflect selection for ‘rare’ codons. Nucleic Acids Res. 1986, 14, 7737–7749. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, J.B.; Kudla, G. Synonymous but not the same: The causes and consequences of codon bias. Nat. Rev. Genet. 2011, 12, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Peden, J.F. Analysis of Codon Usage. Ph.D. Thesis, University of Nottingham, Nottingham, UK, 1999. [Google Scholar]
- Beier, S.; Thiel, T.; Münch, T.; Scholz, U.; Mascher, M. MISA-web: A web server for microsatellite prediction. Bioinformatics 2017, 33, 2583–2585. [Google Scholar] [CrossRef]
- Kurtz, S.; Choudhuri, J.V.; Ohlebusch, E.; Schleiermacher, C.; Stoye, J.; Giegerich, R. REPuter: The manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 2001, 29, 4633–4642. [Google Scholar] [CrossRef]
- Li, H.E.; Guo, Q.Q.; Xu, L.; Gao, H.D.; Liu, L.; Zhou, X.Y. CPJSdraw: Analysis and visualization of junction sites of chloroplast genomes. PeerJ 2023, 11, e15326. [Google Scholar] [CrossRef]
- Mayor, C.; Brudno, M.; Schwartz, J.R.; Poliakov, A.; Rubin, E.M.; Frazer, K.A.; Pachter, L.S.; Dubchak, I. VISTA: Visualizing global DNA sequence alignments of arbitrary length. Bioinformatics 2000, 16, 1046–1047. [Google Scholar] [CrossRef]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef]
- Hu, J.L.; Hou, Z. The complete chloroplast genome sequence of the medicinal plant Cercis chinensis and phylogenetic analysis. Mitochondrial DNA Part B 2021, 6, 3404–3405. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.J.; Tao, J.H.; Yang, X.M.; Jiao, Q.Q.; Wang, C.Z.; Cheng, Y.; Yin, Y.L. Characterization and phylogenetic analysis of the complete chloroplast genome of Cercis canadensis ‘Forest Pansy’. Mitochondrial DNA Part B 2020, 5, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Zhang, Q.; Qin, X.M.; Lu, Y.B.; Li, P.W.; Huang, X.Y. A comprehensive alignment-filtering methodology improves phylogeny particularly by filtering overly divergent segments. bioRxiv 2023, 573321. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Ronquist, F.; Huelsenbeck, J.P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Daniell, H.; Lin, C.S.; Yu, M.; Chang, W.J. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biol. 2016, 17, 134. [Google Scholar] [CrossRef]
- Korpelainen, H. The evolutionary processes of mitochondrial and chloroplast genomes differ from those of nuclear genomes. Naturwissenschaften 2004, 91, 505–518. [Google Scholar] [CrossRef]
- Kiktev, D.A.; Sheng, Z.W.; Lobachev, K.S.; Petes, T.D. GC content elevates mutation and recombination rates in the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2018, 115, E7109–E7118. [Google Scholar] [CrossRef]
- Sun, Y.X.; Moore, M.J.; Zhang, S.J.; Soltis, P.S.; Soltis, D.E.; Zhao, T.T.; Meng, A.P.; Li, X.D.; Li, J.Q.; Wang, H.C. Phylogenomic and structural analyses of 18 complete plastomes across nearly all families of early-diverging eudicots, including an angiosperm-wide analysis of IR gene content evolution. Mol. Phylogenet. Evol. 2016, 96, 93–101. [Google Scholar] [CrossRef]
- Cheon, K.-S.; Kim, K.-A.; Yoo, K.-O. The complete chloroplast genome sequences of three Adenophora species and comparative analysis with Campanuloid species (Campanulaceae). PLoS ONE 2017, 12, e0183652. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Zhang, T.Y.; Wang, Q.Q.; Stefano, G.A.D.; Hu, Z.M. Comparative structure and evolution of the organellar genomes of Padina usoehtunii (Dictyotales) with the brown algal crown radiation clade. BMC Genom. 2024, 25, 747. [Google Scholar] [CrossRef] [PubMed]
- Lubna; Asaf, S.; Khan, I.; Jan, R.; Asif, S.; Bilal, S.; Kim, K.M.; Al-Harrasi, A. Genetic characterization and phylogenetic analysis of the Nigella sativa (black seed) plastome. Sci. Rep. (Nat. Publ. Group) 2024, 14, 14509. [Google Scholar] [CrossRef]
- Ahmed, I.; Matthews, P.J.; Biggs, P.J.; Naeem, M.; McLenachan, P.A.; Lockhart, P.J. Identification of chloroplast genome loci suitable for high-resolution phylogeographic studies of Colocasia esculenta (L.) Schott (Araceae) and closely related taxa. Mol. Ecol. Resour. 2013, 13, 929–937. [Google Scholar] [CrossRef]
- El-Esawi, M.A.; Elashtokhy, M.M.A.; Shamseldin, S.A.M.; El-Ballat, E.M.; Zayed, E.M.; Heikal, Y.M. Analysis of Genetic Diversity and Phylogenetic Relationships of Wheat (Triticum aestivum L.) Genotypes Using Phenological, Molecular and DNA Barcoding Markers. Genes 2023, 14, 34. [Google Scholar] [CrossRef]
- Rajkhowa, D.; Deka, M.K.; Bora, B.; Devee, A.; Rahman, A. Comparative analysis of intraspecific variability in yellow banded wasp, Vespa cincta F. (Vespidae: Hymenoptera) using molecular and morphometric techniques. Int. J. Trop. Insect Sci. 2021, 41, 1567–1577. [Google Scholar] [CrossRef]
- Jiang, X.C.; Liu, L.; Guo, H.; Liu, P.; Tian, W.Z.; Ou, F.J.; Ding, J.; Zhang, W.J.; Chang, Y.Q. Establishment of Parentage Identification Method for Sea Urchin Strongylocentrotus intermedius Based on SSR-seq Technology. Genes 2024, 15, 630. [Google Scholar] [CrossRef]
- Moghaddam, M.; Ohta, A.; Shimizu, M.; Terauchi, R.; Kazempour-Osaloo, S. The complete chloroplast genome of Onobrychis gaubae (Fabaceae-Papilionoideae): Comparative analysis with related IR-lacking clade species. BMC Plant Biol. 2022, 22, 75. [Google Scholar] [CrossRef]
- Tian, C.Y.; Li, X.S.; Wu, Z.N.; Li, Z.Y.; Hou, X.Y.; Li, R.Y.H. Characterization and Comparative Analysis of Complete Chloroplast Genomes of Three Species From the Genus Astragalus (Leguminosae). Front. Genet. 2021, 12, 705482. [Google Scholar] [CrossRef]
Loureiro et al., 1790 [4] | Wunderlin et al., 1987 [19] | Lewis and Forest, 2005 [5] | Sinou et al., 2009 [21] | Wunderlin, 2010 [22,23] | Clark et al., 2017 [24] | Sinou et al., 2020 [3] |
---|---|---|---|---|---|---|
Phanera Lour. (1) | Bauhinia, subg. Phanera, sect. Schnella (Raddi) Benth. (8) and sect. Caulotretus DC. (c. 31) | Phanera (c. 120–130) | Phanera (“American Phanera clade”) | Schnella Raddi (c. 40) | Schnella (c. 40) | Schnella (45) |
Bauhinia, subg. Phanera, sect. Phanera (Lour.) Wunderlin et al., subsect. Fulvae (de Wit) Wunderlin et al., ser. Corymbosae (de Wit) Wunderlin et al. (c. 6) | Phanera (c. 120–130) | Phanera (c. 90–100) | Cheniella R.Clark and Mackinder (10) | Cheniella (10) | ||
Bauhinia subg. Phanera (minus sections Lasiobema, Lysiphyllum, and Tylosema) (c. 122) | Phanera (c. 90) | Phanera (74) | ||||
Bauhinia, subg. Phanera, sect. Lasiobema (Korth.) Benth. (c. 15) | Lasiobema (Korth.) Miq. (c. 15–20) | Lasiobema (c. 15–20) (“Asian Phanera clade”) | ||||
Bauhinia, subg. Phanera (Lour.) Wunderlin et al., sect. Lysiphyllum Benth., subsect. Tournaya (A.Schmitz) Wunderlin (3) | Gigasiphon Drake (4–5) | Gigasiphon (4–5) | Gigasiphon (5) | Gigasiphon (5) | Tournaya A.Schmitz (1) | |
Bauhinia, subg. Phanera, sect. Tylosema Schweinf. (4) | Tylosema (Schweinf.) Torre and Hillc. (4) | Tylosema (4) | Tylosema (4) | Tylosema (4) | Tylosema (5) | |
Bauhinia, subg. Phanera, sect. Lysiphyllum Benth. (9) | Lysiphyllum (Benth.) de Wit (c. 8) | Lysiphyllum (c. 8) | Lysiphyllum (9) | Lysiphyllum (9) | Lysiphyllum (8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Zhao, Y.; Wu, W.; Li, P.; Li, J.; An, C.; Zheng, Y.; Huang, M.; Lin, Y.; Yan, Q. Complete Chloroplast Genomes and Phylogenetic Analysis of Woody Climbing Genus Phanera (Leguminosae). Genes 2024, 15, 1456. https://doi.org/10.3390/genes15111456
Chen Y, Zhao Y, Wu W, Li P, Li J, An C, Zheng Y, Huang M, Lin Y, Yan Q. Complete Chloroplast Genomes and Phylogenetic Analysis of Woody Climbing Genus Phanera (Leguminosae). Genes. 2024; 15(11):1456. https://doi.org/10.3390/genes15111456
Chicago/Turabian StyleChen, Yuan, Yanlin Zhao, Wei Wu, Pengwei Li, Jianwu Li, Chang An, Yanfang Zheng, Mingqing Huang, Yanxiang Lin, and Quan Yan. 2024. "Complete Chloroplast Genomes and Phylogenetic Analysis of Woody Climbing Genus Phanera (Leguminosae)" Genes 15, no. 11: 1456. https://doi.org/10.3390/genes15111456
APA StyleChen, Y., Zhao, Y., Wu, W., Li, P., Li, J., An, C., Zheng, Y., Huang, M., Lin, Y., & Yan, Q. (2024). Complete Chloroplast Genomes and Phylogenetic Analysis of Woody Climbing Genus Phanera (Leguminosae). Genes, 15(11), 1456. https://doi.org/10.3390/genes15111456