Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype—A Multi-Center Retrospective Study
Abstract
:1. Introduction
1.1. Genetic Mutations and Pathophysiological Mechanisms
1.2. Cardiovascular Manifestations
2. Materials and Methods
2.1. Study Design and Settings
2.2. Data Curation
2.3. Measurment
2.4. Statistical Analysis
3. Results
4. Discussion
5. Novel Contribution and Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tartaglia, M.; Gelb, B.D.; Zenker, M. Noonan syndrome and clinically related disorders. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 161–179. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Roberts, A.E.; Allanson, J.E.; Tartaglia, M.; Gelb, B.D. Noonan syndrome. Lancet 2013, 381, 333–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Miller, B.S. The History of Noonan Syndrome. Pediatr. Endocrinol. Rev. 2019, 16 (Suppl. S2), 424–427. [Google Scholar] [CrossRef] [PubMed]
- Allanson, J.E.; Bohring, A.; Dörr, H.G.; Dufke, A.; Gillessen-Kaesbach, G.; Horn, D.; König, R.; Kratz, C.P.; Kutsche, K.; Pauli, S.; et al. The face of Noonan syndrome: Does phenotype predict genotype. Am. J. Med. Genet. A 2010, 152, 1960–1966. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bell, J.M.; Considine, E.M.; McCallen, L.M.; Chatfield, K.C. The Prevalence of Noonan Spectrum Disorders in Pediatric Patients with Pulmonary Valve Stenosis. J. Pediatr. 2021, 234, 134–141.e5. [Google Scholar] [CrossRef] [PubMed]
- Linglart, L.; Gelb, B.D. Congenital heart defects in Noonan syndrome: Diagnosis, management, and treatment. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 73–80. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, S.T.; Ki, C.S.; Lee, H.J. Mutation analysis of the genes involved in the Ras-mitogen-activated protein kinase (MAPK) pathway in Korean patients with Noonan syndrome. Clin. Genet. 2007, 72, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Baldo, F.; Fachin, A.; Da Re, B.; Rubinato, E.; Bobbo, M.; Barbi, E. New insights on Noonan syndrome’s clinical phenotype: A single center retrospective study. BMC Pediatr. 2022, 22, 734. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zenker, M.; Edouard, T.; Blair, J.C.; Cappa, M. Noonan syndrome: Improving recognition and diagnosis. Arch. Dis. Child. 2022, 107, 1073–1078. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jindal, G.A.; Goyal, Y.; Burdine, R.D.; Rauen, K.A.; Shvartsman, S.Y. RASopathies: Unraveling mechanisms with animal models. Dis. Model. Mech. 2015, 8, 769–782. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fattah, M.; Raman, M.M.; Reiss, A.L.; Green, T. PTPN11 Mutations in the Ras-MAPK Signaling Pathway Affect Human White Matter Microstructure. Cereb. Cortex 2021, 31, 1489–1499. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Athota, L.P.; Bhat, M.; Nampoothiri, S.; Gowrishankar, K.; Narayanachar, S.G.; Puttamallesh, V.; Farooque, M.O.; Shetty, S. Molecular and clinical studies in 107 Noonan syndrome affected individuals with PTPN11 mutations. BMC Med. Genet. 2020, 21, 50. [Google Scholar] [CrossRef]
- Tartaglia, M.; Zampino, G.; Gelb, B.D. Noonan syndrome: Clinical aspects and molecular pathogenesis. Mol. Syndromol. 2010, 1, 2–26. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lepri, F.; De Luca, A.; Stella, L.; Rossi, C.; Baldassarre, G.; Pantaleoni, F.; Cordeddu, V.; Williams, B.J.; Dentici, M.L.; Caputo, V.; et al. SOS1 mutations in Noonan syndrome: Molecular spectrum, structural insights on pathogenic effects, and genotype-phenotype correlations. Hum. Mutat. 2011, 32, 760–772. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Riller, Q.; Rieux-Laucat, F. RASopathies: From germline mutations to somatic and multigenic diseases. Biomed. J. 2021, 44, 422–432. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gelb, B.D.; Roberts, A.E.; Tartaglia, M. Cardiomyopathies in Noonan syndrome and the other RASopathies. Prog. Pediatr. Cardiol. 2015, 39, 13–19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karnik, R.; Geiger, M. Cardiac Manifestations of Noonan Syndrome. Pediatr. Endocrinol. Rev. 2019, 16 (Suppl. S2), 471–476. [Google Scholar] [CrossRef] [PubMed]
- Gazzin, A.; Fornari, F.; Cardaropoli, S.; Carli, D.; Tartaglia, M.; Ferrero, G.B.; Mussa, A. Exploring New Drug Repurposing Opportunities for MEK Inhibitors in RASopathies: A Comprehensive Review of Safety, Efficacy, and Future Perspectives of Trametinib and Selumetinib. Life 2024, 14, 731. [Google Scholar] [CrossRef]
- Hebron, K.E.; Hernandez, E.R.; Yohe, M.E. The RASopathies: From pathogenetics to therapeutics. Dis. Model. Mech. 2022, 15, dmm049107. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andelfinger, G.; Marquis, C.; Raboisson, M.J.; Théoret, Y.; Waldmüller, S.; Wiegand, G.; Gelb, B.D.; Zenker, M.; Delrue, M.A.; Hofbeck, M. Hypertrophic Cardiomyopathy in Noonan Syndrome Treated by MEK-Inhibition. J. Am. Coll. Cardiol. 2019, 73, 2237–2239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naik, R.J. Chapter 3—Cardiac Manifestations in Noonan Syndrome: Effects of Growth Hormone Therapy. In Noonan Syndrome; Bhangoo, A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 31–48. ISBN 9780128153482. [Google Scholar]
- Sun, L.; Xie, Y.M.; Wang, S.S.; Zhang, Z.W. Cardiovascular Abnormalities and Gene Mutations in Children With Noonan Syndrome. Front. Genet. 2022, 13, 915129. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Prendiville, T.W.; Gauvreau, K.; Tworog-Dube, E.; Patkin, L.; Kucherlapati, R.S.; Roberts, A.E.; Lacro, R.V. Cardiovascular disease in Noonan syndrome. Arch. Dis. Child. 2014, 99, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Kaltenecker, E.; Schleihauf, J.; Meierhofer, C.; Shehu, N.; Mkrtchyan, N.; Hager, A.; Kühn, A.; Cleuziou, J.; Klingel, K.; Seidel, H.; et al. Long-term outcomes of childhood onset Noonan compared to sarcomere hypertrophic cardiomyopathy. Cardiovasc. Diagn. Ther. 2019, 9 (Suppl. S2), S299–S309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kiamanesh, O.; Greenway, S.C.; Dicke, F.; Ballantyne, B.; Mitrovic, S.; McGrath, K.; White, J.A.; Kent, W.D.T.; Andelfinger, G. Treatment of RAF1-Related Obstructive Hypertrophic Cardiomyopathy by MEK Inhibition Using Trametinib. JACC Case Rep. 2024, 29, 102379. [Google Scholar] [CrossRef] [PubMed]
- Ommen, S.R.; Ho, C.Y.; Asif, I.M.; Balaji, S.; Burke, M.A.; Day, S.M.; Dearani, J.A.; Epps, K.C.; Evanovich, L.; Ferrari, V.A.; et al. 2024 AHA/ACC/AMSSM/HRS/PACES/SCMR guideline for the management of hypertrophic cardiomyopathy: A report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2024, 83, 2324–2405. [Google Scholar] [CrossRef] [PubMed]
- D’Onofrio, G.; Delrue, M.A.; Lortie, A.; Marquis, C.; Striano, P.; Jaworski, M.; Andelfinger, G.; Perreault, S. Treatment of Refractory Epilepsy with MEK Inhibitor in Patients with RASopathy. Pediatr. Neurol. 2023, 148, 148–151. [Google Scholar] [CrossRef]
- Li, D.; March, M.E.; Gutierrez-Uzquiza, A.; Kao, C.; Seiler, C.; Pinto, E.; Matsuoka, L.S.; Battig, M.R.; Bhoj, E.J.; Wenger, T.L.; et al. ARAF recurrent mutation causes central conducting lymphatic anomaly treatable with a MEK inhibitor. Nat. Med. 2019, 25, 1116–1122. [Google Scholar] [CrossRef]
- Lioncino, M.; Fusco, A.; Monda, E.; Colonna, D.; Sibilio, M.; Caiazza, M.; Magri, D.; Borrelli, A.C.; D’Onofrio, B.; Mazzella, M.L.; et al. Severe Lymphatic Disorder and Multifocal Atrial Tachycardia Treated with Trametinib in a Patient with Noonan Syndrome and SOS1 Mutation. Genes 2022, 13, 1503. [Google Scholar] [CrossRef]
- Leegaard, A.; Gregersen, P.A.; Nielsen, T.; Bjerre, J.V.; Handrup, M.M. Succesful MEK-inhibition of severe hypertrophic cardiomyopathy in RIT1-related Noonan Syndrome. Eur. J. Med. Genet. 2022, 65, 104630. [Google Scholar] [CrossRef]
- Meisner, J.K.; Bradley, D.J.; Russell, M.W. Molecular Management of Multifocal Atrial Tachycardia in Noonan’s Syndrome with MEK1/2 Inhibitor Trametinib. Circ. Genom. Precis. Med. 2021, 14, E003327. [Google Scholar] [CrossRef]
- Mussa, A.; Carli, D.; Giorgio, E.; Villar, A.M.; Cardaropoli, S.; Carbonara, C.; Campagnoli, M.F.; Galletto, P.; Palumbo, M.; Olivieri, S.; et al. Mek inhibition in a newborn with raf1-associated noonan syndrome ameliorates hypertrophic cardiomyopathy but is insufficient to revert pulmonary vascular disease. Genes 2022, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Pierpont, M.E.; Basson, C.T.; Benson, D.W., Jr.; Gelb, B.D.; Giglia, T.M.; Goldmuntz, E.; McGee, G.; Sable, C.A.; Srivastava, D.; Webb, C.L. Genetic basis for congenital heart defects: Current knowledge: A scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics. Circulation 2007, 115, 3015–3038. [Google Scholar] [CrossRef] [PubMed]
Patients Number | Sex | Affected Gene | Initial CV S/S 1 | Age of First CV S/S 1 | Cardiovascular Manifestation |
---|---|---|---|---|---|
1 | Female | RAF1 | HM 2 | Neonatal | HCM 4 |
2 | Male | RAF1 | HM 2 | Neonatal | HCM 4 |
3 | Female | RAF1 | Chest pain, Fatigue | 12 years | HCM 4 |
4 | Female | PTPN11 | HM 2 | 6 years | Physiological Murmur |
5 | Male | PTPN11 | HM 2 | Neonatal | HCM 4 |
6 | Female | PTPN11 | HM 2 | Neonatal | PVS 5 |
7 | Female | PTPN11 | HM 2 | 2 months | PVS 5 |
8 | Female | PTPN11 | HM 2 | Neonatal | PVS 5 |
9 | Male | PTPN11 | Fatigue, Hyperhidrosis | 6 months | HCM 4 |
10 | Male | PTPN11 | None | N/A 3 | None |
11 | Male | SOS1 | HM 2 | 2 months | PVS 5 |
12 | Female | SOS1 | HM 2 | 2 years | PVS 5 |
13 | Female | SOS1 | Pericard Effusion | Neonatal | HCM 4 |
14 | Male | SOS1 | HM 2 | Neonatal | PVS 5 |
15 | Male | LZTR1 | HM 2 | Neonatal | PVS 5, VSD 6 |
16 | Male | KRAS | HM 2 | Neonatal | HCM 4 |
17 | Male | PTPN11 | HM 2 | 3 months | PVS 5 |
18 | Male | PTPN11 | HM 2 | Neonatal | HCM 4 |
19 | Male | PTPN11 | None | N/A 3 | None |
20 | Male | PTPN11 | HM 2 | Neonatal | HCM 4 |
21 | Female | PTPN11 | Fatigue | 2 months | PVS 5 |
22 | Male | RAF1 | HM 2 | Neonatal | PVS 5 |
23 | Male | RAF1 | HM 2 | 14 years | HCM 4 |
24 | Female | LZTR1 | HM 2 | Neonatal | ASD 7 |
25 | Male | RIT1 | Arrythmia | Neonatal | PVS 5, ASD 7 |
Diameter | Detroit Z Score | |
---|---|---|
Interventricular septum | 6.7 (IQR 5–9.75) | 1.9 (1.7–5.2) |
Posterior wall | 4.5 (IQR 4–6.5) | −3.6 (IQR −4.3–1.5) |
End diastolic diameter | 23 (IQR 16–34.3) | −1.3 (IQR −2.5–−0.3) |
Aortic valve | 10 (IQR 8–14) | |
Pressure gradient (mmHg) | ||
Pulmonary artery | 35 (IQR 18.5–53.5) | |
Tricuspid valve | 20 (IQR 15–35) | |
Aortic valve | 25 (IQR 23–75) |
Genes Affected | Total Patients | PVS 1 (%) | HCM 2 (%) |
---|---|---|---|
PTPN11 | 12 | 60.00 | 33.3 |
RAF1 | 5 | 0.0 | 41.66 |
Other Genes | 8 | 40.0 | 25.0 |
Overall | 25 | 40.0 | 48.0 |
Diameter | Detroit Z Score | |
---|---|---|
Interventricular septum | 8 (IQR 6–12) | 1.6 (0.2–3.2) |
Posterior wall | 6.5 (IQR 4–6.5) | −1.3. (IQR −4.4–2.1) |
End diastolic diameter | 32 (IQR 16–34.3) | −1.5 (IQR −2.5–−0.05) |
Aortic valve | 10 (IQR 8–14) | |
Pressure gradient (mmHg) | ||
Pulmonary artery | 29 (IQR 20–38) | |
Tricuspid valve | 48 (IQR 45–48) | |
Aortic valve | 50 (IQR 17–50) | |
Mitral valve insufficiency (+) | 0.5 (IQR 0.5–2.0) |
NS Type | Affected Genes | Neonatal CVMs | Total Patients |
---|---|---|---|
Type 1 | PTPN11 | 41.2% | 12 |
Type 5 | RAF1 | 44.4% | 5 |
Other Types | Various | 25.0% | 8 |
NS Type | Affected Gene | HCM 1 | PVS 2 | Developmental Delay | Stature Below −2 SD | Additional Symptoms |
---|---|---|---|---|---|---|
Type 1 | PTPN11 | 33.3% | 60.0% | 50.0% | 50.0% | 60.0% |
Type 5 | RAF1 | 41.7% | 0.0% | 20.0% | 40.0% | 20.0% |
Other Types | Various | 25.0% | 40.0% | 30.0% | 37.5% | 30.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilic, N.; Krasic, S.; Maric, N.; Gasic, V.; Krstic, J.; Cvetkovic, D.; Miljkovic, V.; Zec, B.; Maver, A.; Vukomanovic, V.; et al. Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype—A Multi-Center Retrospective Study. Genes 2024, 15, 1463. https://doi.org/10.3390/genes15111463
Ilic N, Krasic S, Maric N, Gasic V, Krstic J, Cvetkovic D, Miljkovic V, Zec B, Maver A, Vukomanovic V, et al. Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype—A Multi-Center Retrospective Study. Genes. 2024; 15(11):1463. https://doi.org/10.3390/genes15111463
Chicago/Turabian StyleIlic, Nikola, Stasa Krasic, Nina Maric, Vladimir Gasic, Jovana Krstic, Dimitrije Cvetkovic, Vesna Miljkovic, Boris Zec, Ales Maver, Vladislav Vukomanovic, and et al. 2024. "Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype—A Multi-Center Retrospective Study" Genes 15, no. 11: 1463. https://doi.org/10.3390/genes15111463
APA StyleIlic, N., Krasic, S., Maric, N., Gasic, V., Krstic, J., Cvetkovic, D., Miljkovic, V., Zec, B., Maver, A., Vukomanovic, V., & Sarajlija, A. (2024). Noonan Syndrome: Relation of Genotype to Cardiovascular Phenotype—A Multi-Center Retrospective Study. Genes, 15(11), 1463. https://doi.org/10.3390/genes15111463