A Modular Genetic Approach to Newborn Screening from Spinal Muscular Atrophy to Sickle Cell Disease—Results from Six Years of Genetic Newborn Screening
Abstract
:1. Introduction
2. Methods
2.1. Samples and Preparation of DBSs
2.2. Rapid Nucleic Acid Extraction from Dried Blood Spots (DBSs)
2.3. qPCR
2.4. Assay Characteristics
2.5. Ethics Statement
2.6. Data Collection
3. Results
3.1. Assay Modularity
3.2. Costs
3.3. Cystinosis
3.4. SMA
3.5. SCID
3.6. SCD
3.7. Turn-Around Time
4. Discussion
4.1. Modularity
4.2. Financial Outlook
4.3. Screening for SMA
4.4. Screening for SCID
4.5. Screening for SCD
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levy, H.L. Newborn screening conditions: What we know, what we do not know, and how we will know it. Genet. Med. 2010, 12 (Suppl. S12), S213–S214. [Google Scholar] [CrossRef] [PubMed]
- Andermann, A.; Blancquaert, I.; Beauchamp, S.; Dery, V. Revisiting Wilson and Jungner in the genomic age: A review of screening criteria over the past 40 years. Bull. World Health Organ. 2008, 86, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Jungner, Y.G. Principles and practice of mass screening for disease. Bol. Oficina Sanit. Panam. 1968, 65, 281–393. [Google Scholar] [PubMed]
- Czibere, L.; Burggraf, S.; Fleige, T.; Gluck, B.; Keitel, L.M.; Landt, O.; Durner, J.; Roschinger, W.; Hohenfellner, K.; Wirth, B.; et al. High-throughput genetic newborn screening for spinal muscular atrophy by rapid nucleic acid extraction from dried blood spots and 384-well qPCR. Eur. J. Hum. Genet. 2020, 28, 23–30. [Google Scholar] [CrossRef]
- Fleige, T.; Burggraf, S.; Czibere, L.; Haring, J.; Gluck, B.; Keitel, L.M.; Landt, O.; Harms, E.; Hohenfellner, K.; Durner, J.; et al. Next generation sequencing as second-tier test in high-throughput newborn screening for nephropathic cystinosis. Eur. J. Hum. Genet. 2020, 28, 193–201. [Google Scholar] [CrossRef]
- Kimizu, T.; Nozaki, M.; Okada, Y.; Sawada, A.; Morisaki, M.; Fujita, H.; Irie, A.; Matsuda, K.; Hasegawa, Y.; Nishi, E.; et al. Multiplex Real-Time PCR-Based Newborn Screening for Severe Primary Immunodeficiency and Spinal Muscular Atrophy in Osaka, Japan: Our Results after 3 Years. Genes 2024, 15, 314. [Google Scholar] [CrossRef]
- Chan, K.; Puck, J.M. Development of population-based newborn screening for severe combined immunodeficiency. J. Allergy Clin. Immunol. 2005, 115, 391–398. [Google Scholar] [CrossRef]
- Janda, J.; Hegert, S.; Bzdok, J.; Tesorero, R.; Holtkamp, U.; Burggraf, S.; Schuhmann, E.; Horster, F.; Hoffmann, G.F.; Janzen, N.; et al. High Throughput Newborn Screening for Sickle Cell Disease—Application of Two-Tiered Testing with a qPCR-Based Primary screen. Klin. Padiatr. 2023, 235, 366–372. [Google Scholar] [CrossRef]
- Barbaro, M.; Ohlsson, A.; Borte, S.; Jonsson, S.; Zetterstrom, R.H.; King, J.; Winiarski, J.; von Dobeln, U.; Hammarstrom, L. Newborn screening for severe primary immunodeficiency diseases in Sweden-a 2-year pilot TREC and KREC screening study. J. Clin. Immunol. 2017, 37, 51–60. [Google Scholar] [CrossRef]
- Borte, S.; von Dobeln, U.; Fasth, A.; Wang, N.; Janzi, M.; Winiarski, J.; Sack, U.; Pan-Hammarstrom, Q.; Borte, M.; Hammarstrom, L. Neonatal screening for severe primary immunodeficiency diseases using high-throughput triplex real-time PCR. Blood 2012, 119, 2552–2555. [Google Scholar] [CrossRef]
- Cossu, F. Genetics of SCID. Ital. J. Pediatr. 2010, 36, 76. [Google Scholar] [CrossRef] [PubMed]
- Wirth, B. An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum. Mutat. 2000, 15, 228–237. [Google Scholar] [CrossRef]
- Aragon-Gawinska, K.; Seferian, A.M.; Daron, A.; Gargaun, E.; Vuillerot, C.; Cances, C.; Ropars, J.; Chouchane, M.; Cuppen, I.; Hughes, I.; et al. Nusinersen in spinal muscular atrophy type 1 patients older than 7 months: A cohort study. Neurology 2018, 91, e1312–e1318. [Google Scholar] [CrossRef]
- Dabbous, O.; Maru, B.; Jansen, J.P.; Lorenzi, M.; Cloutier, M.; Guerin, A.; Pivneva, I.; Wu, E.Q.; Arjunji, R.; Feltner, D.; et al. Survival, Motor Function, and Motor Milestones: Comparison of AVXS-101 Relative to Nusinersen for the Treatment of Infants with Spinal Muscular Atrophy Type 1. Adv. Ther. 2019, 36, 1164–1176. [Google Scholar] [CrossRef]
- Feldkötter, M.; Schwarzer, V.; Wirth, R.; Wienker, T.F.; Wirth, B. Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: Fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet. 2002, 70, 358–368. [Google Scholar] [CrossRef]
- Carlice-Dos-Reis, T.; Viana, J.; Moreira, F.C.; Cardoso, G.L.; Guerreiro, J.; Santos, S.; Ribeiro-Dos-Santos, A. Investigation of mutations in the HBB gene using the 1,000 genomes database. PLoS ONE 2017, 12, e0174637. [Google Scholar] [CrossRef] [PubMed]
- Inusa, B.P.D.; Hsu, L.L.; Kohli, N.; Patel, A.; Ominu-Evbota, K.; Anie, K.A.; Atoyebi, W. Sickle Cell Disease-Genetics, Pathophysiology, Clinical Presentation and Treatment. Int. J. Neonatal Screen. 2019, 5, 20. [Google Scholar] [CrossRef]
- Hohenfellner, K.; Bergmann, C.; Fleige, T.; Janzen, N.; Burggraf, S.; Olgemoller, B.; Gahl, W.A.; Czibere, L.; Froschauer, S.; Roschinger, W.; et al. Molecular based newborn screening in Germany: Follow-up for cystinosis. Mol. Genet. Metab. Rep. 2019, 21, 100514. [Google Scholar] [CrossRef] [PubMed]
- Bzdok, J.; Czibere, L.; Burggraf, S.; Landt, O.; Maier, E.M.; Roschinger, W.; Albert, M.H.; Hegert, S.; Janzen, N.; Becker, M.; et al. Quality considerations and major pitfalls for high throughput DNA-based newborn screening for severe combined immunodeficiency and spinal muscular atrophy. PLoS ONE 2024, 19, e0306329. [Google Scholar] [CrossRef]
- Victor, T.; Jordaan, A.; du Toit, R.; Van Helden, P.D. Laboratory experience and guidelines for avoiding false positive polymerase chain reaction results. Eur. J. Clin. Chem. Clin. Biochem. 1993, 31, 531–535. [Google Scholar]
- Vill, K.; Schwartz, O.; Blaschek, A.; Glaser, D.; Nennstiel, U.; Wirth, B.; Burggraf, S.; Roschinger, W.; Becker, M.; Czibere, L.; et al. Newborn screening for spinal muscular atrophy in Germany: Clinical results after 2 years. Orphanet. J. Rare Dis. 2021, 16, 153. [Google Scholar] [CrossRef] [PubMed]
- Hohenfellner, K.; Elenberg, E.; Ariceta, G.; Nesterova, G.; Soliman, N.A.; Topaloglu, R. Newborn Screening: Review of its Impact for Cystinosis. Cells 2022, 11, 1109. [Google Scholar] [CrossRef] [PubMed]
- Weaver, K.N.; Sullivan, B.; Hildebrandt, F.; Strober, J.; Cooper, M.; Prasad, R.; Saba, J. Sphingosine Phosphate Lyase Insufficiency Syndrome. In GeneReviews((R)); Adam, M.P., Feldman, J., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Antoccia, A.; Kobayashi, J.; Tauchi, H.; Matsuura, S.; Komatsu, K. Nijmegen breakage syndrome and functions of the responsible protein, NBS1. Genome Dyn. 2006, 1, 191–205. [Google Scholar]
- Stojimirovic, E.; Cvetkovic, P.; Baklaja, R.; Dujic, A.; Vukovic, I. Wiskott-Aldrich syndrome. Bilt. Hematol. Transfuz. 1977, 5, 67–71. [Google Scholar]
- Krawczyk, C.; Penninger, J.M. Molecular controls of antigen receptor clustering and autoimmunity. Trends Cell Biol. 2001, 11, 212–220. [Google Scholar] [CrossRef]
- Ghetti, G.; Mennini, F.S.; Marcellusi, A.; Bischof, M.; Pistillo, G.M.; Pane, M. Cost-Effectiveness Analysis of Newborn Screening for Spinal Muscular Atrophy in Italy. Clin. Drug Investig. 2024, 44, 687–701. [Google Scholar] [CrossRef]
- Quinn, J.; Orange, J.S.; Modell, V.; Modell, F. The case for severe combined immunodeficiency (SCID) and T cell lymphopenia newborn screening: Saving lives…one at a time. Immunol. Res. 2020, 68, 48–53. [Google Scholar] [CrossRef]
- Strom, C.M.; Anderson, B.; Peng, M.; Patel, U.; Braastad, C.D.; Sun, W. 1000 sample comparison of MLPA and RT-PCR for carrier detection and diagnostic testing for spinal muscular atrophy type 1. Open J. Genet. 2013, 3, 111–114. [Google Scholar] [CrossRef]
- Hirano, M.; Sahashi, K.; Ichikawa, Y.; Katsuno, M.; Natsume, A. A rapid and easy-to-use spinal muscular atrophy screening tool based on primers with high specificity and amplification efficiency for SMN1 combined with single-stranded tag hybridization assay. PLoS ONE 2024, 19, e0308179. [Google Scholar] [CrossRef]
- Giardino, G.; Borzacchiello, C.; De Luca, M.; Romano, R.; Prencipe, R.; Cirillo, E.; Pignata, C. T-Cell Immunodeficiencies With Congenital Alterations of Thymic Development: Genes Implicated and Differential Immunological and Clinical Features. Front. Immunol. 2020, 11, 1837. [Google Scholar] [CrossRef]
- Walter, J.E. Chapter 15—Early Diagnosis of Severe Combined Immunodeficiency. In Hematology, Immunology and Genetics, 3rd ed.; Ohls, R.K., Maheshwari, A., Christensen, R.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 173–193. [Google Scholar]
- Dvorak, C.C.; Haddad, E.; Heimall, J.; Dunn, E.; Buckley, R.H.; Kohn, D.B.; Cowan, M.J.; Pai, S.Y.; Griffith, L.M.; Cuvelier, G.D.E.; et al. The diagnosis of severe combined immunodeficiency (SCID): The Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 Definitions. J. Allergy Clin. Immunol. 2023, 151, 539–546. [Google Scholar] [CrossRef] [PubMed]
- Kwan, A.; Church, J.A.; Cowan, M.J.; Agarwal, R.; Kapoor, N.; Kohn, D.B.; Lewis, D.B.; McGhee, S.A.; Moore, T.B.; Stiehm, E.R.; et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: Results of the first 2 years. J. Allergy Clin. Immunol. 2013, 132, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Gongrich, C.; Ekwall, O.; Sundin, M.; Brodszki, N.; Fasth, A.; Marits, P.; Dysting, S.; Jonsson, S.; Barbaro, M.; Wedell, A.; et al. First Year of TREC-Based National SCID Screening in Sweden. Int. J. Neonatal Screen. 2021, 7, 59. [Google Scholar] [CrossRef]
- van der Spek, J.; Groenwold, R.H.; van der Burg, M.; van Montfrans, J.M. TREC Based Newborn Screening for Severe Combined Immunodeficiency Disease: A Systematic Review. J. Clin. Immunol. 2015, 35, 416–430. [Google Scholar] [CrossRef]
- Gizewska, M.; Durda, K.; Winter, T.; Ostrowska, I.; Oltarzewski, M.; Klein, J.; Blankenstein, O.; Romanowska, H.; Krzywinska-Zdeb, E.; Patalan, M.F.; et al. Newborn Screening for SCID and Other Severe Primary Immunodeficiency in the Polish-German Transborder Area: Experience From the First 14 Months of Collaboration. Front. Immunol. 2020, 11, 1948. [Google Scholar] [CrossRef]
- Remaschi, G.; Ricci, S.; Cortimiglia, M.; De Vitis, E.; Iannuzzi, L.; Boni, L.; Azzari, C.; Dani, C. TREC and KREC in very preterm infants: Reference values and effects of maternal and neonatal factors. J. Matern.-Fetal Neonatal Med. 2021, 34, 3946–3951. [Google Scholar] [CrossRef] [PubMed]
- Tesorero, R.; Janda, J.; Horster, F.; Feyh, P.; Mutze, U.; Hauke, J.; Schwarz, K.; Kunz, J.B.; Hoffmann, G.F.; Okun, J.G. A high-throughput newborn screening approach for SCID, SMA, and SCD combining multiplex qPCR and tandem mass spectrometry. PLoS ONE 2023, 18, e0283024. [Google Scholar] [CrossRef]
- Kunz, J.B.; Cario, H.; Grosse, R.; Jarisch, A.; Lobitz, S.; Kulozik, A.E. The epidemiology of sickle cell disease in Germany following recent large-scale immigration. Pediatr. Blood Cancer 2017, 64, e26550. [Google Scholar] [CrossRef]
- Lobitz, S.; Frommel, C.; Brose, A.; Klein, J.; Blankenstein, O. Incidence of sickle cell disease in an unselected cohort of neonates born in Berlin, Germany. Eur. J. Hum. Genet. 2014, 22, 1051–1053. [Google Scholar] [CrossRef]
- Frommel, C.; Brose, A.; Klein, J.; Blankenstein, O.; Lobitz, S. Newborn screening for sickle cell disease: Technical and legal aspects of a German pilot study with 38,220 participants. BioMed Res. Int. 2014, 2014, 695828. [Google Scholar] [CrossRef]
Resources Required | Reference Number | Distributor | Price per Test (EUR) |
---|---|---|---|
LightMix® Kit TREC SMA HBB Newborn | 09 802 533 001 | Roche | 1.16 |
LightCycler® Multiplex DNA Master | 07 339 577 001 | Roche | 0.70 |
LightCycler® 480 Multiwell Plate 384, white | 04 729 749 001 | Roche | 0.03 |
Integra 12.5 µL tips, sterile | 6455 | Integra | 0.16 |
Integra 1250 µL tips, sterile | 6445 | Integra | 0.02 |
Other small disposables | 0.05 | ||
Technician time | 0.40 | ||
Total | 2.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bzdok, J.; Czibere, L.; Burggraf, S.; Pauly, N.; Maier, E.M.; Röschinger, W.; Becker, M.; Durner, J. A Modular Genetic Approach to Newborn Screening from Spinal Muscular Atrophy to Sickle Cell Disease—Results from Six Years of Genetic Newborn Screening. Genes 2024, 15, 1467. https://doi.org/10.3390/genes15111467
Bzdok J, Czibere L, Burggraf S, Pauly N, Maier EM, Röschinger W, Becker M, Durner J. A Modular Genetic Approach to Newborn Screening from Spinal Muscular Atrophy to Sickle Cell Disease—Results from Six Years of Genetic Newborn Screening. Genes. 2024; 15(11):1467. https://doi.org/10.3390/genes15111467
Chicago/Turabian StyleBzdok, Jessica, Ludwig Czibere, Siegfried Burggraf, Natalie Pauly, Esther M. Maier, Wulf Röschinger, Marc Becker, and Jürgen Durner. 2024. "A Modular Genetic Approach to Newborn Screening from Spinal Muscular Atrophy to Sickle Cell Disease—Results from Six Years of Genetic Newborn Screening" Genes 15, no. 11: 1467. https://doi.org/10.3390/genes15111467
APA StyleBzdok, J., Czibere, L., Burggraf, S., Pauly, N., Maier, E. M., Röschinger, W., Becker, M., & Durner, J. (2024). A Modular Genetic Approach to Newborn Screening from Spinal Muscular Atrophy to Sickle Cell Disease—Results from Six Years of Genetic Newborn Screening. Genes, 15(11), 1467. https://doi.org/10.3390/genes15111467