Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease
Abstract
:1. Introduction
- Exons of a subset of known pathogenic genes or candidate genes associated with a specific disease, called targeted sequencing;
- Exons of all protein-coding human genes (about 20,000), known as whole-exome sequencing (WES), frequently applied in family studies or in strongly suspicious cases with a negative genetic test, to overcome the limitations of panel sequencing;
- The complete genome, named whole-genome sequencing (WGS) [33].
2. Materials and Methods
- (“urolithiasis”[MeSH Terms] OR “nephrocalcinosis*”[MeSH Terms]) AND
- (“genetic testing”[MeSH Terms] OR “exome sequencing”[MeSH Terms] OR “MPS”[Title/Abstract] OR “massively parallel sequencing”[Title/Abstract] OR “next generation sequencing”[Title/Abstract] OR “gene*”[Title]).
3. Results
Author | Population (% Female/Male) | Adult/Pediatric | Nephrolithiasis (%) | Nephrocalcinosis (%) | NL + NC (%) | Age Range (Years) | Age of Onset (Mean) | Family History (%) | Consanguinity (%) | Extrarenal Features (%) | eGFR (Mean) | Genetic Approach |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Halbritter et al. [41] | 272 (37.1/62.9) | Both | 90.0 | 6.0 | 4.0 | 1–81 | 21.2 | N.A. | 2.2 | N.A. | N.A. | Targeted sequencing |
Braun et al. [42] | 143 (49.7/50.3) | Pediatric | 86.0 | 11.9 | 2.1 | <18 | 6.6 | N.A. | N.A. | N.A. | N.A. | Targeted sequencing |
Daga et al. [43] | 65 (50.8/49.2) | Both | 49.2 | 33.8 | 17.0 | <25 | 3.5 | N.A. | N.A. | N.A. | N.A. | WES |
Amar et al. [44] | 235 (39.2/60.8) | Both | 100.0 | 0 | 0 | 1–76 | 26.7 | 47.0 | 53.0 | N.A. | N.A. | Targeted sequencing |
Fang et al. [45] | 82 (N.A.) | Pediatric | N.A. | N.A. | N.A. | <18 | 4.6 | N.A. | N.A. | Neurological (22.4); cardiological (13.0); vision problems (69.4); hearing loss (5.1); and skeletal deformities (4.3) | N.A. | WES |
Zhao et al. [46] | 105 (33.0/67.0) | Pediatric | 100.0 | 0 | 0 | 0.2–11 | 3.1 | 18.1 | 1.9 | N.A. | N.A. | WES |
Ziyadov et al. [47] | 48 (39.6/60.4) | Pediatric | 100.0 | 0 | 0 | 1–16 | N.A. | 58.3 | N.A. | N.A. | Low in 8.3% | Targeted sequencing |
Schonauer et al. [48] | 236 (34.0/66.0) | Adult | 100.0 | 0 | 0 | 18–86 | 34.8 | 25.0 | 2.0 | Type 2 diabetes mellitus (23.0); hypertension (54.0); and obesity (32.0) | 83 mL/min/1.73 m2 | Targeted sequencing |
Gefen et al. [49] | 113 (41.0/59.0) | Pediatric | 73.5 | 22.1 | 4.4 | 6–16 | N.A. | 53.0 | N.A. | Developmental delay (20.0); prematurity (19.0); failure to thrive (15.0); seizures (7.0); eye abnormalities (3.0); dental abnormalities (2.0); anddeafness (2.0) | None with ESKD | Targeted sequencing |
Mandal et al. [50] | 54 (40.7/59.3) | Pediatric | 100.0 | 0 | 0 | 1–18 | 5.0 | N.A. | N.A. | N.A. | 110 mL/min/1.73 m2 | WES |
Wang et al. [51] | 82 (32.9/67.1) | Pediatric | 100.0 | 0 | 0 | 0.17–15 | 6.3 | N.A. | N.A. | N.A. | N.A. | WES |
Vaisitti et al. [52] | 22 (45.5/54.5) | Pediatric | 45.5 | 0 | 54.5 | <18 | N.A. | 36.4 | N.A. | N.A. | N.A. | WES |
Liu et al. [53] | 218 (N.A.) | Pediatric | N.A. | N.A. | N.A. | 0.3–13 | 3.7 | N.A. | N.A. | N.A. | 109 mL/min/1.73 m2 | WES |
Author | Cys | HC | RHUC | dRTA | DD/NL1 | HHRH | FHHNC | HOMG5 | BS | PH1 | LS/DD2 | aHC | DRTAd | PH2 | APRTd | HGly | Xan | HPP | HPRTd | PKHD1 | PH3 | VDDR2A | NPHLOP1/FS | NPHLOP2 | Total | Diagnostic Yield (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Halbritter et al. [41] Total | 22 | 4 | 4 | 1 | 2 | 1 | 2 | 1 | 1 | 1 | 2 | 41 | 14.9 | |||||||||||||
Pediatric | 9 | 2 | 3 | 2 | 1 | 1 | 1 | 1 | 2 | 22 | 20.8 | |||||||||||||||
Adult | 13 | 2 | 1 | 1 | 1 | 1 | 19 | 11.4 | ||||||||||||||||||
Braun et al. [42] | 3 | 2 | 3 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 5 | 1 | 24 | 16.8 | ||||||||||||
Daga et al. [43] | 1 | 1 | 1 | 3 | 3 | 4 | 2 | 6 | 1 | 22 | 29.4 | |||||||||||||||
Amar et al. [44] Total | 1 | 3 | 1 | 15 | 20 | 8.5 | ||||||||||||||||||||
Pediatric | 2 | 1 | 5 | 8 | 11.0 | |||||||||||||||||||||
Adult | 1 | 1 | 10 | 12 | 7.5 | |||||||||||||||||||||
Fang et al. [45] | 5 | 1 | 1 | 9 | 2 | 5 | 1 | 24 | 29.3 | |||||||||||||||||
Zhao et al. [46] | 11 | 9 | 2 | 16 | 38 | 36.0 | ||||||||||||||||||||
Ziyadov et al. [47] | 8 | 3 | 4 | 2 | 1 | 18 | 37.5 | |||||||||||||||||||
Schonauer et al. [48] | 7 | 5 | 4 | 16 | 6.8 | |||||||||||||||||||||
Gefen et al. [49] | 2 | 4 | 1 | 2 | 1 | 3 | 13 | 11.5 | ||||||||||||||||||
Mandal et al. [50] | 1 | 1 | 1 | 3 | 6 | 11.1 | ||||||||||||||||||||
Wang et al. [51] | 5 | 1 | 1 | 1 | 4 | 3 | 3 | 3 | 21 | 25.6 | ||||||||||||||||
Vaisitti et al. [52] | 6 | 2 | 1 | 1 | 10 | 45.5 | ||||||||||||||||||||
Liu et al. [53] | 14 | 3 | 2 | 1 | 2 | 1 | 21 | 2 | 9 | 1 | 1 | 2 | 21 | 80 | 36.7 | |||||||||||
Total | 86 | 13 | 5 | 15 | 3 | 8 | 8 | 4 | 5 | 58 | 2 | 4 | 1 | 18 | 2 | 3 | 6 | 1 | 2 | 1 | 48 | 2 | 29 | 9 | 333 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Romero, V.; Akpinar, H.; Assimos, D.G. Kidney Stones: A Global Picture of Prevalence, Incidence, and Associated Risk Factors. Rev. Urol. 2010, 12, e86–e96. [Google Scholar] [PubMed]
- Abufaraj, M.; Xu, T.; Cao, C.; Waldhoer, T.; Seitz, C.; D’andrea, D.; Siyam, A.; Tarawneh, R.; Fajkovic, H.; Schernhammer, E.; et al. Prevalence and Trends in Kidney Stone Among Adults in the USA: Analyses of National Health and Nutrition Examination Survey 2007–2018 Data. Eur. Urol. Focus 2021, 7, 1468–1475. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Curhan, G.C.; D’Addessi, A.; Gambaro, G. Risk of Recurrence of Idiopathic Calcium Kidney Stones: Analysis of Data from the Literature. J. Nephrol. 2017, 30, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, J.A.; Maalouf, N.M.; Pearle, M.S.; Lotan, Y. Use of the National Health and Nutrition Examination Survey to Calculate the Impact of Obesity and Diabetes on Cost and Prevalence of Urolithiasis in 2030. Eur. Urol. 2014, 66, 724–729. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Dietary and Lifestyle Risk Factors Associated with Incident Kidney Stones in Men and Women. J. Urol. 2017, 198, 858–863. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Obesity, Weight Gain, and the Risk of Kidney Stones. JAMA 2005, 293, 455–462. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Diabetes Mellitus and the Risk of Nephrolithiasis. Kidney Int. 2005, 68, 1230–1235. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J.; Shen, K.; Zhu, Y.; Zhang, J.; Pan, J.; Chen, L. Kidney Stones Are Associated with Metabolic Syndrome in a Health Screening Population: A Cross-Sectional Study. Transl. Androl. Urol. 2023, 12, 967–976. [Google Scholar] [CrossRef]
- Stamatelou, K.; Goldfarb, D.S. Epidemiology of Kidney Stones. Healthcare 2023, 11, 424. [Google Scholar] [CrossRef]
- Abufaraj, M.; Al Karmi, J.; Yang, L. Prevalence and Trends of Urolithiasis among Adults. Curr. Opin. Urol. 2022, 32, 425–432. [Google Scholar] [CrossRef]
- Ferraro, P.M.; da Silva Cunha, T.S.; Curhan, G.C. Sex Differences and the Risk of Kidney Stones. Semin. Nephrol. 2022, 42, 230–235. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Taylor, E.N.; Curhan, G.C. Factors Associated with Sex Differences in the Risk of Kidney Stones. Nephrol. Dial. Transpl. 2023, 38, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Harris, P.C.; Sas, D.J.; Lieske, J.C. The Genetics of Kidney Stone Disease and Nephrocalcinosis. Nat. Rev. Nephrol. 2022, 18, 224–240. [Google Scholar] [CrossRef] [PubMed]
- Oddsson, A.; Sulem, P.; Helgason, H.; Edvardsson, V.O.; Thorleifsson, G.; Sveinbjörnsson, G.; Haraldsdottir, E.; Eyjolfsson, G.I.; Sigurdardottir, O.; Olafsson, I.; et al. Common and Rare Variants Associated with Kidney Stones and Biochemical Traits. Nat. Commun. 2015, 6, 7975. [Google Scholar] [CrossRef]
- Guha, M.; Bankura, B.; Ghosh, S.; Pattanayak, A.K.; Ghosh, S.; Pal, D.K.; Puri, A.; Kundu, A.K.; Das, M. Polymorphisms in CaSR and CLDN14 Genes Associated with Increased Risk of Kidney Stone Disease in Patients from the Eastern Part of India. PLoS ONE 2015, 10, e0130790. [Google Scholar] [CrossRef]
- Tanikawa, C.; Kamatani, Y.; Terao, C.; Usami, M.; Takahashi, A.; Momozawa, Y.; Suzuki, K.; Ogishima, S.; Shimizu, A.; Satoh, M.; et al. Novel Risk Loci Identified in a Genome-Wide Association Study of Urolithiasis in a Japanese Population. J. Am. Soc. Nephrol. 2019, 30, 855–864. [Google Scholar] [CrossRef]
- Litvinova, M.M.; Khafizov, K.; Korchagin, V.I.; Speranskaya, A.S.; Asanov, A.Y.; Matsvay, A.D.; Kiselev, D.A.; Svetlichnaya, D.V.; Nuralieva, S.Z.; Moskalev, A.A.; et al. Association of CASR, CALCR, and ORAI1 Genes Polymorphisms with the Calcium Urolithiasis Development in Russian Population. Front. Genet. 2021, 12, 621049. [Google Scholar] [CrossRef]
- Ali, F.T.; El-Azeem, E.M.A.; Hekal, H.F.A.; El-Gizawy, M.M.; Sayed, M.S.; Mandoh, A.Y.; Soliman, A.F. Association of TRPV5, CASR, and CALCR Genetic Variants with Kidney Stone Disease Susceptibility in Egyptians through Main Effects and Gene-Gene Interactions. Urolithiasis 2022, 50, 701–710. [Google Scholar] [CrossRef]
- Edvardsson, V.O.; Palsson, R.; Indridason, O.S.; Thorvaldsson, S.; Stefansson, K. Familiality of Kidney Stone Disease in Iceland. Scand. J. Urol. Nephrol. 2009, 43, 420–424. [Google Scholar] [CrossRef]
- Goldfarb, D.S.; Fischer, M.E.; Keich, Y.; Goldberg, J. A Twin Study of Genetic and Dietary Influences on Nephrolithiasis: A Report from the Vietnam Era Twin (VET) Registry. Kidney Int. 2005, 67, 1053–1061. [Google Scholar] [CrossRef]
- Unno, R.; Taguchi, K.; Hosier, G.; Usawachintachit, M.; Sui, W.; Yang, H.; Hamouche, F.; Bayne, D.; Stoller, M.; Chi, T. Maternal Family History of Urolithiasis Is Associated with Earlier Age of Onset of Stone Disease. World J. Urol. 2023, 41, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Curhan, G.C.; Willett, W.C.; Rimm, E.B.; Stampfer, M.J. Family History and Risk of Kidney Stones. J. Am. Soc. Nephrol. 1997, 8, 1568–1573. [Google Scholar] [CrossRef] [PubMed]
- Zhe, M.; Hang, Z. Nephrolithiasis as a Risk Factor of Chronic Kidney Disease: A Meta-Analysis of Cohort Studies with 4,770,691 Participants. Urolithiasis 2017, 45, 441–448. [Google Scholar] [CrossRef] [PubMed]
- El-Zoghby, Z.M.; Lieske, J.C.; Foley, R.N.; Bergstralh, E.J.; Li, X.; Melton, L.J.; Krambeck, A.E.; Rule, A.D. Urolithiasis and the Risk of ESRD. Clin. J. Am. Soc. Nephrol. 2012, 7, 1409–1415. [Google Scholar] [CrossRef] [PubMed]
- Alexander, R.T.; Hemmelgarn, B.R.; Wiebe, N.; Bello, A.; Morgan, C.; Samuel, S.; Klarenbach, S.W.; Curhan, G.C.; Tonelli, M. Alberta Kidney Disease Network Kidney Stones and Kidney Function Loss: A Cohort Study. BMJ 2012, 345, e5287. [Google Scholar] [CrossRef]
- Gambaro, G.; Croppi, E.; Bushinsky, D.; Jaeger, P.; Cupisti, A.; Ticinesi, A.; Mazzaferro, S.; D’Addessi, A.; Ferraro, P.M. The Risk of Chronic Kidney Disease Associated with Urolithiasis and Its Urological Treatments: A Review. J. Urol. 2017, 198, 268–273. [Google Scholar] [CrossRef]
- Mrug, M.; Bloom, M.S.; Seto, C.; Malhotra, M.; Tabriziani, H.; Gauthier, P.; Sidlow, V.; McKanna, T.; Billings, P.R. Genetic Testing for Chronic Kidney Diseases: Clinical Utility and Barriers Perceived by Nephrologists. Kidney Med. 2021, 3, 1050–1056. [Google Scholar] [CrossRef]
- Knoers, N.; Antignac, C.; Bergmann, C.; Dahan, K.; Giglio, S.; Heidet, L.; Lipska-Ziętkiewicz, B.S.; Noris, M.; Remuzzi, G.; Vargas-Poussou, R.; et al. Genetic Testing in the Diagnosis of Chronic Kidney Disease: Recommendations for Clinical Practice. Nephrol. Dial. Transpl. 2022, 37, 239–254. [Google Scholar] [CrossRef]
- Becherucci, F.; Landini, S.; Palazzo, V.; Cirillo, L.; Raglianti, V.; Lugli, G.; Tiberi, L.; Dirupo, E.; Bellelli, S.; Mazzierli, T.; et al. A Clinical Workflow for Cost-Saving High-Rate Diagnosis of Genetic Kidney Diseases. J. Am. Soc. Nephrol. 2023, 34, 706–720. [Google Scholar] [CrossRef]
- Peek, J.L.; Wilson, M.H. Gene Therapy for Kidney Disease: Targeting Cystinuria. Curr. Opin. Nephrol. Hypertens. 2022, 31, 175–179. [Google Scholar] [CrossRef]
- Garrelfs, S.F.; Frishberg, Y.; Hulton, S.A.; Koren, M.J.; O’Riordan, W.D.; Cochat, P.; Deschênes, G.; Shasha-Lavsky, H.; Saland, J.M.; Van’t Hoff, W.G.; et al. Lumasiran, an RNAi Therapeutic for Primary Hyperoxaluria Type 1. N. Engl. J. Med. 2021, 384, 1216–1226. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, V.; Ferraro, P.M. Lumasiran in the Management of Patients with Primary Hyperoxaluria Type 1: From Bench to Bedside. Int. J. Nephrol. Renov. Dis. 2022, 15, 197–206. [Google Scholar] [CrossRef] [PubMed]
- de Haan, A.; Eijgelsheim, M.; Vogt, L.; Knoers, N.V.A.M.; de Borst, M.H. Diagnostic Yield of Next-Generation Sequencing in Patients with Chronic Kidney Disease of Unknown Etiology. Front. Genet. 2019, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Qi, C.; Zhu, G.; Ding, J.; Yuan, L.; Sun, J.; He, X.; Wang, X. Genetic Testing Enables a Precision Medicine Approach for Nephrolithiasis and Nephrocalcinosis in Pediatrics: A Single-Center Cohort. Mol. Genet. Genom. 2022, 297, 1049–1061. [Google Scholar] [CrossRef]
- Cogal, A.G.; Arroyo, J.; Shah, R.J.; Reese, K.J.; Walton, B.N.; Reynolds, L.M.; Kennedy, G.N.; Seide, B.M.; Senum, S.R.; Baum, M.; et al. Comprehensive Genetic Analysis Reveals Complexity of Monogenic Urinary Stone Disease. Kidney Int. Rep. 2021, 6, 2862–2884. [Google Scholar] [CrossRef]
- Anderegg, M.A.; Olinger, E.G.; Bargagli, M.; Geraghty, R.; Taylor, L.; Nater, A.; Bruggmann, R.; Sayer, J.A.; Vogt, B.; Schaller, A.; et al. Prevalence and Characteristics of Genetic Disease in Adult Kidney Stone Formers. Nephrol. Dial. Transplant. 2024, gfae074. [Google Scholar] [CrossRef]
- Jaureguiberry, G.; De la Dure-Molla, M.; Parry, D.; Quentric, M.; Himmerkus, N.; Koike, T.; Poulter, J.; Klootwijk, E.; Robinette, S.L.; Howie, A.J.; et al. Nephrocalcinosis (Enamel Renal Syndrome) Caused by Autosomal Recessive FAM20A Mutations. Nephron Physiol. 2012, 122, 1–6. [Google Scholar] [CrossRef]
- Beck, B.B.; Baasner, A.; Buescher, A.; Habbig, S.; Reintjes, N.; Kemper, M.J.; Sikora, P.; Mache, C.; Pohl, M.; Stahl, M.; et al. Novel Findings in Patients with Primary Hyperoxaluria Type III and Implications for Advanced Molecular Testing Strategies. Eur. J. Hum. Genet. 2013, 21, 162–172. [Google Scholar] [CrossRef]
- Yamaguti, P.M.; dos Santos, P.A.C.; Leal, B.S.; de Mello Santana, V.B.B.; Mazzeu, J.F.; Acevedo, A.C.; de Assis Rocha Neves, F. Identification of the First Large Deletion in the CLDN16 Gene in a Patient with FHHNC and Late-Onset of Chronic Kidney Disease: Case Report. BMC Nephrol. 2015, 16, 92. [Google Scholar] [CrossRef]
- Arteaga, M.E.; Hunziker, W.; Teo, A.S.M.; Hillmer, A.M.; Mutchinick, O.M. Familial Hypomagnesemia with Hypercalciuria and Nephrocalcinosis: Variable Phenotypic Expression in Three Affected Sisters from Mexican Ancestry. Ren. Fail. 2015, 37, 180–183. [Google Scholar] [CrossRef]
- Halbritter, J.; Baum, M.; Hynes, A.M.; Rice, S.J.; Thwaites, D.T.; Gucev, Z.S.; Fisher, B.; Spaneas, L.; Porath, J.D.; Braun, D.A.; et al. Fourteen Monogenic Genes Account for 15% of Nephrolithiasis/Nephrocalcinosis. J. Am. Soc. Nephrol. 2015, 26, 543–551. [Google Scholar] [CrossRef] [PubMed]
- Braun, D.A.; Lawson, J.A.; Gee, H.Y.; Halbritter, J.; Shril, S.; Tan, W.; Stein, D.; Wassner, A.J.; Ferguson, M.A.; Gucev, Z.; et al. Prevalence of Monogenic Causes in Pediatric Patients with Nephrolithiasis or Nephrocalcinosis. Clin. J. Am. Soc. Nephrol. 2016, 11, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Daga, A.; Majmundar, A.J.; Braun, D.A.; Gee, H.Y.; Lawson, J.A.; Shril, S.; Jobst-Schwan, T.; Vivante, A.; Schapiro, D.; Tan, W.; et al. Whole Exome Sequencing Frequently Detects a Monogenic Cause in Early Onset Nephrolithiasis and Nephrocalcinosis. Kidney Int. 2018, 93, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Amar, A.; Majmundar, A.J.; Ullah, I.; Afzal, A.; Braun, D.A.; Shril, S.; Daga, A.; Jobst-Schwan, T.; Ahmad, M.; Sayer, J.A.; et al. Gene Panel Sequencing Identifies a Likely Monogenic Cause in 7% of 235 Pakistani Families with Nephrolithiasis. Hum. Genet. 2019, 138, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Shi, H.; Xiang, T.; Liu, J.; Liu, J.; Tang, X.; Fang, X.; Chen, J.; Zhai, Y.; Shen, Q.; et al. Genetic Architecture of Childhood Kidney and Urological Diseases in China. Phenomics 2021, 1, 91–104. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, X.; Fan, Y.; Sun, Y.; He, L.; Xu, M.; Xu, G.; Li, Y.; Huang, Y.; Yu, Y.; et al. Integration of Exome Sequencing and Metabolic Evaluation for the Diagnosis of Children with Urolithiasis. World J. Urol. 2021, 39, 2759–2765. [Google Scholar] [CrossRef]
- Ziyadov, E.; Bisgin, A.; Deger, M.; Akdogan, N.; Izol, V.; Aridogan, I.A.; Satar, N. Determination of the Etiology of Pediatric Urinary Stone Disease by Multigene Panel and Metabolic Screening Evaluation. J. Pediatr. Urol. 2021, 17, 476.e1–476.e7. [Google Scholar] [CrossRef]
- Schönauer, R.; Scherer, L.; Nemitz-Kliemchen, M.; Hagemann, T.; Hantmann, E.; Seidel, A.; Müller, L.; Kehr, S.; Voigt, C.; Stolzenburg, J.-U.; et al. Systematic Assessment of Monogenic Etiology in Adult-Onset Kidney Stone Formers Undergoing Urological Intervention-Evidence for Genetic Pretest Probability. Am. J. Med. Genet. C Semin. Med. Genet. 2022, 190, 279–288. [Google Scholar] [CrossRef]
- Gefen, A.M.; Sethna, C.B.; Cil, O.; Perwad, F.; Schoettler, M.; Michael, M.; Angelo, J.R.; Safdar, A.; Amlie-Wolf, L.; Hunley, T.E.; et al. Genetic Testing in Children with Nephrolithiasis and Nephrocalcinosis. Pediatr. Nephrol. 2023, 38, 2615–2622. [Google Scholar] [CrossRef]
- Mandal, A.; Khandelwal, P.; Geetha, T.S.; Murugan, S.; Meena, J.; Jana, M.; Sinha, A.; Kumar, R.; Seth, A.; Hari, P.; et al. Metabolic and Genetic Evaluation in Children with Nephrolithiasis. Indian. J. Pediatr. 2022, 89, 1243–1250. [Google Scholar] [CrossRef]
- Wang, Z.; He, T.; Liu, L.; Tong, F.; Li, C.; Zhao, Y.; Li, Y. Use of Whole-Exome Sequencing to Identify Novel Monogenic Gene Mutations and Genotype-Phenotype Correlations in Chinese Han Children with Urolithiasis. Front. Genet. 2023, 14, 1128884. [Google Scholar] [CrossRef] [PubMed]
- Vaisitti, T.; Bracciamà, V.; Faini, A.C.; Brach Del Prever, G.M.; Callegari, M.; Kalantari, S.; Mioli, F.; Romeo, C.M.; Luca, M.; Camilla, R.; et al. The Role of Genetic Testing in the Diagnostic Workflow of Pediatric Patients with Kidney Diseases: The Experience of a Single Institution. Hum. Genom. 2023, 17, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ge, Y.; Zhan, R.; Zhao, Z.; Li, J.; Wang, W. Identification of Mutations in 15 Nephrolithiasis-Related Genes Leading to a Molecular Diagnosis in 85 Chinese Pediatric Patients. Pediatr. Nephrol. 2023, 38, 3645–3661. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; D’Addessi, A.; Gambaro, G. When to Suspect a Genetic Disorder in a Patient with Renal Stones, and Why. Nephrol. Dial. Transpl. 2013, 28, 811–820. [Google Scholar] [CrossRef]
- Mohebbi, N.; Ferraro, P.M.; Gambaro, G.; Unwin, R. Tubular and Genetic Disorders Associated with Kidney Stones. Urolithiasis 2017, 45, 127–137. [Google Scholar] [CrossRef]
- Santoro, G.; Lombardi, G.; Andreola, S.; Salvagno, G.L.; Treccani, M.; Locatelli, E.; Ferraro, P.M.; Lippi, G.; Malerba, G.; Gambaro, G. Association Analysis of 10 Candidate Genes Causing Mendelian Calcium Nephrolithiasis in the INCIPE Study: A South European General Population Cohort. Clin. Kidney J. 2023, 16, 521–527. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Caletti, C.; Capolongo, G.; Lombardi, M.; Scolari, F.; Vezzoli, G.; Vitale, C.; Gambaro, G. Diagnostic Policies on Nephrolithiasis/Nephrocalcinosis of Possible Genetic Origin by Italian Nephrologists: A Survey by the Italian Society of Nephrology with an Emphasis on Primary Hyperoxaluria. J. Nephrol. 2023, 36, 1605–1614. [Google Scholar] [CrossRef]
- D’Ambrosio, V.; Azzarà, A.; Sangiorgi, E.; Gurrieri, F.; Hess, B.; Gambaro, G.; Ferraro, P.M. Results of a Gene Panel Approach in a Cohort of Patients with Incomplete Distal Renal Tubular Acidosis and Nephrolithiasis. Kidney Blood Press. Res. 2021, 46, 469–474. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spasiano, A.; Treccani, M.; De Tomi, E.; Malerba, G.; Gambaro, G.; Ferraro, P.M. Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease. Genes 2024, 15, 1470. https://doi.org/10.3390/genes15111470
Spasiano A, Treccani M, De Tomi E, Malerba G, Gambaro G, Ferraro PM. Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease. Genes. 2024; 15(11):1470. https://doi.org/10.3390/genes15111470
Chicago/Turabian StyleSpasiano, Andrea, Mirko Treccani, Elisa De Tomi, Giovanni Malerba, Giovanni Gambaro, and Pietro Manuel Ferraro. 2024. "Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease" Genes 15, no. 11: 1470. https://doi.org/10.3390/genes15111470
APA StyleSpasiano, A., Treccani, M., De Tomi, E., Malerba, G., Gambaro, G., & Ferraro, P. M. (2024). Characteristics and Yield of Modern Approaches for the Diagnosis of Genetic Causes of Kidney Stone Disease. Genes, 15(11), 1470. https://doi.org/10.3390/genes15111470