Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs
Abstract
:1. Introduction
2. Results
2.1. Differential RNA-Seq Expression Analysis
2.2. RT-qPCR Validation
2.3. Whole Genome Sequencing
3. Discussion
4. Materials and Methods
4.1. RNA Preparation and Sequencing
4.2. Read Quantification and Differential Expression Analysis
4.3. Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR)
4.4. DNA Preparation and Whole Genome Sequencing
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Folkard, E.; Niel, L.; Gaitero, L.; James, F.M.K. Tools and techniques for classifying behaviours in canine epilepsy. Front. Vet. Sci. 2023, 10, 1211515. Available online: https://www.frontiersin.org/articles/10.3389/fvets.2023.1211515 (accessed on 26 December 2023). [CrossRef] [PubMed]
- Berendt, M.; Gredal, H.; Ersbøll, A.K.; Alving, J. Premature Death, Risk Factors, and Life Patterns in Dogs with Epilepsy. J. Vet. Intern. Med. 2007, 21, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Arrol, L.; Penderis, J.; Garosi, L.; Cripps, P.; Gutierrez-Quintana, R.; Gonçalves, R. Aetiology and long-term outcome of juvenile epilepsy in 136 dogs. Vet. Rec. 2012, 170, 335. [Google Scholar] [CrossRef] [PubMed]
- Muñana, K.R. Management of Refractory Epilepsy. Top. Companion Anim. Med. 2013, 28, 67–71. [Google Scholar] [CrossRef]
- Hülsmeyer, V.-I.; Fischer, A.; Mandigers, P.J.J.; DeRisio, L.; Berendt, M.; Rusbridge, C.; Bhatti, S.F.M.; Pakozdy, A.; Patterson, E.E.; Platt, S.; et al. International Veterinary Epilepsy Task Force’s current understanding of idiopathic epilepsy of genetic or suspected genetic origin in purebred dogs. BMC Vet. Res. 2015, 11, 175. [Google Scholar] [CrossRef]
- Berendt, M.; Gulløv, C.H.; Christensen, S.L.K.; Gudmundsdottir, H.; Gredal, H.; Fredholm, M.; Alban, L. Prevalence and characteristics of epilepsy in the Belgian shepherd variants Groenendael and Tervueren born in Denmark 1995–2004. Acta Vet. Scand. 2008, 50, 51. [Google Scholar] [CrossRef]
- Gulløv, C.H.; Toft, N.; Berendt, M. A longitudinal study of survival in Belgian Shepherds with genetic epilepsy. J. Vet. Intern. Med. 2012, 26, 1115–1120. [Google Scholar] [CrossRef]
- Beckers, E.; Bhatti, S.F.M.; Van Poucke, M.; Polis, I.; Farnir, F.; Van Nieuwerburgh, F.; Mandigers, P.; Van Ham, L.; Peelman, L.; Broeckx, B.J.G. Identification of a Novel Idiopathic Epilepsy Risk Locus and a Variant in the CCDC85A Gene in the Dutch Partridge Dog. Animals 2023, 13, 810. [Google Scholar] [CrossRef]
- Deschain, T.; Fabricius, J.; Berendt, M.; Fredholm, M.; Karlskov-Mortensen, P. The first genome-wide association study concerning idiopathic epilepsy in Petit Basset Griffon Vendeen. Anim. Genet. 2021, 52, 762–766. [Google Scholar] [CrossRef]
- Hayward, J.J.; Castelhano, M.G.; Oliveira, K.C.; Corey, E.; Balkman, C.; Baxter, T.L.; Casal, M.L.; Center, S.A.; Fang, M.; Garrison, S.J.; et al. Complex disease and phenotype mapping in the domestic dog. Nat. Commun. 2016, 7, 10460. [Google Scholar] [CrossRef]
- Koskinen, L.L.E.; Seppälä, E.H.; Belanger, J.M.; Arumilli, M.; Hakosalo, O.; Jokinen, P.; Nevalainen, E.M.; Viitmaa, R.; Jokinen, T.S.; Oberbauer, A.M.; et al. Identification of a common risk haplotype for canine idiopathic epilepsy in the ADAM23 gene. BMC Genom. 2015, 16, 465. [Google Scholar] [CrossRef] [PubMed]
- Belanger, J.M.; Famula, T.R.; Gershony, L.C.; Palij, M.K.; Oberbauer, A.M. Genome-wide association analysis of idiopathic epilepsy in the Belgian shepherd. Canine Med. Genet. 2020, 7, 12. [Google Scholar] [CrossRef]
- Seppälä, E.H.; Koskinen, L.L.E.; Gulløv, C.H.; Jokinen, P.; Karlskov-Mortensen, P.; Bergamasco, L.; Körberg, I.B.; Cizinauskas, S.; Oberbauer, A.M.; Berendt, M.; et al. Identification of a Novel Idiopathic Epilepsy Locus in Belgian Shepherd Dogs. PLoS ONE 2012, 7, e33549. [Google Scholar] [CrossRef]
- Winden, K.D.; Bragin, A.; Engel, J.; Geschwind, D.H. Molecular alterations in areas generating fast ripples in an animal model of temporal lobe epilepsy. Neurobiol. Dis. 2015, 78, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Bithell, A.; Alberta, J.; Hornby, F.; Stiles, C.D.; Williams, B.P. Expression of the guanine nucleotide exchange factor, mr-gef, is regulated during the differentiation of specific subsets of telencephalic neurons. Dev. Brain Res. 2003, 146, 107–118. [Google Scholar] [CrossRef]
- Belanger, J.M.; Heinonen, T.; Famula, T.R.; Mandigers, P.J.J.; Leegwater, P.A.; Hytönen, M.K.; Lohi, H.; Oberbauer, A.M. Validation of a Chromosome 14 Risk Haplotype for Idiopathic Epilepsy in the Belgian Shepherd Dog Found to Be Associated with an Insertion in the RAPGEF5 Gene. Genes 2022, 13, 1124. [Google Scholar] [CrossRef]
- Cayabyab, D.D.; Belanger, J.M.; Xu, C.; Maga, E.A.; Oberbauer, A.M. Cellular localization of a variant RAPGEF5 protein associated with idiopathic epilepsy risk in the Belgian shepherd. Canine Med. Genet. 2024, 11, 4. [Google Scholar] [CrossRef]
- Seppälä, E.H.; Jokinen, T.S.; Fukata, M.; Fukata, Y.; Webster, M.T.; Karlsson, E.K.; Kilpinen, S.K.; Steffen, F.; Dietschi, E.; Leeb, T.; et al. LGI2 Truncation Causes a Remitting Focal Epilepsy in Dogs. PLoS Genet. 2011, 7, e1002194. [Google Scholar] [CrossRef]
- Pakozdy, A.; Patzl, M.; Zimmermann, L.; Jokinen, T.S.; Glantschnigg, U.; Kelemen, A.; Hasegawa, D. LGI Proteins and Epilepsy in Human and Animals. J. Vet. Intern. Med. 2015, 29, 997–1005. [Google Scholar] [CrossRef]
- Laub, F.; Lei, L.; Sumiyoshi, H.; Kajimura, D.; Dragomir, C.; Smaldone, S.; Puche, A.C.; Petros, T.J.; Mason, C.; Parada, L.F.; et al. Transcription Factor KLF7 Is Important for Neuronal Morphogenesis in Selected Regions of the Nervous System. Mol. Cell Biol. 2005, 25, 5699–5711. [Google Scholar] [CrossRef]
- Lei, L.; Laub, F.; Lush, M.; Romero, M.; Zhou, J.; Luikart, B.; Klesse, L.; Ramirez, F.; Parada, L.F. The zinc finger transcription factor Klf7 is required for TrkA gene expression and development of nociceptive sensory neurons. Genes Dev. 2005, 19, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Caiazzo, M.; Colucci-D’Amato, L.; Esposito, M.T.; Parisi, S.; Stifani, S.; Ramirez, F.; di Porzio, U. Transcription factor KLF7 regulates differentiation of neuroectodermal and mesodermal cell lineages. Exp. Cell Res. 2010, 316, 2365–2376. [Google Scholar] [CrossRef]
- Havdahl, A.; Niarchou, M.; Starnawska, A.; Uddin, M.; van der Merwe, C.; Warrier, V. Genetic contributions to autism spectrum disorder. Psychol. Med. 2021, 51, 2260–2273. [Google Scholar] [CrossRef]
- Byron, S.A.; Van Keuren-Jensen, K.R.; Engelthaler, D.M.; Carpten, J.D.; Craig, D.W. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat. Rev. Genet. 2016, 17, 257–271. [Google Scholar] [CrossRef]
- Hrdlickova, R.; Toloue, M.; Tian, B. RNA-Seq methods for transcriptome analysis. WIREs RNA 2017, 8, e1364. [Google Scholar] [CrossRef]
- Reiter, T.; Pierce, N.T.; Charbonneau, A. RNA-Seq in the Cloud. GitHub. 2021. Available online: https://github.com/nih-cfde/rnaseq-in-the-cloud/blob/stable/rnaseq-env.yml (accessed on 7 April 2024).
- Rothfels, K.; Milacic, M.; Matthews, L.; Haw, R.; Sevilla, C.; Gillespie, M.; Stephan, R.; Gong, C.; Ragueneau, E.; May, B.; et al. Using the Reactome Database. Curr. Protoc. 2023, 3, e722. [Google Scholar] [CrossRef] [PubMed]
- Feenstra, B.; Pasternak, B.; Geller, F.; Carstensen, L.; Wang, T.; Huang, F.; Eitson, J.L.; Hollegaard, M.V.; Svanström, H.; Vestergaard, M.; et al. Common variants associated with general and MMR vaccine-related febrile seizures. Nat. Genet. 2014, 46, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Villegas, E.M.; Ruiz, R.; Bachiller, S.; Ventura, F.; Armengol, J.A.; Rosa, J.L. The HERC proteins and the nervous system. Semin. Cell Dev. Biol. 2022, 132, 5–15. [Google Scholar] [CrossRef]
- Ben-Zvi, A.; Lacoste, B.; Kur, E.; Andreone, B.J.; Mayshar, Y.; Yan, H.; Gu, C. Mfsd2a is critical for the formation and function of the blood–brain barrier. Nature 2014, 509, 507–511. [Google Scholar] [CrossRef]
- Khuller, K.; Yigit, G.; Martínez Grijalva, C.; Altmüller, J.; Thiele, H.; Nürnberg, P.; Elcioglu, N.H.; Yeter, B.; Hehr, U.; Stein, A.; et al. MFSD2A-associated primary microcephaly—Expanding the clinical and mutational spectrum of this ultra-rare disease. Eur. J. Med. Genet. 2021, 64, 104310. [Google Scholar] [CrossRef]
- Scala, M.; Chua, G.L.; Chin, C.F.; Alsaif, H.S.; Borovikov, A.; Riazuddin, S.; Riazuddin, S.; Chiara Manzini, M.; Severino, M.; Kuk, A.; et al. Biallelic MFSD2A variants associated with congenital microcephaly, developmental delay, and recognizable neuroimaging features. Eur. J. Hum. Genet. 2020, 28, 1509–1519. [Google Scholar] [CrossRef]
- Climax, J.; Sewell, R.D. Modification of convulsive behaviour and body temperature in mice by intracerebroventricular administration of prostaglandins, arachidonic acid and the soluble acetylsalicylic acid salt lysine acetylsalicylate. Arch. Int. Pharmacodyn. Ther. 1981, 250, 254–265. [Google Scholar]
- Chung, J.-I.; Kim, A.Y.; Lee, S.H.; Baik, E.J. Seizure susceptibility in immature brain due to lack of COX-2-induced PGF2α. Exp. Neurol. 2013, 249, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Buono, R.J.; Bradfield, J.P.; Wei, Z.; Sperling, M.R.; Dlugos, D.J.; Privitera, M.D.; French, J.A.; Lo, W.; Cossette, P.; Schachter, S.C.; et al. Genetic Variation in PADI6-PADI4 on 1p36.13 Is Associated with Common Forms of Human Generalized Epilepsy. Genes 2021, 12, 1441. [Google Scholar] [CrossRef] [PubMed]
- NCBI. Genome Data Viewer. National Center for Biotechnology Information. 2024. Available online: https://www.ncbi.nlm.nih.gov/gdv/browser/genome/?id=GCF_000002285.5 (accessed on 25 July 2024).
- Bo, X.; Zhiguo, W.; Xiaosu, Y.; Guoliang, L.; Guangjie, X. Analysis of gene expression in genetic epilepsy-prone rat using a cDNA expression array. Seizure 2002, 11, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Zlokovic, B.V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron 2008, 57, 178–201. [Google Scholar] [CrossRef]
- Hecker, M.; Rüge, A.; Putscher, E.; Boxberger, N.; Rommer, P.S.; Fitzner, B.; Zettl, U.K. Aberrant expression of alternative splicing variants in multiple sclerosis—A systematic review. Autoimmun. Rev. 2019, 18, 721–732. [Google Scholar] [CrossRef]
- Billiau, A.D.; Wouters, C.H.; Lagae, L.G. Epilepsy and the immune system: Is there a link? Eur. J. Paediatr. Neurol. 2005, 9, 29–42. [Google Scholar] [CrossRef]
- Chen, T.-S.; Lai, M.-C.; Huang, H.-Y.I.; Wu, S.-N.; Huang, C.-W. Immunity, Ion Channels and Epilepsy. Int. J. Mol. Sci. 2022, 23, 6446. [Google Scholar] [CrossRef]
- Knebel, A.; Kämpe, A.; Carlson, R.; Rohn, K.; Tipold, A. Th17 cell-mediated immune response in a subpopulation of dogs with idiopathic epilepsy. PLoS ONE 2022, 17, e0262285. [Google Scholar] [CrossRef]
- Falip, M.; Salas-Puig, X.; Cara, C. Causes of CNS Inflammation and Potential Targets for Anticonvulsants. CNS Drugs 2013, 27, 611–623. [Google Scholar] [CrossRef] [PubMed]
- Phochantachinda, S.; Chantong, B.; Reamtong, O.; Chatchaisak, D. Protein profiling and assessment of amyloid β levels in plasma in canine refractory epilepsy. Front. Vet. Sci. 2023, 10, 1258244. Available online: https://www.frontiersin.org/articles/10.3389/fvets.2023.1258244 (accessed on 9 February 2024). [CrossRef] [PubMed]
- Löscher, W.; Howe, C.L. Molecular Mechanisms in the Genesis of Seizures and Epilepsy Associated With Viral Infection. Front. Mol. Neurosci. 2022, 15, 870868. [Google Scholar] [CrossRef] [PubMed]
- Perng, Y.-C.; Lenschow, D.J. ISG15 in antiviral immunity and beyond. Nat. Rev. Microbiol. 2018, 16, 423–439. [Google Scholar] [CrossRef]
- Rosiles-Abonce, A.; Rubio, C.; Taddei, E.; Rosiles, D.; Rubio-Osornio, M. Antiepileptogenic Effect of Retinoic Acid. Curr. Neuropharmacol. 2021, 19, 383–391. [Google Scholar] [CrossRef]
- Ruiz, F.X.; Gallego, O.; Ardèvol, A.; Moro, A.; Domínguez, M.; Alvarez, S.; Alvarez, R.; de Lera, A.R.; Rovira, C.; Fita, I.; et al. Aldo-keto reductases from the AKR1B subfamily: Retinoid specificity and control of cellular retinoic acid levels. Chem. Biol. Interact. 2009, 178, 171–177. [Google Scholar] [CrossRef]
- Wang, G.-D.; Shao, X.-J.; Bai, B.; Wang, J.; Wang, X.; Cao, X.; Liu, Y.-H.; Wang, X.; Yin, T.-T.; Zhang, S.-J.; et al. Structural variation during dog domestication: Insights from gray wolf and dhole genomes. Natl. Sci. Rev. 2019, 6, 110–122. [Google Scholar] [CrossRef]
- Kinsey, N. The Impact of Retinoic Acid on Neuronal Activity and the Interferon Signaling Pathway. 2024. Created in BioRender. Available online: https://BioRender.com/s89o803 (accessed on 25 October 2024).
- Pelicano, L.; Li, F.; Schindler, C.; Chelbi-Alix, M.K. Retinoic acid enhances the expression of interferon-induced proteins: Evidence for multiple mechanisms of action. Oncogene 1997, 15, 2349–2359. [Google Scholar] [CrossRef]
- Dao, C.T.; Luo, J.-K.; Zhang, D.-E. Retinoic acid-induced protein ISGylation is dependent on interferon signal transduction. Blood Cells Mol. Dis. 2006, 36, 406–413. [Google Scholar] [CrossRef]
- de Hoog, E.; Lukewich, M.K.; Spencer, G.E. Retinoid receptor-based signaling plays a role in voltage-dependent inhibition of invertebrate voltage-gated Ca2+ channels. J. Biol. Chem. 2019, 294, 10076–10093. [Google Scholar] [CrossRef]
- Zhang, D.-Q.; McMahon, D.G. Direct gating by retinoic acid of retinal electrical synapses. Proc. Natl. Acad. Sci. USA 2000, 97, 14754–14759. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, Q.-Q.; Jia, J.-N.; Liu, Z.-Q.; Zhou, H.-H.; Mao, X.-Y. Targeting gap junction in epilepsy: Perspectives and challenges. Biomed. Pharmacother. 2019, 109, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Huberfeld, G.; Wittner, L.; Clemenceau, S.; Baulac, M.; Kaila, K.; Miles, R.; Rivera, C. Perturbed Chloride Homeostasis and GABAergic Signaling in Human Temporal Lobe Epilepsy. J. Neurosci. 2007, 27, 9866–9873. [Google Scholar] [CrossRef]
- Gururaja Rao, S.; Ponnalagu, D.; Patel, N.J.; Singh, H. Three Decades of Chloride Intracellular Channel Proteins: From Organelle to Organ Physiology. Curr. Protoc. Pharmacol. 2018, 80, 11.21.1–11.21.17. [Google Scholar] [CrossRef]
- Gururaja Rao, S.; Patel, N.J.; Singh, H. Intracellular Chloride Channels: Novel Biomarkers in Diseases. Front. Physiol. 2020, 11, 96. Available online: https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2020.00096/full (accessed on 8 October 2024). [CrossRef]
- Vallée, A.; Lecarpentier, Y.; Vallée, J.-N. Interplay of Opposing Effects of the WNT/β-Catenin Pathway and PPARγ and Implications for SARS-CoV2 Treatment. Front. Immunol. 2021, 12, 666693. Available online: https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2021.666693/full (accessed on 16 September 2024). [CrossRef] [PubMed]
- Aissvarya, S.; Ling, K.-H.; Arumugam, M.; Thilakavathy, K. Molecular genetics of Dupuytren’s contracture. EFORT Open Rev. 2024, 9, 723–732. [Google Scholar] [CrossRef]
- Zheng, J.-H.; Zhu, Y.-H.; Yang, J.; Ji, P.-X.; Zhao, R.-K.; Duan, Z.-H.; Yao, H.-F.; Jia, Q.-Y.; Yin, Y.-F.; Hu, L.-P.; et al. A CLIC1 network coordinates matrix stiffness and the Warburg effect to promote tumor growth in pancreatic cancer. Cell Rep. 2024, 43, 114633. Available online: https://www.cell.com/cell-reports/abstract/S2211-1247(24)00983-5 (accessed on 8 October 2024). [CrossRef]
- Hodges, S.L.; Lugo, J.N. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res. 2018, 146, 9–16. [Google Scholar] [CrossRef]
- Ohba, C.; Okamoto, N.; Murakami, Y.; Suzuki, Y.; Tsurusaki, Y.; Nakashima, M.; Miyake, N.; Tanaka, F.; Kinoshita, T.; Matsumoto, N.; et al. PIGN mutations cause congenital anomalies, developmental delay, hypotonia, epilepsy, and progressive cerebellar atrophy. Neurogenetics 2014, 15, 85–92. [Google Scholar] [CrossRef]
- Bayat, A.; de Valles-Ibáñez, G.; Pendziwiat, M.; Knaus, A.; Alt, K.; Biamino, E.; Bley, A.; Calvert, S.; Carney, P.; Caro-Llopis, A.; et al. PIGN encephalopathy: Characterizing the epileptology. Epilepsia 2022, 63, 974–991. [Google Scholar] [CrossRef] [PubMed]
- Hammal, F.; de Langen, P.; Bergon, A.; Lopez, F.; Ballester, B. ReMap 2022: A database of Human, Mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucleic Acids Res. 2022, 50, D316–D325. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tao, T.; Li, Z.; Chen, Y.; Li, J.; Peng, L. The roles of ER stress in epilepsy: Molecular mechanisms and therapeutic implications. Biomed. Pharmacother. 2020, 131, 110658. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Kolls, B.J.; Mace, B.; Yu, S.; Li, X.; Liu, W.; Chaparro, E.; Shen, Y.; Dang, L.; et al. Sustained overexpression of spliced X-box-binding protein-1 in neurons leads to spontaneous seizures and sudden death in mice. Commun. Biol. 2023, 6, 252. [Google Scholar] [CrossRef]
- Luo, X.; Alfason, L.; Wei, M.; Wu, S.; Kasim, V. Spliced or Unspliced, That Is the Question: The Biological Roles of XBP1 Isoforms in Pathophysiology. Int. J. Mol. Sci. 2022, 23, 2746. [Google Scholar] [CrossRef] [PubMed]
- Baychelier, F.; Nardeux, P.-C.; Cajean-Feroldi, C.; Ermonval, M.; Guymarho, J.; Tovey, M.G.; Eid, P. Involvement of the Gab2 scaffolding adapter in type I interferon signalling. Cell. Signal. 2007, 19, 2080–2087. [Google Scholar] [CrossRef]
- Zhan, A.; Xu, X.; Chen, L.; Wang, X.; Yanfeng, X.; Dan, W.; Zhan, Y.; Shi, Q. Decreased expression of Gab2 in patients with temporal lobe epilepsy and pilocarpine-induced rat model. Synapse 2014, 68, 168–177. [Google Scholar] [CrossRef]
- Štěrbová, K.; Vlčková, M.; Hansíková, H.; Sebroňová, V.; Sedláčková, L.; Pavlíček, P.; Laššuthová, P. Novel variants in the NARS2 gene as a cause of infantile-onset severe epilepsy leading to fatal refractory status epilepticus: Case study and literature review. Neurogenetics 2021, 22, 359–364. [Google Scholar] [CrossRef]
- Hu, W.; Fang, H.; Peng, Y.; Li, L.; Guo, D.; Tang, J.; Yi, J.; Liu, Q.; Qin, W.; Wu, L.; et al. Clinical and genetic analyses of premature mitochondrial encephalopathy with epilepsia partialis continua caused by novel biallelic NARS2 mutations. Front. Neurosci. 2022, 16, 1076183. Available online: https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2022.1076183/full (accessed on 23 August 2024). [CrossRef]
- Yang, N.; Chen, L.; Zhang, Y.; Wu, X.; Hao, Y.; Yang, F.; Yang, Z.; Liang, J. Novel NARS2 variants in a patient with early-onset status epilepticus: Case study and literature review. BMC Pediatr. 2024, 24, 96. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, D884–D891. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Cheng, P.; Wang, J.; Qiu, X.; Zhang, X.; Xu, L.; Liu, Y.; Qin, S. IRF6 Is Directly Regulated by ZEB1 and ELF3, and Predicts a Favorable Prognosis in Gastric Cancer. Front. Oncol. 2019, 9, 220. [Google Scholar] [CrossRef] [PubMed]
- Korfhagen, T.R.; Kitzmiller, J.; Chen, G.; Sridharan, A.; Haitchi, H.-M.; Hegde, R.S.; Divanovic, S.; Karp, C.L.; Whitsett, J.A. SAM-pointed domain ETS factor mediates epithelial cell–intrinsic innate immune signaling during airway mucous metaplasia. Proc. Natl. Acad. Sci. USA 2012, 109, 16630–16635. [Google Scholar] [CrossRef]
- Yu, Y.; Nguyen, D.T.; Jiang, J. G protein-coupled receptors in acquired epilepsy: Druggability and translatability. Prog. Neurobiol. 2019, 183, 101682. [Google Scholar] [CrossRef]
- Krivega, I.; Dean, A. Enhancer and promoter interactions—Long distance calls. Curr. Opin. Genet. Dev. 2012, 22, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Enright, N.; Simonato, M.; Henshall, D.C. Discovery and validation of blood microRNAs as molecular biomarkers of epilepsy: Ways to close current knowledge gaps. Epilepsia Open 2018, 3, 427–436. [Google Scholar] [CrossRef]
- Kernohan, K.D.; Frésard, L.; Zappala, Z.; Hartley, T.; Smith, K.S.; Wagner, J.; Xu, H.; McBride, A.; Bourque, P.R.; Bennett, S.A.L.; et al. Whole-transcriptome sequencing in blood provides a diagnosis of spinal muscular atrophy with progressive myoclonic epilepsy. Hum. Mutat. 2017, 38, 611–614. [Google Scholar] [CrossRef]
- Borchert, C.; Herman, A.; Roth, M.; Brooks, A.C.; Friedenberg, S.G. RNA sequencing of whole blood in dogs with primary immune-mediated hemolytic anemia (IMHA) reveals novel insights into disease pathogenesis. PLoS ONE 2020, 15, e0240975. [Google Scholar] [CrossRef] [PubMed]
- De Risio, L.; Bhatti, S.; Muñana, K.; Penderis, J.; Stein, V.; Tipold, A.; Berendt, M.; Farqhuar, R.; Fischer, A.; Long, S.; et al. International veterinary epilepsy task force consensus proposal: Diagnostic approach to epilepsy in dogs. BMC Vet. Res. 2015, 11, 148. [Google Scholar] [CrossRef]
- Busby, M.A.; Stewart, C.; Miller, C.A.; Grzeda, K.R.; Marth, G.T. Scotty: A web tool for designing RNA-Seq experiments to measure differential gene expression. Bioinformatics 2013, 29, 656–657. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, H.; Shang, J.; Liu, G.; Xia, T.; Zhao, C.; Sun, G.; Dou, H. Comparative analysis of the blood transcriptomes between wolves and dogs. Anim. Genet. 2018, 49, 291–302. [Google Scholar] [CrossRef] [PubMed]
- Friedenberg, S.G.; Chdid, L.; Keene, B.; Sherry, B.; Motsinger-Reif, A.; Meurs, K.M. Use of RNA-seq to identify cardiac genes and gene pathways differentially expressed between dogs with and without dilated cardiomyopathy. Am. J. Vet. Res. 2016, 77, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Illumina. Illumina Stranded mRNA Prep|A Clear View of the Coding Transcriptome. 2023. Available online: https://www.illumina.com/products/by-type/sequencing-kits/library-prep-kits/stranded-mrna-prep.html (accessed on 8 April 2024).
- Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics 2016, 32, 3047–3048. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. Babraham Bioinformatics—FastQC A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 23 May 2023).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Jagannathan, V.; Hitte, C.; Kidd, J.M.; Masterson, P.; Murphy, T.D.; Emery, S.; Davis, B.; Buckley, R.M.; Liu, Y.-H.; Zhang, X.-Q.; et al. Dog10k_Boxer_Tasha_1.0: A long-read assembly of the dog reference genome. Genes 2021, 12, 847. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Zheng, H.; Brennan, K.; Hernaez, M.; Gevaert, O. Benchmark of long non-coding RNA quantification for RNA sequencing of cancer samples. GigaScience 2019, 8, giz145. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022; Available online: https://www.R-project.org/ (accessed on 31 October 2022).
- Lawrence, M.; Huber, W.; Pagès, H.; Aboyoun, P.; Carlson, M.; Gentleman, R.; Morgan, M.T.; Carey, V.J. Software for Computing and Annotating Genomic Ranges. PLoS Comput. Biol. 2013, 9, e1003118. [Google Scholar] [CrossRef]
- Soneson, C.; Love, M.I.; Robinson, M.D. Differential analyses for RNA-seq: Transcript-level estimates improve gene-level inferences. F1000Research 2015, 4, 1521. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lun, A.T.L.; Smyth, G.K. From reads to genes to pathways: Differential expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-likelihood pipeline. F1000Research 2016, 5, 1438. Available online: https://f1000research.com/articles/5-1438 (accessed on 17 January 2024). [PubMed]
- McCarthy, D.J.; Chen, Y.; Smyth, G.K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012, 40, 4288–4297. [Google Scholar] [CrossRef]
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- Xu, J.; Sun, J.; Chen, J.; Wang, L.; Li, A.; Helm, M.; Dubovsky, S.L.; Bacanu, S.-A.; Zhao, Z.; Chen, X. RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia. BMC Genom. 2012, 13, S2. [Google Scholar] [CrossRef]
- Son, K.; Yu, S.; Shin, W.; Han, K.; Kang, K. A Simple Guideline to Assess the Characteristics of RNA-Seq Data. BioMed Res. Int. 2018, 2018, 2906292. [Google Scholar] [CrossRef]
- Wilcox, A.; Barnum, S.; Wademan, C.; Corbin, R.; Escobar, E.; Hodzic, E.; Schumacher, S.; Pusterla, N. Frequency of Detection of Respiratory Pathogens in Clinically Healthy Show Horses Following a Multi-County Outbreak of Equine Herpesvirus-1 Myeloencephalopathy in California. Pathogens 2022, 11, 1161. [Google Scholar] [CrossRef]
- Tanvetthayanont, P.; Yata, T.; Boonnil, J.; Temisak, S.; Ponglowhapan, S. Validation of droplet digital PCR for cytokeratin 19 mRNA detection in canine peripheral blood and mammary gland. Sci. Rep. 2022, 12, 13623. [Google Scholar] [CrossRef]
- Clements, D.N.; Carter, S.D.; Innes, J.F.; Ollier, W.E.; Day, P.J. Analysis of normal and osteoarthritic canine cartilage mRNA expression by quantitative polymerase chain reaction. Arthritis Res. Ther. 2006, 8, R158. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. Gigascience 2021, 10, giab008. [Google Scholar] [CrossRef]
- Picard Toolkit. Broad Institute, GitHub Repository. 2019. Available online: https://broadinstitute.github.io/picard/ (accessed on 23 February 2022).
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar] [CrossRef]
- Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using Drosophila melanogaster as a Model for Genotoxic Chemical Mutational Studies with a New Program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar] [CrossRef] [PubMed]
- Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 2012, 6, 80–92. [Google Scholar] [CrossRef]
- Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.-C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017, 27, 849–864. [Google Scholar] [CrossRef]
- Nassar, L.R.; Barber, G.P.; Benet-Pagès, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, B.T.; et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2023, 51, D1188–D1195. [Google Scholar] [CrossRef]
Gene | Log2 Fold Change * | FDR-Corrected p-Value |
---|---|---|
ENSCAFG00000004857 | 7.60 | 3.64 × 10−2 |
MFSD2A | 1.59 | 6.43 × 10−2 |
HERC6 | −1.33 | 5.71 × 10−2 |
EPSTI1 | −1.37 | 7.52 × 10−2 |
DDX58 | −1.45 | 9.60 × 10−2 |
HERC5 | −1.53 | 3.06 × 10−2 |
IFI44 | −1.58 | 2.93 × 10−2 |
RSAD2 | −2.13 | 6.63 × 10−2 |
MAST4 | −3.50 | 7.26 × 10−3 |
ENSCAFG00000002440 | −20.70 | 3.63 × 10−7 |
ADAM23 | −3.45 | 9.99 × 10−1 |
KLF7 | 0.21 | 9.99 × 10−1 |
RAPGEF5 | 0.10 | 9.99 × 10−1 |
Gene | Log2 Fold Change * | FDR-Corrected p-Value |
---|---|---|
CLIC1 | 18.85 | 1.70 × 10−3 |
RHEX | 3.51 | 1.80 × 10−3 |
ACE2 | 6.44 | 2.41 × 10−2 |
PIGN | 0.81 | 2.41 × 10−2 |
SLC45A3 | 4.62 | 4.57 × 10−2 |
EPDR1 | −1.37 | 9.55 × 10−2 |
ADAM23 | −3.01 | 9.98 × 10−1 |
KLF7 | 0.07 | 9.98 × 10−1 |
RAPGEF5 | 0.16 | 9.98 × 10−1 |
CFA | Gene | Position (bp) | Number of Significant Variants p < 0.05 | Number of Variants Within Gene |
---|---|---|---|---|
21 | ENSCAFG00000004857 | 20,281,342–21,282,239 | 281 | 0 |
15 | MFSD2A | 2,723,565–3,736,071 | 11 | 1 |
32 | HERC6 | 29,703,843–30,759,559 | 109 | 6 |
22 | EPSTI1 | 7,354,646–8,600,477 | 22 | 0 |
11 | DDX58 | 47,886,818–48,922,130 | 33 | 0 |
32 | HERC5 | 29,653,835–30,697,247 | 85 | 0 |
6 | IFI44 | 70,521,268–71,559,185 | 51 | 4 |
17 | RSAD2 | 3,913,918–4,934,440 | 1524 | 84 |
2 | MAST4 | 48,559,935–50,095,394 | 23 | 17 |
14 | ENSCAFG00000002440 | 30,665,380–31,666,329 | 134 | 0 |
CFA 14 Haplotype | Epileptic | Control | BS | BT |
---|---|---|---|---|
ACTG | 6 | 0 | 3 | 3 |
CTCT | 3 | 5 | 2 | 6 |
CTCG | 2 | 2 | 1 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinsey, N.; Belanger, J.M.; Oberbauer, A.M. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes 2024, 15, 1474. https://doi.org/10.3390/genes15111474
Kinsey N, Belanger JM, Oberbauer AM. Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes. 2024; 15(11):1474. https://doi.org/10.3390/genes15111474
Chicago/Turabian StyleKinsey, Nathan, Janelle M. Belanger, and Anita M. Oberbauer. 2024. "Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs" Genes 15, no. 11: 1474. https://doi.org/10.3390/genes15111474
APA StyleKinsey, N., Belanger, J. M., & Oberbauer, A. M. (2024). Differential Gene Expression Associated with Idiopathic Epilepsy in Belgian Shepherd Dogs. Genes, 15(11), 1474. https://doi.org/10.3390/genes15111474