Mechanistic Role of TRIM26 in Viral Infection and Host Defense
Abstract
:1. Introduction
2. Structural and Sequence Characteristics of TRIM26
3. Functional Characteristics of TRIM26
4. Role of TRIM26 in Viral Infection
4.1. Hepatitis C Virus (HCV) Infection
4.2. Herpes Simplex Type 2 Virus (HSV-2) Infection
4.3. Pseudorabies Virus (PRV) Infection
4.4. Sendai Virus (SEV) and Vesicular Stomatitis Virus (VSV) Infection
4.5. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection
4.6. Hepatitis B Virus (HBV) Infection
4.7. Epstein–Barr Virus (EBV) Infection
4.8. Zika Virus (ZIKV) Infection
4.9. Human Immunodeficiency Virus (HIV) Infection
5. Future Prospects and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Yang, L.; Chen, S.; Zheng, J.; Zhang, H.; Ren, L. Multiple roles of TRIM21 in virus Infection. Int. J. Mol. Sci. 2023, 24, 1683. [Google Scholar] [CrossRef]
- Khan, R.; Khan, A.; Ali, A.; Idrees, M. The interplay between viruses and TRIM family proteins. Rev. Med. Virol. 2019, 29, e2028. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wei, L.; Yu, Z.-B.; Yao, Z.-Y.; Cheng, J.; Wang, Y.-T.; Song, X.-T.; Li, M. The roles of TRIMs in antiviral innate immune signaling. Front. Cell. Infect. Microbiol. 2021, 11, 628275. [Google Scholar] [CrossRef] [PubMed]
- van Gent, M.; Sparrer, K.M.J.; Gack, M.U. TRIM proteins and their roles in antiviral host defenses. Annu. Rev. Virol. 2018, 5, 385–405. [Google Scholar] [CrossRef] [PubMed]
- NCFB. TRIM26 Tripartite Motif Containing 26 [Homo Sapiens (Human)]. 5 May 2023. Available online: https://www.ncbi.nlm.nih.gov/gene/7726 (accessed on 19 December 2023).
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chan, H.S.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2017, 7, e1298. [Google Scholar] [CrossRef]
- Thompson, J.D.; Gibson, T.J.; Higgins, D.G. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinform. 2003, 2.3. 1-2.3. 22. [Google Scholar] [CrossRef]
- Watanabe, M.; Hatakeyama, S. TRIM proteins and diseases. J. Biochem. 2017, 161, 135–144. [Google Scholar] [CrossRef]
- Ozato, K.; Shin, D.-M.; Chang, T.-H.; Morse, H.C., III. TRIM family proteins and their emerging roles in innate immunity. Nat. Rev. Immunol. 2008, 8, 849–860. [Google Scholar] [CrossRef]
- Wang, H.-T.; Hur, S. Substrate recognition by TRIM and TRIM-like proteins in innate immunity. Semin. Cell Dev. Biol. 2020, 111, 76–85. [Google Scholar] [CrossRef]
- Versteeg, G.A.; Benke, S.; García-Sastre, A.; Rajsbaum, R. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev. 2014, 25, 563–576. [Google Scholar] [CrossRef] [PubMed]
- Rajsbaum, R.; Garcia-Sastre, A.; Versteeg, G.A. TRIMmunity: The roles of the TRIM E3- ubiquitin ligase family in innate antiviral immunity. J. Mol. Biol. 2014, 426, 1265–1284. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, G.; Li, Q.; Han, L.; Hu, X.; Guo, Y.; Tao, W.; Zhao, X.; Guo, M.; Gan, T.; et al. TRIM26 is a critical host factor for HCV replication and contributes to host tropism. Sci. Adv. 2021, 7, eabd9732. [Google Scholar] [CrossRef] [PubMed]
- Harfouche, M.; Alareeki, A.; Osman, A.M.M.; Alaama, A.S.; Hermez, J.G.; Abu-Raddad, L.J. Epidemiology of herpes simplex virus type 2 in the Middle East and North Africa: Systematic review, meta-analyses, and meta-regressions. J. Med. Virol. 2023, 95, e28603. [Google Scholar] [CrossRef]
- Dhawan, T.; Zahoor, M.A.; Heryani, N.; Workenhe, S.T.; Nazli, A.; Kaushic, C. TRIM26 facilitates HSV-2 infection by downregulating antiviral responses through the IRF3 pathway. Viruses 2021, 13, 70. [Google Scholar] [CrossRef]
- Alareeki, A.; Osman, A.M.; Khandakji, M.N.; Looker, K.J.; Harfouche, M.; Abu-Raddad, L.J. Epidemiology of herpes simplex virus type 2 in Europe: Systematic review, meta-analyses, and meta-regressions. Lancet Reg. Health-Eur. 2023, 25, 100558. [Google Scholar] [CrossRef]
- Jiang, W.; Li, M.; Peng, S.; Hu, T.; Long, Y.; Zhang, J.; Peng, D.; Shen, Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol. Res. 2023, 71, 800–813. [Google Scholar] [CrossRef]
- Wu, C.; Wang, M.; Wang, X.; Chen, Y.; Li, H.; Sun, L.; Ren, J.; Zhang, Z. TRIM26 facilitates PRV infection through NDP52-mediated MAVS autophagic degradation. Vet. Res. 2023, 55, 84. [Google Scholar]
- Song, K.; Li, S. The role of ubiquitination in NF-κB signaling during virus infection. Viruses 2021, 13, 145. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, W.; Zhao, K.; Zhang, L.; Gao, C. TRIM26 negatively regulates interferon-β production and antiviral response through polyubiquitination and degradation of nuclear IRF3. PLoS Pathog. 2015, 11, e1004726. [Google Scholar] [CrossRef]
- Ran, Y.; Zhang, J.; Liu, L.-L.; Pan, Z.-Y.; Nie, Y.; Zhang, H.-Y.; Wang, Y.-Y. Autoubiquitination of TRIM26 links TBK1 to NEMO in RLR-mediated innate antiviral immune response. J. Mol. Cell Biol. 2016, 8, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Sharma, M.; Zhang, Y.; Li, C.; Liu, K.; Wei, J.; Shao, D.; Li, B.; Ma, Z.; Cao, R.; et al. Expression Profile of Porcine TRIM26 and Its Inhibitory Effect on Interferon-β Production and Antiviral Response. Genes 2020, 11, 1226. [Google Scholar] [CrossRef] [PubMed]
- Zhao, P.; Jing, H.; Dong, W.; Duan, E.; Ke, W.; Tao, R.; Li, Y.; Cao, S.; Wang, H.; Zhang, Y.; et al. TRIM26-mediated degradation of nucleocapsid protein limits porcine reproductive and respiratory syndrome virus-2 infection. Virus Res. 2022, 311, 198690. [Google Scholar] [CrossRef] [PubMed]
- Nakaya, Y.; Nishizawa, T.; Nishitsuji, H.; Morita, H.; Yamagata, T.; Onomura, D.; Murata, K. TRIM26 positively affects hepatitis B virus replication by inhibiting proteasome-dependent degradation of viral core protein. Sci. Rep. 2023, 13, 13584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Luo, M.; Hou, J.; Mai, H.; Chen, J.; Chen, H.; Zhou, B.; Hou, J.; Jiang, D. TRIM26 inhibits hepatitis B virus replication by promoting HBx degradation and TRIM26 genetic polymorphism predicts PegIFNα treatment response of HBeAg-positive chronic hepatitis B Patients. Aliment. Pharmacol. Ther. 2022, 56, 878–889. [Google Scholar] [CrossRef]
- Zhang, M.; Tan, H.; Gong, Y.; Faleti, O.D.; Li, D.; Yang, J.; Huang, J.; Long, J.; Luo, Q.; Wu, G.; et al. TRIM26 restricts Epstein–Barr virus infection in nasopharyngeal epithelial cells through K48-linked ubiquiti-nation of HSP-90β. FASEB J. 2024, 38, e23345. [Google Scholar] [CrossRef]
- Williams, D.T.; Mackenzie, J.S.; Bingham, J. Flaviviruses. In Diseases of Swine; Wiley: Hoboken, NJ, USA, 2019; pp. 530–543. [Google Scholar]
- Guarner, J.; Hale, G.L. Four human diseases with significant public health impact caused by mosquito-borne flaviviruses: West Nile, Zika, dengue and yellow fever. Semin. Diagn. Pathol. 2019, 36, 170–176. [Google Scholar] [CrossRef]
- Airo, A.M.; Felix-Lopez, A.; Mancinelli, V.; Evseev, D.; Lopez-Orozco, J.; Shire, K.; Paszkowski, P.; Frappier, L.; Magor, K.E.; Hobman, T.C. Flavivirus capsid proteins inhibit the interferon response. Viruses 2022, 14, 968. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Dong, X.; He, Z.; Wu, Y.; Zhang, S.; Lin, J.; Yang, Y.; Chen, J.; An, S.; Yin, Y.; et al. Zika virus antagonizes interferon response in patients and disrupts RIG-I–MAVS interaction through its CARD-TM domains. Cell Biosci. 2019, 9, 46. [Google Scholar] [CrossRef]
- Lee, J.K.; Shin, O.S. Advances in Zika virus–host cell interaction: Current knowledge and future perspectives. Int. J. Mol. Sci. 2019, 20, 1101. [Google Scholar] [CrossRef]
- Scaturro, P.; Stukalov, A.; Haas, D.A.; Cortese, M.; Draganova, K.; Płaszczyca, A.; Bartenschlager, R.; Götz, M.; Pichlmair, A. An orthogonal proteomic survey uncovers novel Zika virus host factors. Nature 2018, 561, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Riederer, I.; Mendes-Da-Cruz, D.A.; da Fonseca, G.C.; González, M.N.; Brustolini, O.; Rocha, C.; Loss, G.; de Carvalho, J.B.; Menezes, M.T.; Raphael, L.M.S.; et al. Zika virus disrupts gene expression in human myoblasts and myotubes: Relationship with susceptibility to infection. PLoS Neglected Trop. Dis. 2022, 16, e0010166. [Google Scholar] [CrossRef] [PubMed]
- Colomer-Lluch, M.; Ruiz, A.; Moris, A.; Prado, J.G. Restriction factors: From intrinsic viral restriction to shaping cellular immunity against HIV-1. Front. Immunol. 2018, 9, 2876. [Google Scholar] [CrossRef] [PubMed]
- Santiago, M.L.; Greene, W.C. The role of the APOBEC3 family of cytidine deaminases in innate immunity, G-to-A hyper-mutation, and evolution of retroviruses. In Origin and Evolution of Viruses; Elsevier: Amsterdam, The Netherlands, 2008; pp. 183–205. [Google Scholar]
- Uchil, P.D.; Quinlan, B.D.; Chan, W.-T.; Luna, J.M.; Mothes, W. TRIM E3 ligases interfere with early and late stages of the retroviral life cycle. PLoS Pathog. 2008, 4, e16. [Google Scholar] [CrossRef]
- Turrini, F.; Di Pietro, A.; Vicenzi, E. Lentiviral effector pathways of TRIM proteins. DNA Cell Biol. 2014, 33, 191–197. [Google Scholar] [CrossRef]
- Rold, C.J.; Aiken, C. Proteasomal degradation of TRIM5α during retrovirus restriction. PLoS Pathog. 2008, 4, e1000074. [Google Scholar] [CrossRef]
ID | Species | Homology |
---|---|---|
NP_001116681.1 | S. scrofa (Pig or wild boar) | 100 |
XP_061051881.1 | E. glacialis (North Atlantic right whale) | 93.3333 |
XP_059879362.1 | D.delphis (Common dolphin) | 93.1481 |
BBG43741.1 | P. crassidens (False killer whale) | 93.1481 |
XP_033719804.1 | Tursiops truncatus (Bottlenose dolphin) | 92.963 |
XP_014423808.2 | Camelus ferus (Wild Bactrian camel) | 92.9499 |
XP_022417871.1 | Delphinapterus leucas (Beluga whale) | 92.7778 |
XP_029098434.1 | Monodon monoceros (Narwhal) | 92.7778 |
XP_046496693.1 | Equus quagga (Plains zebra) | 92.7644 |
XP_014716046.1 | Equus asinus (Donkey) | 92.7644 |
XP_005603721.1 | Equus caballus (Horse) | 92.7644 |
XP_051711774.1 | Oryctolagus cuniculus (Rabbit) | 92.5788 |
XP_006061672.4 | Bubalus bubalis (Water buffalo) | 92.5788 |
XP_020744442.1 | Odocoileus virginianus texanus (Texas white-tailed deer) | 92.5788 |
AQY77163.1 | H.sapiens (Human) | 92.3933 |
XP_055426971.1 | Bubalus carabanensis (Swamp buffalo) | 92.3933 |
XP_054347447.1 | Pongo pygmaeus (Bornean orangutan) | 92.3933 |
NP_001037841.1 | P.troglodytes (Chimpanzee) | 92.2078 |
XP_037699598.1 | Choloepus didactylus (Linnaeus’s two-toed sloth) | 92.2078 |
XP_036764538.2 | Manis pentadactyla (Chinese pangolin) | 92.1933 |
XP_055245879.1 | Gorilla gorilla gorilla (Western gorilla) | 92.0223 |
NP_001108439.1 | Macaca mulatta (Rhesus monkey) | 92.0223 |
XP_026304665.1 | Piliocolobus tephrosceles (Ugandan red colobus) | 92.0223 |
XP_006913709.1 | Pteropus alecto (Black flying fox) | 92.0223 |
WAK97440.1 | Macaca fascicularis (Crab-eating macaque) | 91.8367 |
KAI5939203.1 | Manis javanica (Sunda pangolin) | 91.8367 |
XP_039707041.1 | Pteropus giganteus (Indian flying fox) | 91.8367 |
XP_015976184.1 | Rousettus aegyptiacus (Egyptian fruit bat) | 91.8367 |
XP_033075496.1 | Trachypithecus francoisi (François’ langur) | 91.6512 |
XP_010366471.1 | Rhinopithecus roxellana (Golden snub-nosed monkey) | 91.6512 |
XP_012332513.1 | Aotus nancymaae (Nancy Ma’s night monkey) | 91.6512 |
JAB45812.1 | Callithrix jacchus (Common marmoset) | 91.6512 |
XP_058522307.1 | Ochotona princeps (American pika) | 91.4657 |
XP_006160378.1 | Tupaia chinensis (Chinese tree shrew) | 91.4657 |
XP_030875660.1 | Leptonychotes weddellii (Weddell seal) | 91.2801 |
XP_003944896.1 | Saimiri boliviensis boliviensis (Bolivian squirrel monkey) | 90.9091 |
AKU36829.1 | Bos taurus (Cattle) | 90.8257 |
XP_052504467.1 | Budorcas taxicolor (Takin) | 90.7579 |
XP_060259320.1 | Ovis aries (Sheep) | 90.573 |
XP_040106078.1 | Oryx dammah (Scimitar oryx) | 90.5556 |
XP_035967185.1 | Halichoerus grypus (Gray seal) | 90.538 |
XP_053456939.1 | Nycticebus coucang (Slow loris) | 90.3704 |
XP_046304483.1 | Marmota monax (Groundhog) | 90.1487 |
XP_015362942.1 | Marmota marmota marmota (Alpine marmot) | 90.1487 |
XP_026271099.1 | Urocitellus parryii (Arctic ground squirrel) | 90.1487 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M.; Liu, K.; Wei, J.; Ma, Z.; Qiu, Y. Mechanistic Role of TRIM26 in Viral Infection and Host Defense. Genes 2024, 15, 1476. https://doi.org/10.3390/genes15111476
Sharma M, Liu K, Wei J, Ma Z, Qiu Y. Mechanistic Role of TRIM26 in Viral Infection and Host Defense. Genes. 2024; 15(11):1476. https://doi.org/10.3390/genes15111476
Chicago/Turabian StyleSharma, Mona, Ke Liu, Jianchao Wei, Zhiyong Ma, and Yafeng Qiu. 2024. "Mechanistic Role of TRIM26 in Viral Infection and Host Defense" Genes 15, no. 11: 1476. https://doi.org/10.3390/genes15111476
APA StyleSharma, M., Liu, K., Wei, J., Ma, Z., & Qiu, Y. (2024). Mechanistic Role of TRIM26 in Viral Infection and Host Defense. Genes, 15(11), 1476. https://doi.org/10.3390/genes15111476