Effects of Density Stress During Transportation on the Antioxidant Activity and Immuno-Related Gene Expression in Yellowfin Seabream (Acanthopagrus latus Houttuyn, 1782)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Simulated Transportation Experiment
2.3. Sample Collection and Analysis
2.4. Total RNA Extraction and Reverse Transcription
2.5. Whole-Fish Gene Expression
2.6. Statistical Analysis
3. Results
3.1. Effect of Transportation Density on the Survival of Juvenile A. latus
3.2. Changes in Antioxidant Capacity Enzyme Activities in Different Tissues
3.3. Effect of Transport Density on the Expression of Immune Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Eissa, N.; Wang, H.-P. Transcriptional Stress Responses to Environmental and Husbandry Stressors in Aquaculture Species. Rev. Aquac. 2016, 8, 61–88. [Google Scholar] [CrossRef]
- Ha, H.J.; Min, J.; Lee, J.D.; Goo, J.S.; Kim, J.G.; Kim, T.J.; Patk, T.I. Optimal Conditions for Long-Distance Transportation of Live Black Rockfish (Sebastes schlegeli) and Changes in Their Characteristics during Transport. J. Aquat. Food Prod. Technol. 2019, 28, 762–771. [Google Scholar] [CrossRef]
- Urbinati, E.C.; de Abreu, J.S.; da Silva Camargo, A.C.; Landinez Parra, M.A. Loading and Transport Stress of Juvenile Matrinxã (Brycon Cephalus, Characidae) at Various Densities. Aquaculture 2004, 229, 389–400. [Google Scholar] [CrossRef]
- Water Quality Changes and Physiological Responses During Live Fish Transport and Measures to Reduce Transport-Related Stress: A Review-All Databases Available online:. Available online: https://www.webofscience.com/wos/alldb/full-record/BIOSIS:PREV202200487566 (accessed on 10 November 2024).
- Erikson, U.; Rosten, C.; Klebert, P.; Aspaas, S.; Rosten, T. Live Transport of Atlantic Salmon in Open and Closed Systems: Water Quality, Stress and Recovery. Aquac. Res. 2022, 53, 3913–3926. [Google Scholar] [CrossRef]
- Vanderzwalmen, M.; Eaton, L.; Mullen, C.; Henriquez, F.; Sloman, K.A. The Use of Feed and Water Additives for Live Fish Transport. Rev. Aquac. 2018, 11, 263–278. [Google Scholar] [CrossRef]
- Olsvik, P.A.; Lie, K.K.; Jordal, A.-E.O.; Nilsen, T.O.; Hordvik, I. Evaluation of Potential Reference Genes in Real-Time RT-PCR Studies of Atlantic Salmon. BMC Mol. Biol. 2005, 6, 21. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Zhang, L.; Yang, Y.; Lin, Y.; Zhuo, Y.; Fang, Z.; Che, L.; Feng, B.; Xu, S.; et al. Maternal Dietary Fiber Composition during Gestation Induces Changes in Offspring Antioxidative Capacity, Inflammatory Response, and Gut Microbiota in a Sow Model. Int. J. Mol. Sci. 2019, 21, 31. [Google Scholar] [CrossRef]
- Abdel-Mohsen, H.A. Assessment of Respiratory and Ion Transport Potential of Penaeus Japonicus Gills in Response to Environmental Pollution. Mediterr. Mar. Sci. 2009, 10, 5. [Google Scholar] [CrossRef]
- Lan, W.; Zhang, N.; Liu, S.; Chen, M.; Xie, J. ε-Polylysine Inhibits Shewanella Putrefaciens with Membrane Disruption and Cell Damage. Molecules 2019, 24, 3727. [Google Scholar] [CrossRef]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant Defenses in Fish: Biotic and Abiotic Factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Pen, S. Responses of Antioxidant System to Transport Stress in the Liver of Nibea Japonica. Mar. Fish. 2014, 36, 469–474. [Google Scholar]
- Liu, Q.Q.; Wen, J.F.; Ou, Y.J.; Li, J.E.; Zhou, H.; Zhao, Y.H. Effects of Packing in Plastic Bags and Oxygenating Transport Stress on Antioxidant System and Effects of Anti-Stress Agent in Juvenile Eleutheronema tetradactylum. Chin. J. Zool. 2018, 53, 82–91. [Google Scholar]
- Liu, S.X.; Zhou, S.J.; Han, M.Y.; Wang, Y.F.; Hong, J.W.; Gu, Z.F.; Ma, Z.H. Effects of Density Stress on Water Quality, Survival Rate, Immune Enzyme Activities, and Serotonation Index of Trachinotus Ovatus. Mar. Sci. 2019, 43, 70–80. [Google Scholar]
- Rahman, M.S.; Thomas, P. Molecular Cloning, Characterization and Expression of Two Hypoxia-Inducible Factor α Subunits, HIF-1alpha and HIF-2alpha, in a Hypoxia-Tolerant Marine Teleost, Atlantic Croaker (Micropogonias undulatus). Gene 2007, 396, 273–282. [Google Scholar] [CrossRef]
- Newton, J.R.; De Santis, C.; Jerry, D.R. The Gene Expression Response of the Catadromous Perciform Barramundi Lates calcarifer to an Acute Heat Stress. J. Fish Biol. 2012, 81, 81–93. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Becerril, M.; Sanchez, V.; Delgado, K.; Guerra, K.; Velazquez, E.; Ascencio, F.; Angulo, C. Caspase-1,-3,-8 and Antioxidant Enzyme Genes Are Key Molecular Effectors Following Vibrio parahaemolyticus and Aeromonas veronii Infection in Fish Leukocytes. Immunobiol. Z. Immun. 2018, 223, 562–576. [Google Scholar] [CrossRef]
- Jia, R.; Wang, L.; Hou, Y.; Feng, W.; Li, B.; Zhu, J. Effects of Stocking Density on the Growth Performance, Physiological Parameters, Redox Status and Lipid Metabolism of Micropterus Salmoides in Integrated Rice–Fish Farming Systems. Antioxidants 2022, 11, 1215. [Google Scholar] [CrossRef]
- Hong, J.; Zhou, S.; Yu, G.; Qin, C.; Zuo, T.; Ma, Z. Effects of Transporting Stress on the Immune Responses of Asian Seabass Lates calcarifer Fry. Aquac. Res. 2021, 52, 2182–2193. [Google Scholar] [CrossRef]
- Yang, T.T.; Liu, Y.; Tan, S.; Wang, W.X.; Wang, X. The Role of Intestinal Microbiota of the Marine Fish (Acanthopagrus latus) in Mercury Biotransformation. Environ. Pollut. 2021, 277, 116768. [Google Scholar] [CrossRef]
- Zhu, K.; Zhang, N.; Liu, B.; Guo, L.; Guo, H.; Jiang, S.; Zhang, D. A Chromosome-Level Genome Assembly of the Yellowfin Seabream (Acanthopagrus latus) (Hottuyn, 1782) Provides Insights into Its Osmoregulation and Sex Reversal. Cold Spring Harb. Lab. 2021, 113, 1617–1627. [Google Scholar] [CrossRef]
- Sangari, M.; Sotoudeh, E.; Bagheri, D.; Morammazi, S.; Mozanzadeh, M.T. Growth, Body Composition, and Hematology of Yellowfin Seabream (Acanthopagrus latus) given Feeds Supplemented with Organic Acid Salts (Sodium Acetate and Sodium Propionate). Aquac. Int. 2021, 29, 261–273. [Google Scholar] [CrossRef]
- Liang, Y.; Zhu, K.-C.; You, Y.-Z.; Guo, H.-Y.; Chen, H.-D.; Liu, B.-S.; Zhang, N.; Dai, Y.-B.; Zeng, F.-R.; Lin, H.-Y.; et al. Molecular Characterization of TNF-β and IFN-γ in Yellowfin Seabream (Acanthopagrus Latus, Hottuyn, 1782) and Their Immune Responses to Density Stress during Transport. Dev. Comp. Immunol. 2023, 147, 104747. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, D.R. Oxidative Stress in Aquatic Organisms in Relation to Pollution and Aquaculture. Rev. Médecine Vétérinaire 2003, 154, 427–430. [Google Scholar]
- Shi, Q.; Xiong, X.; Wen, Z.; Qin, C.; Li, R.; Zhang, Z.; Gong, Q.; Wu, X. Cu/Zn Superoxide Dismutase and Catalase of Yangtze Sturgeon, Acipenser Dabryanus: Molecular Cloning, Tissue Distribution and Response to Fasting and Refeeding. Fishes 2022, 7, 35. [Google Scholar] [CrossRef]
- El-Sayed, Y.S.; Saad, T.T.; El-Bahr, S.M. Acute Intoxication of Deltamethrin in Monosex Nile Tilapia, Oreochromis Niloticus with Special Reference to the Clinical, Biochemical and Haematological Effects. Environ. Toxicol. Pharmacol. 2007, 24, 212–217. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxidants 2023, 12, 1675. [Google Scholar] [CrossRef]
- Tang, T.; Zhang, Z.; Zhu, X. Toxic Effects of TiO2 NPs on Zebrafish. Int. J. Environ. Res. Public Health 2019, 16, 523. [Google Scholar] [CrossRef]
- Zheng, J.; Wang, Z.; Pu, D.; Li, P.; Wei, X.; Li, M.; Li, D.; Gao, L.; Zhai, X. Effects of Stocking Density on Intestinal Health of Juvenile Micropterus Salmoides in Industrial Aquaponics. Fishes 2023, 8, 555. [Google Scholar] [CrossRef]
- Zhu, M. Study on the Survival Transport, Biochemistry and Quality of White Shrimp and Yellow Croaker from South America. Master’s Thesis, Zhejiang University, Hangzhou, China, 2022. [Google Scholar]
- Tenji, D.; Micic, B.; Sipos, S.; Miljanovic, B.; Teodorovic, I.; Kaisarevic, S. Fish Biomarkers from a Different Perspective: Evidence of Adaptive Strategy of Abramis brama (L.) to Chemical Stress. Environ. Sci. Eur. 2020, 32, 47. [Google Scholar] [CrossRef]
- Mozanzadeh, M.T.; Safari, O.; Ghaedi, A.; Najafabadi, M.Z.; Pagheh, E.; Oosooli, R.; Mehrjooyan, S.; Hoseini, S.J.; Saghavi, H.; Monem, J. Effects of a Single-Phase Fasting Period and Subsequent Re-Feeding on Compensatory Growth, Digestive Enzyme Activities, and Antioxidant Capacity of Sobaity (Sparidentex hasta) and Yellowfin Seabream (Acanthopagrus latus). Ann. Anim. Sci. 2022, 22, 773–784. [Google Scholar] [CrossRef]
- Jin, R.-M.; Huang, H.-Z.; Zhou, Y.; Wang, Y.-Y.; Fu, H.-C.; Li, Z.; Fu, X.-Z.; Li, N.-Q. Characterization of Mandarin Fish (Siniperca chuatsi) IL-6 and IL-6 Signal Transducer and the Association between Their SNPs and Resistance to ISKNV Disease. Fish Shellfish. Immunol. 2021, 113, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Pimentel, M.S.; Faleiro, F.; Diniz, M.; Machado, J.; Pousão-Ferreira, P.; Peck, M.A.; Pörtner, H.O.; Rosa, R. Oxidative Stress and Digestive Enzyme Activity of Flatfish Larvae in a Changing Ocean. PLoS ONE 2015, 10, e0134082. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, K.; Du, J.; Li, J.; Li, R. Growth Rate, Catalase and Superoxide Dismutase Activities in Rock Carp (Procypris rabaudi Tchang) Exposed to Supersaturated Total Dissolved Gas. J. Zhejiang Univ. Sci. B 2011, 12, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Chen, X.; Hou, D.; Chen, B.; Peng, K.; Huang, W.; Cao, J.; Zhao, H. Positive Effects of Dietary Clostridium butyricum Supplementation on Growth Performance, Antioxidant Capacity, Immunity and Viability against Hypoxic Stress in Largemouth Bass. Front. Immunol. 2023, 14, 1190592. [Google Scholar] [CrossRef] [PubMed]
- Malarvizhi, A.; Kavitha, C.; Saravanan, M.; Ramesh, M. Carbamazepine (CBZ) Induced Enzymatic Stress in Gill, Liver and Muscle of a Common Carp, Cyprinus Carpio. J. King Saud Univ. Sci. 2012, 24, 179–186. [Google Scholar] [CrossRef]
- Tao, Y.; Hua, J.; Lu, S.; Wang, Q.; Li, Y.; Jiang, B.; Dong, Y.; Qiang, J.; Xu, P. Ultrastructural, Antioxidant, and Metabolic Responses of Male Genetically Improved Farmed Tilapia (GIFT, Oreochromis niloticus) to Acute Hypoxia Stress. Antioxidants 2024, 13, 89. [Google Scholar] [CrossRef]
- Martínez, M.L.; Raynard, E.L.; Rees, B.B.; Chapman, L.J. Oxygen Limitation and Tissue Metabolic Potential of the African Fish Barbus neumayeri: Roles of Native Habitat and Acclimatization. BMC Ecol. 2011, 11, 2. [Google Scholar] [CrossRef]
- Xu, C.; Ding, W.D.; Cao, Z.M.; Bing, X.W.; Zhang, C.G.; Gu, X.C.; Liu, Y. Effects of Acute Hypoxia Stress on Antioxidant Enzymes, Respiratory Related Enzymes and Expression of Related Genes in Mandarin Fish (Siniperca Chuatsi). J. South. Agric. 2020, 51, 686–694. [Google Scholar] [CrossRef]
- Honryo, T.; Oakada, T.; Kawahara, M.; Kurata, M.; Agawa, Y.; Sawada, Y.; Miyashita, S.; Takii, K.; Ishibashi, Y. Estimated Time for Recovery from Transportation Stress and Starvation in Juvenile Pacific Bluefin Tuna Thunnus orientalis. Aquaculture 2018, 484, 175–183. [Google Scholar] [CrossRef]
- Kwasek, K.; Rimoldi, S.; Cattaneo, A.G.; Parker, T.; Dabrowski, K.; Terova, G. The Expression of Hypoxia-Inducible Factor-1α Gene Is Not Affected by Low-Oxygen Conditions in Yellow Perch (Perca flavescens) Juveniles. Fish Physiol. Biochem. 2017, 43, 849–862. [Google Scholar] [CrossRef]
- Eggestøl, H.Ø.; Lunde, H.S.; Haugland, G.T. The Proinflammatory Cytokines TNF-α and IL-6 in Lumpfish (Cyclopterus lumpus L.) -Identification, Molecular Characterization, Phylogeny and Gene Expression Analyses. Dev. Comp. Immunol. 2020, 105, 103608. [Google Scholar] [CrossRef] [PubMed]
- Phongdara, A.; Wanna, W.; Chotigeat, W. Molecular Cloning and Expression of Caspase from White Shrimp Penaeus Merguiensis. Aquaculture 2006, 252, 114–120. [Google Scholar] [CrossRef]
- Ching, B.; Chen, X.L.; Yong, J.H.A.; Wilson, J.M.; Hiong, K.C.; Sim, E.W.L.; Wong, W.P.; Lam, S.H.; Chew, S.F.; Ip, Y.K. Increases in Apoptosis, Caspase Activity and Expression of P53 and Bax, and the Transition between Two Types of Mitochondrion-Rich Cells, in the Gills of the Climbing Perch, Anabas testudineus, during a Progressive Acclimation from Freshwater to Seawater. Front. Physiol. 2013, 4, 135. [Google Scholar] [CrossRef]
- Refaey, M.M.; Li, D. Transport Stress Changes Blood Biochemistry, Antioxidant Defense System, and Hepatic HSPs mRNA Expressions of Channel Catfish Ictalurus punctatus. Front. Physiol. 2018, 9, 1628. [Google Scholar] [CrossRef]
- Adhikari, A.; Cobb, B.; Eddington, S.; Becerra, N.; Kohli, P.; Pond, A.; Davie, J. IFN-γ and CIITA Modulate IL-6 Expression in Skeletal Muscle. Cytokine: X 2020, 2, 100023. [Google Scholar] [CrossRef]
- Gornati, R.; Terova, G.; Vigetti, D.; Prati, M.; Saroglia, M.; Bernardini, G. Effects of Population Density on Seabass (Dicentrarchus Labrax, L.) Gene Expression. Aquaculture 2004, 230, 229–239. [Google Scholar] [CrossRef]
- Cai, X.H.; Huang, Y.T.; Zhang, Z.P.; Wang, Y.L. Hypoxia Inducible Factor-1(HIF-1) and Its Research Advance in Aquatic Animals. J. Agric. Biotechnol. 2014, 22, 119–132. [Google Scholar]
- Wang, P.-F.; Zeng, S.; Xu, P.; Zhou, L.; Li, G.-F. Two HSP90 Genes in Mandarin Fish Siniperca chuatsi: Identification, Characterization and Their Specific Expression Profiles during Embryogenesis and under Stresses. Fish Physiol. Biochem. 2016, 42, 1123–1136. [Google Scholar] [CrossRef]
- Zhang, C.-N.; Li, X.-F.; Jiang, G.-Z.; Zhang, D.-D.; Tian, H.-Y.; Li, J.-Y.; Liu, W.-B. Effects of Dietary Fructooligosaccharide Levels and Feeding Modes on Growth, Immune Responses, Antioxidant Capability and Disease Resistance of Blunt Snout Bream (Megalobrama amblycephala). Fish Shellfish. Immunol. 2014, 41, 560–569. [Google Scholar] [CrossRef]
- Fu, S.; Ding, M.; Wang, J.; Yin, X.; Zhou, E.; Kong, L.; Tu, X.; Guo, Z.; Wang, A.; Huang, Y.; et al. Identification and Functional Characterization of Three Caspases in Takifugu obscurus in Response to Bacterial Infection. Fish Shellfish. Immunol. 2020, 106, 252–262. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Ye, C.-X.; Guo, Z.-X.; Wang, A.-L. Immune and Physiological Responses of Pufferfish (Takifugu obscurus) under Cold Stress. Fish Shellfish. Immunol. 2017, 64, 137–145. [Google Scholar] [CrossRef]
- Liu, Y.V.; Semenza, G.L. RACK1 vs. HSP90: Competition for HIF-1α Degradation vs. Stabilization. Cell Cycle 2007, 6, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Feng, J.; Liu, S.; Wang, Y.; Arias, C.; Liu, Z. Transcriptional Regulation of Hypoxia Inducible Factors Alpha (HIF-α) and Their Inhibiting Factor (FIH-1) of Channel Catfish (Ictalurus punctatus) under Hypoxia. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2014, 169, 38–50. [Google Scholar] [CrossRef]
- Rytkönen, K.T.; Akbarzadeh, A.; Miandare, H.K.; Kamei, H.; Duan, C.; Leder, E.H.; Williams, T.A.; Nikinmaa, M. Subfunctionalization of cyprinid hypoxia-inducible factors for roles in development and oxygen sensing. Evolution 2013, 67, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Ton, C.; Stamatiou, D.; Liew, C.-C. Gene Expression Profile of Zebrafish Exposed to Hypoxia during Development. Physiol. Genom. 2003, 13, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Van Der Meer, D.L.M.; Van Den Thillart, G.E.E.J.M.; Witte, F.; De Bakker, M.A.G.; Besser, J.; Richardson, M.K.; Spaink, H.P.; Leito, J.T.D.; Bagowski, C.P. Gene Expression Profiling of the Long-Term Adaptive Response to Hypoxia in the Gills of Adult Zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2005, 289, R1512–R1519. [Google Scholar] [CrossRef]
- Biswas, G.; Nagamine, R.; Hikima, J.; Sakai, M.; Kono, T. Inductive Immune Responses in the Japanese Pufferfish (Takifugu rubripes) Treated with Recombinant IFN-γ, IFN-Γrel, IL-4/13A and IL-4/13B. Int. Immunopharmacol. 2016, 31, 50–56. [Google Scholar] [CrossRef]
Primer | Primer Sequences (5′–3′) | Amplification Target |
---|---|---|
HSP90α-F | ACGACAAGGCTGTGAAGGAC | Expression of HSP90α |
HSP90α-R | CTGTAGATGCGGTTGGAGTG | |
Caspase 3-F | GCTGACTTCCTCTACGCTTT | Expression of Caspase 3 |
Caspase 3-R | AACTCTGTCGCCACCTTG | |
HIF-1α-F | TGACAGAGGAGGGAGACA | Expression of HIF-1α |
HIF-1α-R | TCACAGGGATGAACAAAGT | |
IL-6-F | GTGCCTTCACTGACAATCC | Expression of IL-6 |
IL-6-R | ACTCCTGCCTGTGGGTCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nong, X.; Zhu, K.; Guo, H.; Liu, B.; Zhang, N.; Zhang, Q.; Zhang, D. Effects of Density Stress During Transportation on the Antioxidant Activity and Immuno-Related Gene Expression in Yellowfin Seabream (Acanthopagrus latus Houttuyn, 1782). Genes 2024, 15, 1479. https://doi.org/10.3390/genes15111479
Nong X, Zhu K, Guo H, Liu B, Zhang N, Zhang Q, Zhang D. Effects of Density Stress During Transportation on the Antioxidant Activity and Immuno-Related Gene Expression in Yellowfin Seabream (Acanthopagrus latus Houttuyn, 1782). Genes. 2024; 15(11):1479. https://doi.org/10.3390/genes15111479
Chicago/Turabian StyleNong, Xiulin, Kecheng Zhu, Huayang Guo, Baosuo Liu, Nan Zhang, Qin Zhang, and Dianchang Zhang. 2024. "Effects of Density Stress During Transportation on the Antioxidant Activity and Immuno-Related Gene Expression in Yellowfin Seabream (Acanthopagrus latus Houttuyn, 1782)" Genes 15, no. 11: 1479. https://doi.org/10.3390/genes15111479
APA StyleNong, X., Zhu, K., Guo, H., Liu, B., Zhang, N., Zhang, Q., & Zhang, D. (2024). Effects of Density Stress During Transportation on the Antioxidant Activity and Immuno-Related Gene Expression in Yellowfin Seabream (Acanthopagrus latus Houttuyn, 1782). Genes, 15(11), 1479. https://doi.org/10.3390/genes15111479