MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Nucleic Acid Purification
2.3. MIR27A rs895819 Genotyping
2.4. miR-27a-3p Expression Analysis
2.5. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Frequency of MIR27A rs895819 Genotypes
3.3. miR-27a-3p Expression in Individuals After DOAC Treatment
3.4. miR-27a-3p Expression in MIR27A Genotypic Groups
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.M.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Le Teuff, G.; Cozic, N.; Boyer, J.C.; Boige, V.; Diasio, R.B.; Taieb, J.; Meulendijks, D.; Palles, C.; Schwab, M.; Deenen, M.; et al. Dihydropyrimidine dehydrogenase gene variants for predicting grade 4-5 fluoropyrimidine-induced toxicity: FUSAFE individual patient data meta-analysis. Br. J. Cancer 2024, 130, 808–818. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. EMA recommendations on DPD testing prior to treatment with fluorouracil, capecitabine, tegafur and flucytosine. Eur. Med. Agency 2020, 31, 3. [Google Scholar]
- U.S. Food and Drug Administration. FDA Approves Safety Labeling Changes Regarding DPD Deficiency for Fluorouracil Injection Products. 2024. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-safety-labeling-changes-regarding-dpd-deficiency-fluorouracil-injection-products (accessed on 25 October 2024).
- Knikman, J.E.; Zhai, Q.; Lunenburg, C.; Henricks, L.M.; Böhringer, S.; van der Lee, M.; de Man, F.M.; Offer, S.M.; Shrestha, S.; Creemers, G.J.; et al. Discovering novel germline genetic variants linked to severe fluoropyrimidine-related toxicity in- and outside DPYD. Genome Med. 2024, 16, 101. [Google Scholar] [CrossRef]
- De Mattia, E.; Milan, N.; Assaraf, Y.G.; Toffoli, G.; Cecchin, E. Clinical Implementation of Rare and Novel DPYD Variants for Personalizing Fluoropyrimidine Treatment: Challenges and Opportunities. Int. J. Biol. Sci. 2024, 20, 3742–3759. [Google Scholar] [CrossRef]
- Lešnjaković, L.; Ganoci, L.; Bilić, I.; Šimičević, L.; Mucalo, I.; Pleština, S.; Božina, N. DPYD genotyping and predicting fluoropyrimidine toxicity: Where do we stand? Pharmacogenomics 2023, 24, 93–106. [Google Scholar] [CrossRef]
- Maslarinou, A.; Manolopoulos, V.G.; Ragia, G. Pharmacogenomic-guided dosing of fluoropyrimidines beyond DPYD: Time for a polygenic algorithm? Front. Pharmacol. 2023, 14, 1184523. [Google Scholar] [CrossRef]
- Manolopoulos, V.G.; Ragia, G. Fluoropyrimidine Toxicity: The Hidden Secrets of DPYD. Curr. Drug Metab. 2024, 25, 91–95. [Google Scholar] [CrossRef]
- Hirota, T.; Date, Y.; Nishibatake, Y.; Takane, H.; Fukuoka, Y.; Taniguchi, Y.; Burioka, N.; Shimizu, E.; Nakamura, H.; Otsubo, K.; et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer 2012, 77, 16–23. [Google Scholar] [CrossRef]
- Offer, S.M.; Butterfield, G.L.; Jerde, C.R.; Fossum, C.C.; Wegner, N.J.; Diasio, R.B. microRNAs miR-27a and miR-27b directly regulate liver dihydropyrimidine dehydrogenase expression through two conserved binding sites. Mol. Cancer Ther. 2014, 13, 742–751. [Google Scholar] [CrossRef]
- Ragia, G.; Biziota, E.; Koukaki, T.; Amarantidis, K.; Manolopoulos, V.G. MIR27A rs895819 TC genotype increases risk of fluoropyrimidine-induced severe toxicity independently of DPYD variations. Pharmacogenomics 2024, 25, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Medwid, S.; Wigle, T.J.; Ross, C.; Kim, R.B. Genetic Variation in miR-27a Is Associated with Fluoropyrimidine-Associated Toxicity in Patients with Dihydropyrimidine Dehydrogenase Variants after Genotype-Guided Dose Reduction. Int. J. Mol. Sci. 2023, 24, 13284. [Google Scholar] [CrossRef] [PubMed]
- Falvella, F.S.; Cheli, S.; Martinetti, A.; Mazzali, C.; Iacovelli, R.; Maggi, C.; Gariboldi, M.; Pierotti, M.A.; Di Bartolomeo, M.; Sottotetti, E.; et al. DPD and UGT1A1 deficiency in colorectal cancer patients receiving triplet chemotherapy with fluoropyrimidines, oxaliplatin and irinotecan. Br. J. Clin. Pharmacol. 2015, 80, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, D.; Henricks, L.M.; Amstutz, U.; Froehlich, T.K.; Largiadèr, C.R.; Beijnen, J.H.; de Boer, A.; Deenen, M.J.; Cats, A.; Schellens, J.H. Rs895819 in MIR27A improves the predictive value of DPYD variants to identify patients at risk of severe fluoropyrimidine-associated toxicity. Int. J. Cancer 2016, 138, 2752–2761. [Google Scholar] [CrossRef]
- Amstutz, U.; Offer, S.M.; Sistonen, J.; Joerger, M.; Diasio, R.B.; Largiadèr, C.R. Polymorphisms in MIR27A Associated with Early-Onset Toxicity in Fluoropyrimidine-Based Chemotherapy. Clin. Cancer Res. 2015, 21, 2038–2044. [Google Scholar] [CrossRef]
- Ikonnikova, A.; Fedorinov, D.; Gryadunov, D.; Heydarov, R.; Lyadova, M.; Moskalenko, A.; Mikhailovich, V.; Emelyanova, M.; Lyadov, V. MIR27A Gene Polymorphism Modifies the Effect of Common DPYD Gene Variants on Severe Toxicity in Patients with Gastrointestinal Tumors Treated with Fluoropyrimidine-Based Anticancer Therapy. Int. J. Mol. Sci. 2024, 25, 8503. [Google Scholar] [CrossRef]
- Sun, Q.; Gu, H.; Zeng, Y.; Xia, Y.; Wang, Y.; Jing, Y.; Yang, L.; Wang, B. Hsa-mir-27a genetic variant contributes to gastric cancer susceptibility through affecting miR-27a and target gene expression. Cancer Sci. 2010, 101, 2241–2247. [Google Scholar] [CrossRef]
- Yang, Y.; Lu, W.; Ning, M.; Zhou, X.; Wan, X.; Mi, Q.; Yang, X.; Zhang, D.; Zhang, Y.; Jiang, B.; et al. A functional SNP rs895819 on pre-miR-27a is associated with bipolar disorder by targeting NCAM1. Commun. Biol. 2022, 5, 309. [Google Scholar] [CrossRef]
- Ragia, G.; Thomopoulos, T.; Chalikias, G.; Trikas, A.; Tziakas, D.N.; Manolopoulos, V.G. Circulating microRNAs and DNA Methylation as Regulators of Direct Oral Anticoagulant Response in Atrial Fibrillation and Key Elements for the Identification of the Mechanism of Action (miR-CRAFT): Study Design and Patient Enrolment. J. Pers. Med. 2024, 14, 562. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef]
- Song, J.; Bai, Z.; Han, W.; Zhang, J.; Meng, H.; Bi, J.; Ma, X.; Han, S.; Zhang, Z. Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Dig. Dis. Sci. 2012, 57, 897–904. [Google Scholar] [CrossRef] [PubMed]
- Santana, T.; de Oliveira Passamai, L.; de Miranda, F.S.; Borin, T.F.; Borges, G.F.; Luiz, W.B.; Campos, L.C.G. The Role of miRNAs in the Prognosis of Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Diagnostics 2022, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, M.; Ding, L.; Tang, J. MiR-27a: A Novel Biomarker and Potential Therapeutic Target in Tumors. J. Cancer 2019, 10, 2836–2848. [Google Scholar] [CrossRef] [PubMed]
- Bi, W.; Li, J.; Xiong, M.; Pan, B.; Zhang, Z.; Nasifu, L.; He, B.; Wang, P. The diagnostic and prognostic role of miR-27a in cancer. Pathol. Res. Pr. 2023, 247, 154544. [Google Scholar] [CrossRef]
- Park, J.H.; Jeong, G.H.; Lee, K.S.; Lee, K.H.; Suh, J.S.; Eisenhut, M.; van der Vliet, H.J.; Kronbichler, A.; Stubbs, B.; Solmi, M.; et al. Genetic variations in MicroRNA genes and cancer risk: A field synopsis and meta-analysis. Eur. J. Clin. Investig. 2020, 50, e13203. [Google Scholar] [CrossRef]
- Verma, H.; Narendra, G.; Raju, B.; Singh, P.K.; Silakari, O. Dihydropyrimidine Dehydrogenase-Mediated Resistance to 5-Fluorouracil: Mechanistic Investigation and Solution. ACS Pharmacol. Transl. Sci. 2022, 5, 1017–1033. [Google Scholar] [CrossRef]
- Yang, R.; Schlehe, B.; Hemminki, K.; Sutter, C.; Bugert, P.; Wappenschmidt, B.; Volkmann, J.; Varon, R.; Weber, B.H.; Niederacher, D.; et al. A genetic variant in the pre-miR-27a oncogene is associated with a reduced familial breast cancer risk. Breast Cancer Res. Treat. 2010, 121, 693–702. [Google Scholar] [CrossRef]
- Strafella, C.; Errichiello, V.; Caputo, V.; Aloe, G.; Ricci, F.; Cusumano, A.; Novelli, G.; Giardina, E.; Cascella, R. The Interplay between miRNA-Related Variants and Age-Related Macular Degeneration: EVIDENCE of Association of MIR146A and MIR27A. Int. J. Mol. Sci. 2019, 20, 1578. [Google Scholar] [CrossRef]
- Saunders, M.A.; Liang, H.; Li, W.H. Human polymorphism at microRNAs and microRNA target sites. Proc. Natl. Acad. Sci. USA 2007, 104, 3300–3305. [Google Scholar] [CrossRef]
- Ghaedi, H.; Tabasinezhad, M.; Alipoor, B.; Shokri, F.; Movafagh, A.; Mirfakhraie, R.; Omrani, M.D.; Masotti, A. The pre-mir-27a variant rs895819 may contribute to type 2 diabetes mellitus susceptibility in an Iranian cohort. J. Endocrinol. Investig. 2016, 39, 1187–1193. [Google Scholar] [CrossRef]
- Rupaimoole, R.; Calin, G.A.; Lopez-Berestein, G.; Sood, A.K. miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov. 2016, 6, 235–246. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Cao, Z.; Yang, G.; You, L.; Zhang, T.; Zhao, Y. MicroRNA-27a (miR-27a) in Solid Tumors: A Review Based on Mechanisms and Clinical Observations. Front. Oncol. 2019, 9, 893. [Google Scholar] [CrossRef] [PubMed]
- Ragia, G.; Maslarinou, A.; Atzemian, N.; Biziota, E.; Koukaki, T.; Ioannou, C.; Balgkouranidou, I.; Kolios, G.; Kakolyris, S.; Xenidis, N.; et al. Implementing pharmacogenetic testing in fluoropyrimidine-treated cancer patients: DPYD genotyping to guide chemotherapy dosing in Greece. Front. Pharmacol. 2023, 14, 1248898. [Google Scholar] [CrossRef] [PubMed]
Demographic and Clinical Characteristics | Values |
---|---|
Male (n, %) | 33 (55.9) |
Age (years, mean ± SD) | 70 ± 12 |
Weight (kg, median, 25th, 75th percentiles) | 78 (62, 87) |
Height (cm, median, 25th, 75th percentiles) | 168 (155, 175) |
Smokers (n, %) | 12 (20.3) |
Hypertension (n, %) | 36 (61.0) |
Type 2 Diabetes (n, %) | 16 (27.1) |
Dyslipidemia (n, %) | 31 (52.5) |
MIR27A rs895819 | Total Cohort (n = 59) | |
---|---|---|
n (%) | 95% C.I. | |
Genotypes | ||
TT | 30 (50.8) | 38.3–63.3 |
TC | 26 (44.1) | 31.9–56.8 |
CC | 3 (5.1) | 1.5–12.9 |
Recessive model | ||
TT+TC | 56 (94.9) | 87.1–98.5 |
CC | 3 (5.1) | 1.5–12.9 |
Dominant model | ||
TT | 30 (50.8) | 38.3–63.3 |
TC+CC | 29 (49.2) | 36.7–61.7 |
Over dominant model | ||
CC+TT | 33 (55.9) | 43.2–68.1 |
TC | 26 (44.1) | 31.9–56.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ragia, G.; Pallikarou, M.; Michou, C.; Manolopoulos, V.G. MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Genes 2024, 15, 1491. https://doi.org/10.3390/genes15111491
Ragia G, Pallikarou M, Michou C, Manolopoulos VG. MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Genes. 2024; 15(11):1491. https://doi.org/10.3390/genes15111491
Chicago/Turabian StyleRagia, Georgia, Myria Pallikarou, Chrysoula Michou, and Vangelis G. Manolopoulos. 2024. "MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels" Genes 15, no. 11: 1491. https://doi.org/10.3390/genes15111491
APA StyleRagia, G., Pallikarou, M., Michou, C., & Manolopoulos, V. G. (2024). MIR27A rs895819 CC Genotype Severely Reduces miR-27a Plasma Expression Levels. Genes, 15(11), 1491. https://doi.org/10.3390/genes15111491