Targeted Transcriptome Analysis of Beef Cattle Persistently Infected with Bovine Viral Diarrhea Virus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals and Sampling
2.3. Mononuclear Lymphocyte Isolation from Whole Blood
2.4. RNA Isolation, Quantification, and Qualification
2.5. cDNA Preparation
2.6. Primers Design for Target RNAseq
2.7. Targeted RNA Sequencing Analysis
2.8. Differential Gene Expression Analysis
2.9. Functional Annotation of Genes
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hansen, T.R.; Smirnova, N.P.; Van Campen, H.; Shoemaker, M.L.; Ptitsyn, A.A.; Bielefeldt-Ohmann, H. Maternal and fetal response to fetal persistent infection with bovine viral diarrhea virus*. Am. J. Reprod. Immunol. 2010, 64, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Rodning, S.P.; Givens, M.D.; Marley, M.S.D.; Zhang, Y.; Riddell, K.P.; Galik, P.K.; Hathcock, T.L.; Gard, J.A.; Prevatt, J.W.; Owsley, W.F. Reproductive and economic impact following controlled introduction of cattle persistently infected with bovine viral diarrhea virus into a naive group of Heifers. Theriogenology 2012, 78, 1508–1516. [Google Scholar] [CrossRef] [PubMed]
- Givens, M.D.; Marley, M.S.; Jones, C.A.; Ensley, D.T.; Galik, P.K.; Zhang, Y.; Riddell, K.P.; Joiner, K.S.; Brodersen, B.W.; Rodning, S.P. Protective effects against abortion and fetal infection following exposure to bovine viral diarrhea virus and bovine herpesvirus 1 during pregnancy in beef heifers that received two doses of a multivalent modified-live virus vaccine prior to breeding. JAVMA 2012, 241, 484–495. [Google Scholar] [CrossRef] [PubMed]
- Georges, H.M.; Knapek, K.J.; Bielefeldt-Ohmann, H.; Van Campen, H.; Hansen, T.R. Attenuated lymphocyte activation leads to the development of immunotolerance in bovine fetuses persistently infected with bovine viral diarrhea virus†. Biol. Reprod. 2020, 103, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Walz, P.H.; Riddell, K.P.; Newcomer, B.W.; Neill, J.D.; Falkenberg, S.M.; Cortese, V.S.; Scruggs, D.W.; Short, T.H. Comparison of reproductive protection against bovine viral diarrhea virus provided by multivalent viral vaccines containing inactivated fractions of bovine viral diarrhea virus 1 and 2. Vaccine 2018, 36, 3853–3860. [Google Scholar] [CrossRef]
- Brodersen, B.W. Bovine viral diarrhea virus infections. Vet. Pathol. 2014, 51, 453–464. [Google Scholar] [CrossRef]
- Peterhans, E.; Schweizer, M. BVDV: A pestivirus inducing tolerance of the innate immune response. Biologicals 2013, 41, 39–51. [Google Scholar] [CrossRef]
- Broaddus, C.C.; Holyoak, G.R.; Dawson, L.; Step, D.L.; Funk, R.A.; Kapil, S. Transmission of bovine viral diarrhea virus to adult goats from persistently infected cattle. J. Vet. Diagn. Investig. 2007, 19, 545–548. [Google Scholar] [CrossRef]
- Ridpath, J. The contribution of infections with bovine viral diarrhea viruses to bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 335–348. [Google Scholar] [CrossRef]
- Guidoum, K.A.; Benallou, B.; Pailler, L.; Espunyes, J.; Napp, S.; Cabezón, O. Ruminant pestiviruses in North Africa. Prev. Vet. Med. 2020, 184, 105156. [Google Scholar] [CrossRef]
- Al-Kubati, A.A.; Hussen, J.; Kandeel, M.; Al-Mubarak, A.I.; Hemida, M.G. Recent advances on the bovine viral diarrhea virus molecular pathogenesis, immune response, and vaccines development. Front. Vet. Sci. 2021, 8, 665128. [Google Scholar] [CrossRef]
- Smith, B.; Walz, P. Diseases Caused by Bovine Viral Diarrhea Virus (BVDV). In Large Animal Internal Medicine, 6th ed.; Smith, B.P., Van Metre, D.C., Pusterla, N., Eds.; Elsevier: St. Louis, MO, USA, 2020; pp. 820–830. [Google Scholar]
- MacLahlan, N.J.; Dubovi, E.J. (Eds.) Flaviviridae. In Fenner’s Veterinary Virology, 4th ed.; Elsevier Inc.: Burlington, MA, USA, 2011; pp. 467–481. [Google Scholar] [CrossRef]
- Walz, P.H.; Chamorro, M.F.; Falkenberg, S.M.; Passler, T.; van der Meer, F.; Woolums, A.R. Bovine viral diarrhea virus: An updated American College of Veterinary Internal Medicine Consensus Statement with focus on virus biology, hosts, immunosuppression, and vaccination. JVIM 2020, 34, 1690–1706. [Google Scholar] [CrossRef] [PubMed]
- Chase, C.C.; Thakur, N.; Darweesh, M.F.; Morarie-Kane, S.E.; Rajput, M.K. Immune response to bovine viral diarrhea virus—Looking at newly defined targets. Anim. Health Res. Rev. 2015, 16, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Basqueira, N.S.; Martin, C.C.; Costa, J.F.; Okuda, L.H.; Pituco, M.E.; Batista, C.F.; Libera, A.M.; Gomes, V. Bovine respiratory disease (BRD) complex as a signal for bovine viral diarrhea virus (BVDV) presence in the herd. Acta Sci. Vet. 2017, 45, 6. [Google Scholar] [CrossRef]
- Kapil, S.; Walz, P.; Wilkerson, M.; Minocha, H.; Goyal, S.M.; Ridpath, J.F. Immunity and Immunosuppression. In Bovine Viral Diarrhea Virus Diagnosis, Management, and Control, 1st ed.; Essay; Blackwell: Oxford, UK, 2005; p. 161. [Google Scholar]
- Cheng, Z.; Chauhan, L.; Barry, A.T.; Abudureyimu, A.; Oguejiofor, C.F.; Chen, X.; Wathes, D.C. Acute bovine viral diarrhoea virus infection inhibits expression of interferon tau-stimulated genes in bovine endometrium. Biol. Reprod. 2017, 96, 1142–1153. [Google Scholar] [CrossRef]
- Quintero Rodríguez, L.E.; Domínguez, G.; Alvarado Pinedo, M.F.; Travería, G.E.; Moré, G.; Campero, L.M.; de la Sota, R.L.; Madoz, L.V.; Giuliodori, M.J. Association of bovine viral diarrhea virus, bovine herpesvirus 1, and neospora caninum with late embryonic losses in highly supplemented grazing dairy cows. Theriogenology 2022, 194, 126–132. [Google Scholar] [CrossRef]
- Larson, R.L.; Grotelueschen, D.M.; Brooks, K.V.; Hunsaker, B.D.; Smith, R.A.; Sprowls, R.W.; MacGregor, D.S.; Loneragan, G.H.; Dargatz, D.A. Bovine viral diarrhea (BVD). The Bovine Practitioner 2004, 38, 93–102. [Google Scholar] [CrossRef]
- Khodakaram-Tafti, A.; Farjanikish, G.H. Persistent bovine viral diarrhea virus (BVDV) infection in cattle herds. Iran J. Vet. Res. 2017, 18, 154–163. [Google Scholar]
- Lanyon, S.R.; Hill, F.I.; Reichel, M.P.; Brownlie, J. Bovine viral diarrhoea: Pathogenesis and diagnosis. TVJ 2014, 199, 201–209. [Google Scholar] [CrossRef]
- Charleston, B.; Fray, M.D.; Baigent, S.; Carr, B.V.; Morrison, W.I. Establishment of persistent infection with non-cytopathic bovine viral diarrhoea virus in cattle is associated with a failure to induce type I interferon. JGV 2001, 82, 1893–1897. [Google Scholar] [CrossRef]
- Smirnova, N.P.; Webb, B.T.; McGill, J.L.; Schaut, R.G.; Bielefeldt-Ohmann, H.; Van Campen, H.; Sacco, R.E.; Hansen, T.R. Induction of interferon-gammaand downstream pathways during establishment of fetal persistent infection with bovine viral diarrhea virus. Virus Res. 2014, 183, 95–106. [Google Scholar] [CrossRef]
- Weiner, C.M.; Smirnova, N.P.; Webb, B.T.; Van Campen, H.; Hansen, T.R. Interferon stimulated genes, CXCR4 and immune cell responses in peripheral blood mononuclear cells infected with bovine viral diarrhea virus. Res. J. Vet. Sci. 2012, 93, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Shoemaker, M.L.; Smirnova, N.P.; Bielefeldt-Ohmann, H.; Austin, K.J.; van Olphen, A.; Clapper, J.A.; Hansen, T.R. Differential expression of the type I interferon pathway during persistent and transient bovine viral diarrhea virus infection. JICR 2009, 29, 23–36. [Google Scholar] [CrossRef]
- Knapek, K.J.; Georges, H.M.; Van Campen, H.; Bishop, J.V.; Bielefeldt-Ohmann, H.; Smirnova, N.P.; Hansen, T.R. Fetal lymphoid organ immune responses to transient and persistent infection with bovine viral diarrhea virus. Viruses 2020, 12, 816. [Google Scholar] [CrossRef]
- Nguyen-Dumont, T.; Pope, B.J.; Hammet, F.; Park, D.J. A High-plex PCR Approach for Massively Parallel Sequencing. Biotechniques 2013, 55, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Dodson, M.V.; Allen, R.E.; Du, M.; Bergen, W.G.; Velleman, S.G.; Poulos, S.P.; Fernyhough-Culver, M. Invited Review: Evolution of Meat Animal Growth Research during the past 50 Years: Adipose and Muscle Stem Cells. J. Anim. Sci. 2015, 93, 457–481. [Google Scholar] [CrossRef] [PubMed]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A python framework to work with high-throughput sequencing data. Bioinformatics 2014, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 4 November 2024).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 2017, 14, 417–419. [Google Scholar] [CrossRef]
- Huang, D.; Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The david gene functional classification tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007, 8, R183. [Google Scholar] [CrossRef]
- Kanehisa, M. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Platanias, L.C. Mechanisms of type-I- and type-II-interferon-mediated signaling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef]
- Gough, D.J.; Messina, N.L.; Hii, L.; Gould, J.A.; Sabapathy, K.; Robertson, A.P.; Trapani, J.A.; Levy, D.E.; Hertzog, P.J.; Clarke, C.J.; et al. Functional crosstalk between type I and II interferon through the regulated expression of STAT1. PLoS Biol. 2010, 8, e1000361. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Liu, Y.; Liang, L.; Cui, S.; Zhang, Y. RNA-seq based transcriptome analysis during bovine viral diarrhoea virus (BVDV) infection. BMC Genom. 2019, 20, 774. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X. The role of interferon γ in regulation of CD4+ T-cells and its clinical implications. Cell. Immunol. 2009, 254, 85–90. [Google Scholar] [CrossRef]
- Wu, X.; Hou, W.; Sun, S.; Bi, E.; Wang, Y.; Shi, M.; Zang, J.; Dong, C.; Sun, B. Novel function of IFN-γ: Negative regulation of dendritic cell migration and T cell priming. J. Immunol. Res. 2006, 177, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.S.; Cheng, G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef]
- Chen, J.; Liu, X.S. Development and function of IL-10 IFN-γ-secreting CD4+ T cells. J. Leukoc. Biol. 2009, 86, 1305–1310. [Google Scholar] [CrossRef]
- Mendes, E.A.; Mendes, T.A.; Santos, S.L.; Menezes-Souza, D.; Bartholomeu, D.C.; Martins, I.V.; Silva, L.M.; dos Lima, W. Expression of IL-4, IL-10 and IFN-γ in the liver tissue of cattle that are naturally infected with Fasciola hepatica. Vet. Parasitol. 2013, 195, 177–182. [Google Scholar] [CrossRef]
- Tirumurugaan, K.; Pawar, R.; Dhinakar Raj, G.; Thangavelu, A.; Hammond, J.; Parida, S. RNAseq reveals the contribution of interferon stimulated genes to the increased host defense and decreased PPR viral replication in cattle. Viruses 2020, 12, 463. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.; Fischl, M.A.; Pahwa, R.; Sachdeva, N.; Pahwa, S. Immune exhaustion occurs concomitantly with immune activation and decrease in regulatory T cells in viremic chronically HIV-1–infected patients. JAIDS 2010, 54, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Hornung, V.; Hartmann, R.; Ablasser, A.; Hopfner, K.-P. Oas proteins and cgas: Unifying concepts in sensing and responding to cytosolic nucleic acids. Nat. Rev. Immunol. 2014, 14, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.L.; Park, E.N.; Vachon, V.K.; Danzy, S.; Lowen, A.C.; Conn, G.L. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Res. 2020, 48, 7520–7531. [Google Scholar] [CrossRef]
- Choi, U.Y.; Kang, J.S.; Hwang, Y.S.; Kim, Y.J. Oligoadenylate synthase-like (OASL) proteins: Dual functions and associations with diseases. EMM 2015, 47, e144. [Google Scholar] [CrossRef]
- Nilson, S.M.; Workman, A.M.; Sjeklocha, D.; Brodersen, B.; Grotelueschen, D.M.; Petersen, J.L. Upregulation of the type I interferon pathway in feedlot cattle persistently infected with bovine viral diarrhea virus. Virus Res. 2020, 278, 197862. [Google Scholar] [CrossRef]
- Tizioto, P.C.; Kim, J.; Seabury, C.M.; Schnabel, R.D.; Gershwin, L.J.; Van Eenennaam, A.L.; Toaff-Rosenstein, R.; Neibergs, H.L.; Taylor, J.F. Immunological response to single pathogen challenge with agents of the bovine respiratory disease complex: An RNA-sequence analysis of the bronchial lymph node transcriptome. PLoS ONE 2015, 10, e0131459. [Google Scholar] [CrossRef]
- Johnston, D.; Earley, B.; McCabe, M.S.; Lemon, K.; Duffy, C.; McMenamy, M.; Cosby, S.L.; Kim, J.; Blackshields, G.; Taylor, J.F.; et al. Experimental challenge with bovine respiratory syncytial virus in dairy calves: Bronchial lymph node transcriptome response. Sci. Rep. 2019, 9, 14736. [Google Scholar] [CrossRef]
- O’Donoghue, S.; Earley, B.; Johnston, D.; McCabe, M.S.; Kim, J.W.; Taylor, J.F.; Duffy, C.; Lemon, K.; McMenamy, M.; Cosby, S.L.; et al. Whole blood transcriptome analysis in dairy calves experimentally challenged with bovine herpesvirus 1 (BOHV-1) and comparison to a bovine respiratory syncytial virus (BRSV) challenge. Front. Genet. 2023, 14, 1092877. [Google Scholar] [CrossRef]
- Gomes, V.; Basqueira, N.S.; Silva, K.N.; Pituco, E.M.; Pacito, S.A.; Hurley, D.J. Impact of persistent bovine viral diarrhea virus infection on indicators of innate and adaptive immune function in Holstein calves and cows. Ciência Rural 2023, 53, e20210819. [Google Scholar] [CrossRef]
Gene ID | Entrez Gene ID | Gene Name | * Fold Change | p Value | FDR |
---|---|---|---|---|---|
IL10 | 281246 | interleukin 10 | 2.13 | 1.8 × 10−5 | 0.001 |
ATF3 | 515266 | activating transcription factor 3 | 1.86 | 2.6 × 10−4 | 0.002 |
IFNG | 281237 | interferon-gamma | 1.21 | 4.8 × 10−3 | 0.014 |
CCL4 | 414347 | C-C motif chemokine ligand 4 | 1.01 | 2.6 × 10−2 | 0.050 |
CCL3 | 282170 | chemokine (C-C motif) ligand 3 | 0.96 | 7.2 × 10−4 | 0.004 |
XAF1 | 509740 | XIAP associated factor 1 | 0.91 | 5.5 × 10−5 | 0.001 |
XRCC5 | 531945 | X-ray repair cross-complementing 5 | 0.75 | 1.1 × 10−2 | 0.024 |
HSF1 | 506235 | heat shock transcription factor 1 | 0.50 | 1.0 × 10−3 | 0.005 |
COX11 | 510509 | cytochrome c oxidase copper chaperone COX11 | 0.46 | 2.9 × 10−3 | 0.009 |
GNB1 | 281201 | G protein subunit beta 1 | 0.33 | 1.1 × 10−4 | 0.001 |
HSPD1 | 511913 | heat shock protein family D (Hsp60) member 1 | 0.33 | 1.5 × 10−2 | 0.032 |
EIF1 | 509764 | eukaryotic translation initiation factor 1 | 0.31 | 6.6 × 10−4 | 0.004 |
CCNB1 | 327679 | cyclin B1 | 0.30 | 8.8 × 10−3 | 0.022 |
CXCL8 | 280828 | C-X-C motif chemokine ligand 8 | 0.15 | 1.8 × 10−3 | 0.007 |
CTDSP2 | 506115 | CTD small phosphatase 2 | 0.13 | 4.2 × 10−3 | 0.013 |
IFI16 | 506759 | interferon-gamma-inducible protein 16 | 0.10 | 2.5 × 10−3 | 0.009 |
IRF3 | 516979 | interferon regulatory factor 3 | −0.06 | 1.2 × 10−2 | 0.026 |
RPS17 | 788861 | ribosomal protein S17 | −0.07 | 1.2 × 10−3 | 0.005 |
PTGES3 | 493638 | prostaglandin E synthase 3 | −0.15 | 7.0 × 10−3 | 0.020 |
UBC | 444874 | ubiquitin C | −0.16 | 5.7 × 10−4 | 0.004 |
CASP4 | 338039 | caspase 4, apoptosis-related cysteine peptidase | −0.18 | 8.5 × 10−5 | 0.001 |
STAT3 | 508541 | signal transducer and activator of transcription 3 | −0.26 | 8.4 × 10−3 | 0.022 |
MX1 | 280872 | MX dynamin like GTPase 1 | −0.26 | 2.3 × 10−2 | 0.046 |
RAF1 | 521196 | Raf-1 proto-onco, serine/threonine kinase | −0.34 | 9.6 × 10−4 | 0.005 |
IFI35 | 510697 | interferon-induced protein 35 | −0.35 | 1.1 × 10−2 | 0.024 |
GBP5 | 516949 | guanylate binding protein 5 | −0.37 | 2.7 × 10−3 | 0.009 |
OAS1X | 347699 | 2′,5′-oligoadenylate synthetase 1, 40/46 kDa | −0.62 | 2.5 × 10−4 | 0.002 |
CXCR6 | 506807 | C-X-C motif chemokine receptor 6 | −0.62 | 9.7 × 10−3 | 0.024 |
OAS1Z | 519922 | 2′,5′-oligoadenylate synthetase 1, 40/46 kDa | −1.09 | 1.6 × 10−4 | 0.002 |
Category | Term | Count | % | p Value | FDR |
---|---|---|---|---|---|
KEGG_PATHWAY | bta05160:Hepatitis C | 7 | 24 | 3.4 × 10−6 | 2.3 × 10−4 |
KEGG_PATHWAY | bta05164:Influenza A | 7 | 24 | 5.6 × 10−6 | 2.3 × 10−4 |
KEGG_PATHWAY | bta04062:Chemokine signaling pathway | 7 | 24 | 6.2 × 10−6 | 2.3 × 10−4 |
KEGG_PATHWAY | bta04621:NOD-like receptor signaling pathway | 7 | 24 | 6.7 × 10−6 | 2.3 × 10−4 |
KEGG_PATHWAY | bta05163:Human cytomegalovirus infection | 7 | 24 | 2.9 × 10−5 | 7.9 × 10−4 |
KEGG_PATHWAY | bta05171:Coronavirus disease—COVID-19 | 7 | 24 | 5.6 × 10−5 | 1.3 × 10−3 |
KEGG_PATHWAY | bta05167:Kaposi sarcoma-associated herpesvirus infection | 6 | 21 | 1.9 × 10−4 | 3.7 × 10−3 |
KEGG_PATHWAY | bta05162:Measles | 5 | 17 | 6.4 × 10−4 | 1.1 × 10−2 |
KEGG_PATHWAY | bta04060:Cytokine-cytokine receptor interaction | 6 | 21 | 1.3 × 10−3 | 1.9 × 10−2 |
KEGG_PATHWAY | bta04061:Viral protein interaction with cytokine and cytokine receptor | 4 | 14 | 1.7 × 10−3 | 2.3 × 10−2 |
KEGG_PATHWAY | bta05417:Lipid and atherosclerosis | 5 | 17 | 2.8 × 10−3 | 3.4 × 10−2 |
KEGG_PATHWAY | bta04620:Toll-like receptor signaling pathway | 4 | 14 | 3.0 × 10−3 | 3.4 × 10−2 |
KEGG_PATHWAY | bta05142:Chagas disease | 4 | 14 | 3.5 × 10−3 | 3.6 × 10−2 |
KEGG_PATHWAY | bta04068:FoxO signaling pathway | 4 | 14 | 4.3 × 10−3 | 4.1 × 10−2 |
GOTERM_CC_DIRECT | GO:0005737~cytoplasm | 14 | 48 | 2.5 × 10−4 | 1.5 × 10−2 |
GOTERM_BP_DIRECT | GO:0006954~inflammatory response | 6 | 21 | 3.5 × 10−5 | 1.1 × 10−2 |
GOTERM_BP_DIRECT | GO:0050729~positive regulation of inflammatory response | 4 | 14 | 1.2 × 10−4 | 1.8 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adkins, M.; Moisa, S.; Beever, J.; Lear, A. Targeted Transcriptome Analysis of Beef Cattle Persistently Infected with Bovine Viral Diarrhea Virus. Genes 2024, 15, 1500. https://doi.org/10.3390/genes15121500
Adkins M, Moisa S, Beever J, Lear A. Targeted Transcriptome Analysis of Beef Cattle Persistently Infected with Bovine Viral Diarrhea Virus. Genes. 2024; 15(12):1500. https://doi.org/10.3390/genes15121500
Chicago/Turabian StyleAdkins, Morgan, Sonia Moisa, Jon Beever, and Andrea Lear. 2024. "Targeted Transcriptome Analysis of Beef Cattle Persistently Infected with Bovine Viral Diarrhea Virus" Genes 15, no. 12: 1500. https://doi.org/10.3390/genes15121500
APA StyleAdkins, M., Moisa, S., Beever, J., & Lear, A. (2024). Targeted Transcriptome Analysis of Beef Cattle Persistently Infected with Bovine Viral Diarrhea Virus. Genes, 15(12), 1500. https://doi.org/10.3390/genes15121500