Placenta Thickness Mediates the Association Between AKIP1 Methylation in Maternal Peripheral Blood and Full-Term Small for Gestational Age Neonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Measurement
2.4. Sample Collection and DNA Extraction
2.5. DNA Methylation Analysis Using Sequenom MassARRAY Platform
2.6. Statistical Analyses
3. Results
3.1. Population Characteristics
3.2. Association of DNAm of AKIP1 and the Risk of FT-SGA
3.3. The Relationship of Placental Characteristics with the DNAm of AKIP1 and the Risk of FT-SGA
3.4. Mediation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Levine, T.A.; Grunau, R.E.; McAuliffe, F.M.; Pinnamaneni, R.; Foran, A.; Alderdice, F.A. Early childhood neurodevelopment after intrauterine growth restriction: A systematic review. Pediatrics 2015, 135, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Gluckman, P.D.; Hanson, M.A.; Cooper, C.; Cooper, C.; Thornburg, K.L. Effect of in utero and early-life conditions on adult health and disease. New Engl. J. Med. 2008, 359, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Lawn, J.E.; Ohuma, E.O.; Bradley, E.; Idueta, L.S.; Hazel, E.; Okwaraji, Y.B.; Erchick, D.J.; Yargawa, J.; Katz, J.; Lee, A.C.C.; et al. Small babies, big risks: Global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet 2023, 401, 1707–1719. [Google Scholar] [CrossRef]
- Ananth, C.V.; Vintzileos, A.M. Distinguishing pathological from constitutional small for gestational age births in population-based studies. Early Hum. Dev. 2009, 85, 653–658. [Google Scholar] [CrossRef]
- Burton, G.J.; Fowden, A.L. The placenta: A multifaceted, transient organ. Philos. Trans. R. Soc. B 2015, 370, 20140066. [Google Scholar] [CrossRef]
- Vachon-Marceau, C.; Demers, S.; Markey, S.; Okun, N.; Girard, M.; Kingdom, J.; Bujold, E. First-trimester placental thickness and the risk of preeclampsia or SGA. Placenta 2017, 57, 123–128. [Google Scholar] [CrossRef]
- Salafia, C.M.; Maas, E.; Thorp, J.M.; Eucker, B.; Pezzullo, J.C.; Savitz, D.A. Measures of placental growth in relation to birth weight and gestational age. Am. J. Epidemiol. 2005, 162, 991–998. [Google Scholar] [CrossRef]
- Yulia, A.; Singh, N.; Varley, A.J.; Lei, K.; Markovic, D.; Sooranna, S.R.; Johnson, M.R. PKA and AKIP1 interact to mediate cAMP-driven COX-2 expression: A potentially pivotal interaction in preterm and term labour. PLoS ONE 2021, 16, e0252720. [Google Scholar] [CrossRef]
- Kingdom, J.C.; Audette, M.C.; Hobson, S.R.; Windrim, R.C.; Morgen, E. A placenta clinic approach to the diagnosis and management of fetal growth restriction. Am. J. Obstet. Gynecol. 2018, 218, S803–S817. [Google Scholar] [CrossRef]
- Fujioka, K.; Nishida, K.; Ashina, M.; Abe, S.; Fukushima, S.; Ikuta, T.; Ohyama, S.; Morioka, I.; Iijima, K. DNA methylation of the Rtl1 promoter in the placentas with fetal growth restriction. Pediatr. Neonatol. 2019, 60, 512–516. [Google Scholar] [CrossRef]
- Wu, W.B.; Xu, Y.Y.; Cheng, W.W.; Yuan, B.; Zhao, J.R.; Wang, Y.L.; Zhang, H.J. Decreased PGF may contribute to trophoblast dysfunction in fetal growth restriction. Reproduction 2017, 154, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Vlahović, M.; Bulić-Jakus, F.; Jurić-Lekić, G.; Fucic, A.; Maric, S.; Serman, D. Changes in the placenta and in the rat embryo caused by the demethylating agent 5-azacytidine. Int. J. Dev. Biol. 1999, 43, 843–846. [Google Scholar] [PubMed]
- Rahnama, F.; Shafiei, F.; Gluckman, P.D.; Mitchell, M.D.; Lobie, P.E. Epigenetic regulation of human trophoblastic cell migration and invasion. Endocrinology 2006, 147, 5275–5283. [Google Scholar] [CrossRef] [PubMed]
- Küpers, L.K.; Monnereau, C.; Sharp, G.C.; Fucić, A.; Marić, S.; Serman, D. Meta-analysis of epigenome-wide association studies in neonates reveals widespread differential DNA methylation associated with birthweight. Nat. Commun. 2019, 10, 1893. [Google Scholar] [CrossRef]
- Lo, Y.M.; Corbetta, N.; Chamberlain, P.F.; Rai, V.; Sargent, I.L.; Redman, C.W.; Wainscoat, J.S. Presence of fetal DNA in maternal plasma and serum. Lancet 1997, 350, 485–487. [Google Scholar] [CrossRef]
- Capital Institute of Pediatrics; Coordinating Study Group of Nine Cities on the Physical Growth and Development of Children. Growth standard curves of birth weight, length and head circumference of Chinese newborns of different gestation. Zhonghua Er. Ke Za Zhi 2020, 58, 46. [Google Scholar]
- Leyto, S.M.; Mare, K.U. Association of Placental Parameters with Low Birth Weight Among Neonates Born in the Public Hospitals of Hadiya Zone, Southern Ethiopia: An Institution-Based Cross-Sectional Study. Int. J. Gen. Med. 2022, 15, 5005–5014. [Google Scholar] [CrossRef]
- Baron, R.M.; Kenny, D.A. The moderator-mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Hayes, A.F. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. J. Educ. Meas. 2013, 51, 335–337. [Google Scholar]
- Vanderweele, T.J.; Vansteelandt, S. Odds ratios for mediation analysis for a dichotomous outcome. Am. J. Epidemiol. 2010, 172, 1339–1348. [Google Scholar] [CrossRef]
- Tzschoppe, A.; Doerr, H.; Rascher, W.; Goecke, T.; Beckmann, M.; Schild, R.; Struwe, E.; Geisel, J.; Jung, H.; Dötsch, J. DNA methylation of the p66Shc promoter is decreased in placental tissue from women delivering intrauterine growth restricted neonates. Prenat. Diagn. 2013, 33, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.; García, C.; Sebastiani, G.; de Zegher, F.; López-Bermejo, A.; Ibáñez, L. Placental and Cord Blood Methylation of Genes Involved in Energy Homeostasis: Association With Fetal Growth and Neonatal Body Composition. Diabetes 2017, 66, 779–784. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, D.W.; Chiu, R.W.K. Sequencing of Circulating Cell-free DNA during Pregnancy. N. Engl. J. Med. 2018, 379, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Gascoigne, E.L.; Roell, K.R.; Eaves, L.A.; Fry, R.C.; Manuck, T.A. Accelerated epigenetic clock aging in maternal peripheral blood and preterm birth. Am. J. Obstet. Gynecol. 2024, 230, 559.e1–559.e9. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, W.; Zhang, S.; Feng, S.; Feng, F.; Dai, J.; Zhang, X.; Tian, P.; Wang, S.; Zhao, Z.; et al. Non-invasive prediction of preeclampsia using the maternal plasma cell-free DNA profile and clinical risk factors. Front. Med. 2024, 11, 1254467. [Google Scholar] [CrossRef]
- Chen, Z.; Wen, H.; Zhang, J.; Zou, X.; Wu, S. Silencing of AKIP1 Suppresses the Proliferation, Migration, and Epithelial-Mesenchymal Transition Process of Glioma Cells by Upregulating DLG2. Biomed Res. Int. 2022, 2022, 5648011. [Google Scholar] [CrossRef]
- Wang, W.; Xie, Y.; Han, X.; Liu, Y.; Li, P. Correlation of A-Kinase Interacting Protein 1 With Clinical Features, Treatment Response, and Survival Profiles in Patients With Multiple Myeloma. Technol. Cancer Res. Treat. 2020, 19, 1533033820935856. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, H.; Ke, K.; Ma, C. A-kinase interacting protein 1 as a potential biomarker of advanced tumor features and increased recurrence risk in papillary thyroid carcinoma patients. J. Clin. Lab. Anal. 2020, 34, e23452. [Google Scholar] [CrossRef]
- Gao, N.; Asamitsu, K.; Hibi, Y.; Ueno, T.; Okamoto, T. AKIP1 enhances NF-kappaB-dependent gene expression by promoting the nuclear retention and phosphorylation of p65. J. Biol. Chem. 2008, 283, 7834–7843. [Google Scholar] [CrossRef]
- King, C.C.; Sastri, M.; Chang, P.; Pennypacker, J.; Taylor, S.S. The rate of NF-κB nuclear translocation is regulated by PKA and A kinase interacting protein 1. PLoS ONE 2011, 6, e18713. [Google Scholar] [CrossRef]
- Armistead, B.; Kadam, L.; Drewlo, S.; Kohan-Ghadr, H.R. The Role of NFκB in Healthy and Preeclamptic Placenta: Trophoblasts in the Spotlight. Int. J. Mol. Sci. 2020, 21, 1775. [Google Scholar] [CrossRef] [PubMed]
- Mor, G.; Aldo, P.; Alvero, A.B. The unique immunological and microbial aspects of pregnancy. Nat. Rev. Immunol. 2017, 17, 469–482. [Google Scholar] [CrossRef] [PubMed]
- Yunna, C.; Mengru, H.; Lei, W.; Weidong, C. Macrophage M1/M2 polarization. Eur. J. Pharmacol. 2020, 877, 173090. [Google Scholar] [CrossRef] [PubMed]
- Falahat, R.; Berglund, A.; Putney, R.M.; Perez-Villarroel, P.; Aoyama, S.; Pilon-Thomas, S.; Barber, G.N.; Mulé, J.J. Epigenetic reprogramming of tumor cell-intrinsic STING function sculpts antigenicity and T cell recognition of melanoma. Proc. Natl. Acad. Sci. USA 2021, 118, e2013598118. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Dai, W.; Xu, X.; Ni, Q.; Yi, X.; Kang, P.; Ma, J.; Wu, L.; Li, C.; et al. Oxidative stress-induced hypermethylation and low expression of ANXA2R: Novel insights into the dysfunction of melanocytes in vitiligo. J. Dermatol. Sci. 2024, 114, 115–123. [Google Scholar] [CrossRef]
- Salafia, C.M.Z.J.; Charles, A.K.; Bresnahan, M.; Shrout, P.; Sun, W.; Maas, E.M. Placental characteristics and birthweight. Paediatr Perinat. Epidemiol. 2008, 22, 229–239. [Google Scholar] [CrossRef]
- Freedman, A.A.H.C.; Marsit, C.J.; Rajakumar, A.; Smith, A.K.; Goldenberg, R.L.; Dudley, D.J.; Saade, G.R.; Silver, R.M.; Gibbins, K.J.; Stoll, B.J.; et al. Associations Between the Features of Gross Placental Morphology and Birthweight. Pediatr. Dev. Pathol. 2019, 22, 194–204. [Google Scholar] [CrossRef]
- Niu, Z.; Xie, C.; Wen, X.; Tian, F.; Ding, P.; He, Y.; Lin, J.; Yuan, S.; Guo, X.; Jia, D.; et al. Placenta mediates the association between maternal second-hand smoke exposure during pregnancy and small for gestational age. Placenta 2015, 36, 876–880. [Google Scholar] [CrossRef]
- Huang, L.; Fan, L.; Ding, P.; He, Y.H.; Xie, C.; Niu, Z.; Tian, F.Y.; Yuan, S.; Jia, D.; Chen, W.Q. The mediating role of placenta in the relationship between maternal exercise during pregnancy and full-term low birth weight. J. Matern. Fetal. Neonatal Med. 2018, 31, 1561–1567. [Google Scholar] [CrossRef]
- Togher, K.L.; O’Keeffe, G.W.; Khashan, A.S.; Clarke, G.; Kenny, L.C. Placental FKBP51 mediates a link between second trimester maternal anxiety and birthweight in female infants. Sci. Rep. 2018, 8, 15151. [Google Scholar] [CrossRef]
- Sato, N.; Fudono, A.; Imai, C.; Takimoto, H.; Tarui, I.; Aoyama, T.; Yago, S.; Okamitsu, M.; Mizutani, S.; Miyasaka, N. Placenta mediates the effect of maternal hypertension polygenic score on offspring birth weight: A study of birth cohort with fetal growth velocity data. BMC Med. 2021, 19, 260. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.Y.; Wang, X.M.; Xie, C.; Zhao, B.; Niu, Z.; Fan, L.; Hivert, M.F.; Chen, W.Q. Placental surface area mediates the association between FGFR2 methylation in placenta and full-term low birth weight in girls. Clin. Epigenetics 2018, 10, 39. [Google Scholar] [CrossRef] [PubMed]
- Song, M.A.; Seffernick, A.E.; Archer, K.J.; Mori, K.M.; Park, S.Y.; Chang, L.; Ernst, T.; Tiirikainen, M.; Peplowska, K.; Wilkens, L.R.; et al. Race/ethnicity-associated blood DNA methylation differences between Japanese and European American women: An exploratory study. Clin. Epigenetics 2021, 13, 188. [Google Scholar] [CrossRef]
- Lin, Z.; Lu, Y.; Yu, G.; Teng, H.; Wang, B.; Yang, Y.; Li, Q.; Sun, Z.; Xu, S.; Wang, W.; et al. Genome-wide DNA methylation landscape of four Chinese populations and epigenetic variation linked to Tibetan high-altitude adaptation. Sci. China Life Sci. 2023, 66, 2354–2369. [Google Scholar] [CrossRef]
- Fortin, J.P.; Triche, T.J., Jr.; Hansen, K.D. Preprocessing, normalization and integration of the Illumina HumanMethylationEPIC array with minfi. Bioinformatics 2017, 33, 558–560. [Google Scholar]
- Zhou, W.; Laird, P.W.; Shen, H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017, 45, e22. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Marabita, F.; Lechner, M.; Bartlett, T.; Tegner, J.; Gomez-Cabrero, D.; Beck, S. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics 2013, 29, 189–196. [Google Scholar] [CrossRef]
- Teschendorff, A.E.; Menon, U.; Gentry-Maharaj, A.; Ramus, S.J.; Gayther, S.A.; Apostolidou, S.; Jones, A.; Lechner, M.; Beck, S.; Jacobs, I.J.; et al. An epigenetic signature in peripheral blood predicts active ovarian cancer. PLoS ONE 2009, 4, e8274. [Google Scholar] [CrossRef]
- Johnson, W.E.; Li, C.; Rabinovic, A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8, 118–127. [Google Scholar] [CrossRef]
- Houseman, E.A.; Accomando, W.P.; Koestler, D.C.; Christensen, B.C.; Marsit, C.J.; Nelson, H.H.; Wiencke, J.K.; Kelsey, K.T. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform. 2012, 13, 86. [Google Scholar] [CrossRef]
Characteristic | Overall (N = 168) | FT-AGA (N = 84) | FT-SGA (N = 84) | p-Value |
---|---|---|---|---|
Mothers | ||||
Age (year), mean (SD) | 30.27 (4.9) | 31.24 (5.2) | 29.30 (4.4) | 0.010 |
Pre-pregnancy BMI, N (%) | >0.999 | |||
normal | 108 (64.3) | 54 (64.3) | 54 (64.3) | |
underweight | 46 (27.4) | 23 (27.4) | 23 (27.4) | |
overweight | 14 (8.3) | 7 (8.3) | 7 (8.3) | |
Marriage status, married, N (%) | 164 (98%) | 83 (99%) | 81 (96%) | 0.620 |
Monthly income, <5000/month, N (%) | 22 (13%) | 12 (14%) | 10 (12%) | 0.572 |
Education, high school or lower, N (%) | 17 (10.1) | 7 (8.3) | 10 (11.9) | 0.636 |
Employment status, employed, N (%) | 154 (92%) | 79 (94%) | 75 (89%) | 0.403 |
Pre-pregnancy smoking, N (%) | 4 (2.4%) | 2 (2.4%) | 2 (2.4%) | >0.999 |
Pre-pregnancy alcohol intake, N (%) | 15 (8.9%) | 5 (6.0%) | 10 (12%) | 0.279 |
Parity, primiparity, N (%) | 122 (73%) | 61 (73%) | 61 (73%) | >0.999 |
Conception method, spontaneous conception, N (%) | 154 (92%) | 76 (90%) | 78 (93%) | 0.781 |
Placenta | ||||
Maximum axis (cm), mean (SD) | 19.84 (1.3) | 20.22 (1.2) | 19.45 (1.3) | <0.001 |
Minimum axis (cm), mean (SD) | 18.31 (1.3) | 18.62 (1.5) | 18.00 (1.0) | 0.002 |
Thickness (cm), mean (SD) | 2.56 (0.2) | 2.63 (0.2) | 2.49 (0.3) | <0.001 |
Area (cm2), mean (SD) | 286.05 (36.1) | 296.66 (39.4) | 275.43 (29.0) | <0.001 |
Weight (gram), mean (SD) | 509.34 (57.2) | 528.96 (61.6) | 489.71 (44.8) | <0.001 |
Infants | ||||
Sex, female, N (%) | 68 (40%) | 46 (55%) | 54 (64%) | 0.271 |
Gestational weeks (w), mean (SD) | 39.17 (1.2) | 39.13 (1.3) | 39.21 (1.1) | 0.641 |
Birthweight (gram), mean (SD) | 2954.80 (354.5) | 3204.52 (279.6) | 2705.07 (220.2) | <0.001 |
Birth length (cm), mean (SD) | 48.98 (1.7) | 49.89 (1.4) | 48.07 (1.4) | <0.001 |
Head circumference (cm), mean (SD) | 32.64 (1.2) | 33.18 (1.0) | 32.10 (1.1) | <0.001 |
Mean (SD) | Odds Ratio for Per Standard Deviation Increments (95% CI) a | p Value | ||
---|---|---|---|---|
FT-AGA | FT-SGA | |||
AKIP1 | ||||
CpG4 | 0.08 (0.03) | 0.10 (0.03) | 2.01 (1.39, 3.01) | <0.001 |
CpG5 | 0.06 (0.03) | 0.05 (0.02) | 0.79 (0.58, 1.06) | 0.122 |
CpG9 | 0.34 (0.13) | 0.35 (0.10) | 1.08 (0.78, 1.49) | 0.662 |
Placental area | 296.66 (39.44) | 275.43 (28.99) | 0.40 (0.23, 0.62) | <0.001 |
Placental thickness | 2.63 (0.21) | 2.49 (0.25) | 0.45 (0.26, 0.71) | 0.002 |
Placental weight | 528.96 (61.61) | 489.71 (44.83) | 0.28 (0.14, 0.47) | <0.001 |
AKIP1 CpG Sites | Adjusted Coefficient (95%CI) a | ||
---|---|---|---|
Placental Area | Placental Thickness | Placental Weight | |
CpG4 | −0.19 (−0.36, −0.03) * | −0.19 (−0.32, −0.06) ** | −0.20 (−0.36, −0.05) * |
CpG5 | 0.30 (0.17, 0.43) *** | −0.02 (−0.13, 0.09) | 0.29 (0.16, 0.42) *** |
CpG9 | 0.22 (0.07, 0.37) *** | −0.04 (0.16, 0.09) | 0.20 (0.05, 0.34) ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Wei, M.; Liu, X.; Li, X.; Liu, X.; Chen, W. Placenta Thickness Mediates the Association Between AKIP1 Methylation in Maternal Peripheral Blood and Full-Term Small for Gestational Age Neonates. Genes 2024, 15, 1510. https://doi.org/10.3390/genes15121510
Zhu H, Wei M, Liu X, Li X, Liu X, Chen W. Placenta Thickness Mediates the Association Between AKIP1 Methylation in Maternal Peripheral Blood and Full-Term Small for Gestational Age Neonates. Genes. 2024; 15(12):1510. https://doi.org/10.3390/genes15121510
Chicago/Turabian StyleZhu, Huimin, Min Wei, Xuemei Liu, Xiuxiu Li, Xuhua Liu, and Weiqing Chen. 2024. "Placenta Thickness Mediates the Association Between AKIP1 Methylation in Maternal Peripheral Blood and Full-Term Small for Gestational Age Neonates" Genes 15, no. 12: 1510. https://doi.org/10.3390/genes15121510
APA StyleZhu, H., Wei, M., Liu, X., Li, X., Liu, X., & Chen, W. (2024). Placenta Thickness Mediates the Association Between AKIP1 Methylation in Maternal Peripheral Blood and Full-Term Small for Gestational Age Neonates. Genes, 15(12), 1510. https://doi.org/10.3390/genes15121510