Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Single-Copy Orthologous Genes and Gene Families
2.2. Phylogenetic Analysis with RaxML
2.3. Divergence Time
2.4. Expansion and Contraction of Gene Families
2.5. GO and KEGG Analysis
2.6. Phenotype and QTL Analysis
3. Results
3.1. Identification and Comparison of Homologous Genes and Gene Family
3.2. Phylogenetic Relationships and Divergence Time
3.3. Expansion and Contraction of Gene Families
3.4. Gene Family Contraction and Adaptive Avoidance
3.5. Association between Expanded and Contracted Gene Families with QTLs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ai, H.; Fang, X.; Yang, B.; Huang, Z.; Chen, H.; Mao, L.; Zhang, F.; Zhang, L.; Cui, L.; He, W.; et al. Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nat. Genet. 2015, 47, 217–225. [Google Scholar] [CrossRef]
- Wilson, D.E.; Reeder, D.M. Mammal Species of the World: A Taxonomic and Geographic Reference; JHU Press: Baltimore, MD, USA, 2005; Volume 1. [Google Scholar]
- McNaughton, S.A.; Georgiadis, N.J. Ecology of African grazing and browsing mammals. Annu. Rev. Ecol. Syst. 1986, 17, 39–66. [Google Scholar] [CrossRef]
- Wu, G.-S.; Pang, J.-F.; Zhang, Y.-P. Molecular phylogeny and phylogeography of Suidae. Zool. Res. 2006, 27, 197–201. [Google Scholar]
- Demuth, J.P.; Bie, T.D.; Stajich, J.E.; Cristianini, N.; Hahn, M.W. The evolution of mammalian gene families. PLoS ONE 2006, 1, e85. [Google Scholar] [CrossRef] [PubMed]
- de Jong, Y.A.; Butynski, T.M. Distribution, abundance, ecology, and conservation status of the desert warthog (Phacochoerus aethiopicus) in northern Kenya. Suiform Sound. 2014, 13, 48. [Google Scholar]
- Fine, P.V. Ecological and evolutionary drivers of geographic variation in species diversity. Annu. Rev. Ecol. Evol. Syst. 2015, 46, 369–392. [Google Scholar] [CrossRef]
- Macciotta, N.P.; Colli, L.; Cesarani, A.; Ajmone-Marsan, P.; Low, W.Y.; Tearle, R.; Williams, J.L. The distribution of runs of homozygosity in the genome of river and swamp buffaloes reveals a history of adaptation, migration and crossbred events. Genet. Sel. Evol. 2021, 53, 1–21. [Google Scholar] [CrossRef]
- Dutta, P.; Talenti, A.; Young, R.; Jayaraman, S.; Callaby, R.; Jadhav, S.K.; Dhanikachalam, V.; Manikandan, M.; Biswa, B.B.; Low, W.Y. Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nat. Commun. 2020, 11, 4739. [Google Scholar] [CrossRef]
- Luo, X.; Zhou, Y.; Zhang, B.; Zhang, Y.; Wang, X.; Feng, T.; Li, Z.; Cui, K.; Wang, Z.; Luo, C. Understanding divergent domestication traits from the whole-genome sequencing of swamp-and river-buffalo populations. Natl. Sci. Rev. 2020, 7, 686–701. [Google Scholar] [CrossRef]
- Podgórski, T.; Borowik, T.; Łyjak, M.; Woźniakowski, G. Spatial epidemiology of African swine fever: Host, landscape and anthropogenic drivers of disease occurrence in wild boar. Prev. Vet. Med. 2020, 177, 104691. [Google Scholar] [CrossRef]
- Zheng, X.; Nie, S.; Feng, W.-H. Regulation of antiviral immune response by African swine fever virus (ASFV). Virol. Sin. 2022, 37, 157–167. [Google Scholar] [CrossRef]
- Njau, E.P.; Machuka, E.M.; Cleaveland, S.; Shirima, G.M.; Kusiluka, L.J.; Okoth, E.A.; Pelle, R. African swine fever virus (ASFV): Biology, genomics and genotypes circulating in sub-Saharan Africa. Viruses 2021, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Jori, F.; Bastos, A.D. Role of wild suids in the epidemiology of African swine fever. EcoHealth 2009, 6, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Manrubia, S.; Cuesta, J.A.; Aguirre, J.; Ahnert, S.E.; Altenberg, L.; Cano, A.V.; Catalán, P.; Diaz-Uriarte, R.; Elena, S.F.; García-Martín, J.A. From genotypes to organisms: State-of-the-art and perspectives of a cornerstone in evolutionary dynamics. Phys. Life Rev. 2021, 38, 55–106. [Google Scholar] [CrossRef] [PubMed]
- Chhaya, P. Nature of Relationship Between a Genotype and Phenotype. In The Topological Model of Genome and Evolution: Understanding the Origin and Nature of Life; Springer: Berlin/Heidelberg, Germany, 2023; pp. 81–137. [Google Scholar]
- Auboeuf, D. The Physics–Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. Prog. Biophys. Mol. Biol. 2021, 167, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Hill, M.S.; Vande Zande, P.; Wittkopp, P.J. Molecular and evolutionary processes generating variation in gene expression. Nat. Rev. Genet. 2021, 22, 203–215. [Google Scholar] [CrossRef] [PubMed]
- Lande, R.; Barrowclough, G.F. Effective population size, genetic variation, and their use in population management. Viable Popul. Conserv. 1987, 87, 87–124. [Google Scholar]
- Barrett, R.D.; Schluter, D. Adaptation from standing genetic variation. Trends Ecol. Evol. 2008, 23, 38–44. [Google Scholar] [CrossRef]
- Chen, K.; Baxter, T.; Muir, W.M.; Groenen, M.A.; Schook, L.B. Genetic resources, genome mapping and evolutionary genomics of the pig (Sus scrofa). Int. J. Biol. Sci. 2007, 3, 153. [Google Scholar] [CrossRef]
- Xie, H.-B.; Yan, C.; Adeola, A.C.; Wang, K.; Huang, C.-P.; Xu, M.-M.; Qiu, Q.; Yin, X.; Fan, C.-Y.; Ma, Y.-F. African suid genomes provide insights into the local adaptation to diverse African environments. Mol. Biol. Evol. 2022, 39, msac256. [Google Scholar] [CrossRef]
- Butynski, T.M.; Jong, Y. Warthog Phacochoerus africanus. In Ecology, Conservation and Management of Wild Pigs and Peccaries; Cambridge University Press: Cambridge, UK, 2017; pp. 85–100. [Google Scholar] [CrossRef]
- Holland, P.W.; Booth, H.A.F.; Bruford, E.A. Classification and nomenclature of all human homeobox genes. BMC Biol. 2007, 5, 47. [Google Scholar] [CrossRef] [PubMed]
- Magadum, S.; Banerjee, U.; Murugan, P.; Gangapur, D.; Ravikesavan, R. Gene duplication as a major force in evolution. J. Genet. 2013, 92, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Green, S.A.; Simoes-Costa, M.; Bronner, M.E. Evolution of vertebrates as viewed from the crest. Nature 2015, 520, 474–482. [Google Scholar] [CrossRef] [PubMed]
- Hrycaj, S.M.; Wellik, D.M. HOX genes and evolution. F1000Research 2016, 5, 859. [Google Scholar] [CrossRef] [PubMed]
- Prince, V.E.; Pickett, F.B. Splitting pairs: The diverging fates of duplicated genes. Nat. Rev. Genet. 2002, 3, 827–837. [Google Scholar] [CrossRef]
- Innan, H.; Kondrashov, F. The evolution of gene duplications: Classifying and distinguishing between models. Nat. Rev. Genet. 2010, 11, 97–108. [Google Scholar] [CrossRef]
- Bear, D.M.; Lassance, J.-M.; Hoekstra, H.E.; Datta, S.R. The evolving neural and genetic architecture of vertebrate olfaction. Curr. Biol. 2016, 26, R1039–R1049. [Google Scholar] [CrossRef]
- Mombaerts, P. The human repertoire of odorant receptor genes and pseudogenes. Annu. Rev. Genom. Hum. Genet. 2001, 2, 493–510. [Google Scholar] [CrossRef]
- Young, J.M.; Friedman, C.; Williams, E.M.; Ross, J.A.; Tonnes-Priddy, L.; Trask, B.J. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 2002, 11, 535–546. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, R.; Aier, I.; Semwal, R.; Tyagi, P.; Varadwaj, P. Sense of smell: Structural, functional, mechanistic advancements and challenges in human olfactory research. Curr. Neuropharmacol. 2019, 17, 891–911. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Y.; Yang, Y.; Yi, G.; Lian, J.; Xie, B.; Yao, Y.; Chen, M.; Niu, Y.; Liu, L. Integration of multi-omics data reveals cis-regulatory variants that are associated with phenotypic differentiation of eastern from western pigs. Genet. Sel. Evol. 2022, 54, 62. [Google Scholar] [CrossRef] [PubMed]
- Thewissen, J.G.; Cooper, L.N.; Clementz, M.T.; Bajpai, S.; Tiwari, B.N. Whales originated from aquatic artiodactyls in the Eocene epoch of India. Nature 2007, 450, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Qiu, Q.; Jiang, Y.; Wang, K.; Lin, Z.; Li, Z.; Bibi, F.; Yang, Y.; Wang, J.; Nie, W. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 2019, 364, eaav6202. [Google Scholar] [CrossRef]
- Montgelard, C.; Catzeflis, F.M.; Douzery, E. Phylogenetic relationships of artiodactyls and cetaceans as deduced from the comparison of cytochrome b and 12S rRNA mitochondrial sequences. Mol. Biol. Evol. 1997, 14, 550–559. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.; Kelly, S. STAG: Species tree inference from all genes. BioRxiv 2018, 267914. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. STRIDE: Species tree root inference from gene duplication events. Mol. Biol. Evol. 2017, 34, 3267–3278. [Google Scholar] [CrossRef]
- Emms, D.M.; Kelly, S. OrthoFinder: Solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef] [PubMed]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef]
- Capella-Gutiérrez, S.; Silla-Martínez, J.M.; Gabaldón, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Whelan, S.; Goldman, N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol. Biol. Evol. 2001, 18, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Nei, M. Accuracies of ancestral amino acid sequences inferred by the parsimony, likelihood, and distance methods. J. Mol. Evol. 1997, 44, S139–S146. [Google Scholar] [CrossRef]
- Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Bioinformatics 1992, 8, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xiao, J.; Wu, J.; Zhang, H.; Liu, G.; Wang, X.; Dai, L. ParaAT: A parallel tool for constructing multiple protein-coding DNA alignments. Biochem. Biophys. Res. Commun. 2012, 419, 779–781. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- De Bie, T.; Cristianini, N.; Demuth, J.P.; Hahn, M.W. CAFE: A computational tool for the study of gene family evolution. Bioinformatics 2006, 22, 1269–1271. [Google Scholar] [CrossRef]
- Mendes, F.K.; Vanderpool, D.; Fulton, B.; Hahn, M.W. CAFE 5 models variation in evolutionary rates among gene families. Bioinformatics 2020, 36, 5516–5518. [Google Scholar] [CrossRef]
- Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g: Profiler: A web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [Google Scholar] [CrossRef]
- Bult, C.J.; Blake, J.A.; Smith, C.L.; Kadin, J.A.; Richardson, J.E. Mouse genome database (MGD) 2019. Nucleic Acids Res. 2019, 47, D801–D806. [Google Scholar] [CrossRef]
- Hu, Z.-L.; Park, C.A.; Wu, X.-L.; Reecy, J.M. Animal QTLdb: An improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Res. 2013, 41, D871–D879. [Google Scholar] [CrossRef]
- Leslie Jr, D.M.; Huffman, B.A. Potamochoerus porcus (Artiodactyla: Suidae). Mamm. Species 2015, 47, 15–31. [Google Scholar] [CrossRef]
- Cifelli, R. Patterns of evolution among the Artiodacyla and Perissodactyla (Mammalia). Evolution 1981, 35, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Zhou, L.; Zhao, P.; Du, H.; Diao, C.; Zhang, Y.; Liu, Z.; Jin, W.; Yu, J.; Han, J. Comparative genomic analysis of warthog and Sus scrofa identifies adaptive genes associated with African swine fever. Biology 2023, 12, 1001. [Google Scholar] [CrossRef]
- Shimamura, M.; Yasue, H.; Ohshima, K.; Abe, H.; Kato, H.; Kishiro, T.; Goto, M.; Munechika, I.; Okada, N. Molecular evidence from retroposons that whales form a clade within even-toed ungulates. Nature 1997, 388, 666–670. [Google Scholar] [CrossRef]
- Hughes, G.M.; Boston, E.S.; Finarelli, J.A.; Murphy, W.J.; Higgins, D.G.; Teeling, E.C. The birth and death of olfactory receptor gene families in mammalian niche adaptation. Mol. Biol. Evol. 2018, 35, 1390–1406. [Google Scholar] [CrossRef] [PubMed]
- Niimura, Y. Olfactory receptor multigene family in vertebrates: From the viewpoint of evolutionary genomics. Curr. Genom. 2012, 13, 103–114. [Google Scholar] [CrossRef] [PubMed]
- Bock, K.W. The UDP-glycosyltransferase (UGT) superfamily expressed in humans, insects and plants: Animal plant arms-race and co-evolution. Biochem. Pharmacol. 2016, 99, 11–17. [Google Scholar] [CrossRef]
- Soares, S.; Kohl, S.; Thalmann, S.; Mateus, N.; Meyerhof, W.; De Freitas, V. Different phenolic compounds activate distinct human bitter taste receptors. J. Agric. Food Chem. 2013, 61, 1525–1533. [Google Scholar] [CrossRef]
- Beckett, E.L.; Martin, C.; Yates, Z.; Veysey, M.; Duesing, K.; Lucock, M. Bitter taste genetics–the relationship to tasting, liking, consumption and health. Food Funct. 2014, 5, 3040–3054. [Google Scholar] [CrossRef]
- Li, X.; Yang, K.-B.; Chen, W.; Mai, J.; Wu, X.-Q.; Sun, T.; Wu, R.-Y.; Jiao, L.; Li, D.-D.; Ji, J. CUL3 (cullin 3)-mediated ubiquitination and degradation of BECN1 (beclin 1) inhibit autophagy and promote tumor progression. Autophagy 2021, 17, 4323–4340. [Google Scholar] [CrossRef]
- Andérica-Romero, A.C.; González-Herrera, I.G.; Santamaría, A.; Pedraza-Chaverri, J. Cullin 3 as a novel target in diverse pathologies. Redox Biol. 2013, 1, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Kulikov, A.; Shilov, E.; Mufazalov, I.; Gogvadze, V.; Nedospasov, S.; Zhivotovsky, B. Cytochrome c: The Achilles’ heel in apoptosis. Cell. Mol. Life Sci. 2012, 69, 1787–1797. [Google Scholar] [CrossRef] [PubMed]
- Abbas, W.; Kumar, A.; Herbein, G. The eEF1A proteins: At the crossroads of oncogenesis, apoptosis, and viral infections. Front. Oncol. 2015, 5, 75. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Hu, D.-m.; Zhu, Q. eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin. Exp. Metastasis 2013, 30, 933–944. [Google Scholar] [CrossRef]
- D’Alessandro, A.; Righetti, P.G.; Zolla, L. The red blood cell proteome and interactome: An update. J. Proteome Res. 2010, 9, 144–163. [Google Scholar] [CrossRef]
- Roth, W.; Kumar, V.; Beer, H.-D.; Richter, M.; Wohlenberg, C.; Reuter, U.; Thiering, S.; Staratschek-Jox, A.; Hofmann, A.; Kreusch, F. Keratin 1 maintains skin integrity and participates in an inflammatory network in skin through interleukin-18. J. Cell Sci. 2012, 125, 5269–5279. [Google Scholar] [PubMed]
- Oliveira, J.; Gruber, A.; Cardoso, M.; Taipa, R.; Fineza, I.; Gonçalves, A.; Laner, A.; Winder, T.L.; Schroeder, J.; Rath, J. LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes. Hum. Mutat. 2018, 39, 1314–1337. [Google Scholar] [CrossRef] [PubMed]
- Cho, I.-C.; Park, H.-B.; Ahn, J.S.; Han, S.-H.; Lee, J.-B.; Lim, H.-T.; Yoo, C.-K.; Jung, E.-J.; Kim, D.-H.; Sun, W.-S. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet. 2019, 15, e1008279. [Google Scholar] [CrossRef]
- Roberts, K.G.; Janke, L.J.; Zhao, Y.; Seth, A.; Ma, J.; Finkelstein, D.; Smith, S.; Ebata, K.; Tuch, B.B.; Hunger, S.P. ETV6-NTRK3 induces aggressive acute lymphoblastic leukemia highly sensitive to selective TRK inhibition. Blood J. Am. Soc. Hematol. 2018, 132, 861–865. [Google Scholar] [CrossRef]
- Al-Haboubi, T.; Shumaker, D.K.; Köser, J.; Wehnert, M.; Fahrenkrog, B. Distinct association of the nuclear pore protein Nup153 with A-and B-type lamins. Nucleus 2011, 2, 500–509. [Google Scholar] [CrossRef]
- Funakoshi, T.; Clever, M.; Watanabe, A.; Imamoto, N. Localization of Pom121 to the inner nuclear membrane is required for an early step of interphase nuclear pore complex assembly. Mol. Biol. Cell 2011, 22, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Losos, J.B. Convergence, adaptation, and constraint. Evolution 2011, 65, 1827–1840. [Google Scholar] [CrossRef]
- Yang, Z. Computational Molecular Evolution; OUP Oxford: Oxford, UK, 2006. [Google Scholar]
- Nei, M.; Kumar, S. Molecular Evolution and Phylogenetics; Oxford University Press: New York, NY, USA, 2000. [Google Scholar]
- Futuyma, D.J.; Kirkpatrick, M. Evolution; Sinauer Associates, Inc.: Sunderland, MA, USA, 2013. [Google Scholar]
- Nowak, M.A.; Boerlijst, M.C.; Cooke, J.; Smith, J.M. Evolution of genetic redundancy. Nature 1997, 388, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Wagner, A. The molecular origins of evolutionary innovations. Trends Genet. 2011, 27, 397–410. [Google Scholar] [CrossRef]
- Moore, J.H.; Williams, S.M. Traversing the conceptual divide between biological and statistical epistasis: Systems biology and a more modern synthesis. Bioessays 2005, 27, 637–646. [Google Scholar] [CrossRef]
- Masel, J.; Siegal, M.L. Robustness: Mechanisms and consequences. Trends Genet. 2009, 25, 395–403. [Google Scholar] [CrossRef]
Genome Version | Genome Source | Species | Scientific Name |
---|---|---|---|
ROS_Pafr_v1 | NCBI | Common warthog | Phacochoerus africanus |
River_1.0 | CNCB | Red river hog | Potamochoerus porcus |
Sscrofa11.1 | Ensembl | Duroc pig | Sus scrofa domesticus |
CNP0001159 | CNSA | Luchuan pig | Sus scrofa domesticus |
ARS-UCD1.2 | Ensembl | Cow | Bos taurus |
Oar_rambouillet_v1.0 | Ensembl | Sheep | Ovis aries |
ASM283717v2 | Ensembl | Sperm whale | Physeter macrocephalus |
EquCab3.0 | Ensembl | Horse | Equus ferus caballus |
Phenotype Term | Gene Count |
---|---|
MP:0010769-abnormal survival | Cul3, Cycs, Eef1a1, Eef1a2, Fth1, Krt1, Lama2, Myh3, Myh7, Nrxn2, Ntrk3, Nup153, Pom121, Rps2, Sox3, Tpt1, Ube2n, Ybx1 |
MP:0010770-preweaning lethality | Cul3, Cycs, Eef1a1, Fth1, Krt1, Lama2, Myh3, Myh7, Nrxn2, Ntrk3, Nup153, Pom121, Rps2, Sox3, Tpt1, Ube2n, Ybx1 |
MP:0005385-cardiovascular system phenotype | Ap1ar, Cmtm3, Cul3, Fth1, Krt1, Mlip, Myh7, Myh7b, Nrxn2, Ntrk3, Nup153, Ybx1 |
MP:0000313-abnormal cell death | Cul3, Cycs, Eef1a2, Fth1, Hnrnpk, Lama2, Myh3, Tpt1, Ube2n, Vdac2 |
MP:0002080-prenatal lethality | Cul3, Cycs, Eef1a1, Fth1, Myh3, Myh7, Nup153, Pom121, Tpt1, Ube2n, Ybx1 |
MP:0001265-decreased body size | Cul3, Eef1a2, Hnrnpk, Krt1, Lama2, Myh3, Nrxn2, Ntrk3, Rps2, Sox3 |
MP:0001544-abnormal cardiovascular system physiology | Cmtm3, Cul3, Fth1, Krt1, Mlip, Myh7, Ntrk3, Ybx1 |
MP:0008762-embryonic lethality | Cul3, Cycs, Fth1, Myh7, Nup153, Pom121, Tpt1, Ube2n, Ybx1 |
MP:0001648-abnormal apoptosis | Cul3, Cycs, Hnrnpk, Myh3, Tpt1, Ube2n, Vdac2 |
MP:0013292-embryonic lethality prior to organogenesis | Cul3, Fth1, Nup153, Pom121, Tpt1, Ube2n |
MP:0006042-increased apoptosis | Cul3, Hnrnpk, Myh3, Tpt1, Ube2n |
MP:0013293-embryonic lethality prior to tooth bud stage | Cul3, Fth1, Nup153, Pom121, Tpt1, Ube2n |
MP:0002082-postnatal lethality | Eef1a1, Krt1, Lama2, Nrxn2, Ntrk3, Sox3 |
MP:0008942-abnormal induced cell death | Eef1a2, Fth1, Tpt1 |
MP:0001698-decreased embryo size | Cul3, Cycs, Tpt1, Ybx1 |
Chr | Start | End | Gene | Chr | Start | End | QTL |
---|---|---|---|---|---|---|---|
2 | 56,631,761 | 56,632,714 | OR2G2 | 2 | 27,258,744 | 64,868,911 | Melanoma susceptibility QTL (7596) |
2 | 54,835,060 | 54,835,995 | OR2M4 | 2 | 27,258,744 | 64,868,911 | |
2 | 53,163,848 | 53,164,789 | OR2T27 | 2 | 27,258,744 | 64,868,911 | |
2 | 53,186,402 | 53,187,358 | OR2T1 | 2 | 27,258,744 | 64,868,911 | |
2 | 53,209,020 | 53,209,946 | OR2T6 | 2 | 27,258,744 | 64,868,911 | |
2 | 56,615,141 | 56,616,070 | OR2G3 | 2 | 27,258,744 | 64,868,911 | |
4 | 91,015,547 | 91,016,509 | OR10J1 | 4 | 85,941,434 | 100,831,287 | Hematin pigmentation QTL (4900) |
4 | 91,788,359 | 91,796,215 | OR10R2 | 4 | 85,941,434 | 100,831,287 | |
4 | 91,024,840 | 91,025,775 | OR10J4 | 4 | 85,941,434 | 100,831,287 | |
2 | 12,603,912 | 12,604,838 | OR5B21 | 2 | 11,271,548 | 35,884,929 | Interferon-γ level QTL (12,334) |
2 | 12,707,442 | 12,708,380 | OR5B3 | 2 | 11,271,548 | 35,884,929 | |
2 | 11,964,446 | 11,965,381 | OR4D11 | 2 | 11,271,548 | 35,884,929 | |
2 | 11,972,196 | 11,973,130 | OR4D10 | 2 | 11,271,548 | 35,884,929 | |
2 | 11,783,066 | 11,784,022 | OR10V1 | 2 | 11,271,548 | 35,884,929 | |
2 | 14,510,944 | 14,511,873 | OR4B1 | 2 | 11,271,548 | 35,884,929 | |
9 | 50,634,384 | 50,635,262 | OR6M1 | 9 | 36,028,377 | 51,399,180 | CSFV antibody level QTL (37,543) |
9 | 50,613,020 | 50,613,958 | OR6X1 | 9 | 36,028,377 | 51,399,180 | |
9 | 51,126,795 | 51,127,733 | OR10D3 | 9 | 36,028,377 | 51,399,180 | |
9 | 50,758,169 | 50,759,113 | OR4D5 | 9 | 36,028,377 | 51,399,180 | |
9 | 50,924,623 | 50,925,621 | OR10G6 | 9 | 36,028,377 | 51,399,180 | |
12 | 49,103,075 | 49,104,016 | OR1D5 | 12 | 45,861,635 | 52,179,865 | Mean corpuscular volume QTL (12,302) |
12 | 49,379,227 | 49,380,174 | OR3A2 | 12 | 45,861,635 | 52,179,865 | |
12 | 49,389,731 | 49,390,818 | OR3A1 | 12 | 45,861,635 | 52,179,865 | |
2 | 12,603,912 | 12,604,838 | OR5B21 | 2 | 11,501,580 | 150,670,698 | Actinobacillus pleuropneumoniae susceptibility QTL (37,557) |
2 | 56,631,761 | 56,632,714 | OR2G2 | 2 | 11,501,580 | 150,670,698 | |
2 | 54,835,060 | 54,835,995 | OR2M4 | 2 | 11,501,580 | 150,670,698 | |
2 | 53,163,848 | 53,164,789 | OR2T27 | 2 | 11,501,580 | 150,670,698 | |
2 | 53,186,402 | 53,187,358 | OR2T1 | 2 | 11,501,580 | 150,670,698 | |
2 | 53,209,020 | 53,209,946 | OR2T6 | 2 | 11,501,580 | 150,670,698 | |
2 | 56,615,141 | 56,616,070 | OR2G3 | 2 | 11,501,580 | 150,670,698 | |
2 | 12,707,442 | 12,708,380 | OR5B3 | 2 | 11,501,580 | 150,670,698 | |
2 | 11,964,446 | 11,965,381 | OR4D11 | 2 | 11,501,580 | 150,670,698 | |
2 | 11,972,196 | 11,973,130 | OR4D10 | 2 | 11,501,580 | 150,670,698 | |
2 | 11,783,066 | 11,784,022 | OR10V1 | 2 | 11,501,580 | 150,670,698 | |
2 | 14,510,944 | 14,511,873 | OR4B1 | 2 | 11,501,580 | 150,670,698 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, X.; Bao, Q.; Wang, Z.; He, S.; Qu, X.; Tang, Y.; Song, B.; Huang, J.; Yi, G. Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses. Genes 2024, 15, 166. https://doi.org/10.3390/genes15020166
Yang X, Li X, Bao Q, Wang Z, He S, Qu X, Tang Y, Song B, Huang J, Yi G. Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses. Genes. 2024; 15(2):166. https://doi.org/10.3390/genes15020166
Chicago/Turabian StyleYang, Xintong, Xingzheng Li, Qi Bao, Zhen Wang, Sang He, Xiaolu Qu, Yueting Tang, Bangmin Song, Jieping Huang, and Guoqiang Yi. 2024. "Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses" Genes 15, no. 2: 166. https://doi.org/10.3390/genes15020166
APA StyleYang, X., Li, X., Bao, Q., Wang, Z., He, S., Qu, X., Tang, Y., Song, B., Huang, J., & Yi, G. (2024). Uncovering Evolutionary Adaptations in Common Warthogs through Genomic Analyses. Genes, 15(2), 166. https://doi.org/10.3390/genes15020166