Selection and Validation of Reference Genes in Sudan Grass (Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Material Treatments
2.3. Total RNA Extraction and First-Strand cDNA Synthesis
2.4. Screening Candidate Reference Genes and PCR Primer Design
2.5. qRT-PCR Amplification Procedure
2.6. Data Analysis and Validation of Selected Candidate Reference Genes
3. Results
3.1. Verification of Primer Specificity and Effectiveness
3.2. Expression Distribution of Eight Candidate Reference Genes
3.3. Expression Stability Analysis of Candidate Reference Genes under Five Treatments
3.3.1. GeNorm Analysis
3.3.2. NormFinder Analysis
3.3.3. BestKeeper Analysis
3.3.4. Comparative ΔCt Analysis
3.3.5. RefFinder Analysis
3.4. Validation of Candidate Reference Genes
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, M.X.; Wang, Y.W.; Han, J.G.; Mao, P.S. Phenolic Compounds from Chinese Sudangrass, Sorghum, Sorghum-Sudangrass Hybrid, and Their Antioxidant Properties. Crop Sci. 2011, 51, 247–258. [Google Scholar] [CrossRef]
- Rangaswami Ayyangar, G.N.; Ponnaiya, B.W.N. Studies in Sorghum sudanense, Stapf-The Sudan grass. Proc. Natl. Acad. Sci. India 1939, 10, 237–254. [Google Scholar] [CrossRef]
- Zamfir, M.C.; Schitea, M.; Zamfir, I. The variability study of some quantitative traits in Sudan grass Sorghum sudanense Piper. (Staph.). Rom. Agric. Res. 2001, 1, 23–29. [Google Scholar]
- Chen, Q.; Wei, S.S.; Deng, Z.R.; Yin, L.P.; He, B.; Kong, X.L. Optimization of DNA Extraction from Seeds of Sorghum sudanense (Piper) Stapf. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 256–260. [Google Scholar]
- Han, P.A.; Lu, X.P.; Mi, F.G.; Dong, J.; Xue, C.L.; Li, J.K.; Han, B.; Zhang, X.Y. Proteomic analysis of heterosis in the leaves of sorghum-sudangrass hybrids. Acta Biochim. Biophys. Sin. 2016, 48, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, X.; Liu, J.; Zhang, Z. Assessment of marginal land potential for energy plants in China. Land Dev. Eng. Res. 2017, 2, 1–7. [Google Scholar]
- Bibi, A.; Sadaqat, H.A.; Akram, H.M.; Khan, T.M.; Usman, B.F. Physiological and agronomic responses of sudangrass to water stress. J. Agric. Res. 2010, 48, 369–380. [Google Scholar]
- Buchanan, C.D.; Lim, S.Y.; Salzman, R.A.; Kagiampakis, L.; Morishige, D.T.; Weers, B.D.; Klein, R.R.; Pratt, L.H.; Cordonnier-Pratt, M.M.; Klein, P.E.; et al. Sorghum bicolor’s transeriptome response to dehydration, high salinity and ABA. Plant Mol. Biol. 2005, 58, 699–720. [Google Scholar] [CrossRef] [PubMed]
- Saraeian, A.; Hadi, A.; Raji, F.; Ghassemi, A.; Johnson, M. Cadmium removal from aqueous solution by low-cost native and surface modified Sorghum × drummondii (Sudangrass). J. Environ. Chem. Eng. 2018, 6, 3322–3331. [Google Scholar] [CrossRef]
- Huggett, J.; Dheda, K.; Bustin, S.; Zumla, A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005, 6, 279–284. [Google Scholar] [CrossRef]
- Yuan, W.; Wan, H.; Yang, Y. Characterization and Selection of Reference Genes for Real-time Quantitative RT-PCR of Plants. Chin. Bull. Bot. 2012, 47, 427–436. [Google Scholar]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper—Excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, M.N.; Cao, S.H.; Sun, Y.; Long, R.C.; Kang, J.M.; Yan, L.; Cui, H.T. Selection and validation of reference genes for target gene analysis with quantitative real-time PCR in the leaves and roots of Carex rigescens under abiotic stress. Ecotoxicol. Environ. Saf. 2019, 168, 127–137. [Google Scholar] [CrossRef]
- Song, H.Y.; Mao, W.M.; Duan, Z.H.; Que, Q.M.; Zhou, W.; Chen, X.Y.; Li, P. Selection and validation of reference genes for measuring gene expression in Toona ciliata under different experimental conditions by quantitative real-time PCR analysis. BMC Plant Biol. 2020, 20, 450. [Google Scholar] [CrossRef]
- Lian, C.L.; Zhang, B.; Yang, J.F.; Lan, J.X.; Yang, H.; Guo, K.H.; Li, J.J.; Chen, S.Q. Validation of suitable reference genes by various algorithms for gene expression analysis in Isodon rubescens under different abiotic stresses. Sci. Rep. 2022, 12, 19599. [Google Scholar] [CrossRef]
- Tajti, J.; Pal, M.; Janda, T. Validation of Reference Genes for Studying Different Abiotic Stresses in Oat (Avena sativa L.) by RT-qPCR. Plants 2021, 10, 1272. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; He, T.; Yi, K.; Zhao, Y.; Hu, Y.; Liu, J.; Zhang, X.; Meng, L.; Wang, L.; Liu, H.; et al. Comprehensive evaluation of candidate reference genes for quantitative real-time PCR-based analysis in Caucasian clover. Sci. Rep. 2021, 11, 3269. [Google Scholar] [CrossRef]
- Liu, Q.; Qi, X.; Yan, H.; Huang, L.; Nie, G.; Zhang, X. Reference Gene Selection for Quantitative Real-Time Reverse-Transcriptase PCR in Annual Ryegrass (Lolium multiflorum) Subjected to Various Abiotic Stresses. Molecules 2018, 23, 172. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, G.; Rao, Y.; Wang, B.; Tian, R.; Tan, Y.; Peng, T. Identification and validation of reference genes for qRT-PCR analyses under different experimental conditions in Allium wallichii. J. Plant Physiol. 2023, 281, 153925. [Google Scholar] [CrossRef]
- Bai, S.; Wang, X.; Guo, M.; Cheng, G.; Khan, A.; Yao, W.; Gao, Y.; Li, J. Selection and Evaluation of Reference Genes for Quantitative Real-Time PCR in Tomato (Solanum lycopersicum L.) Inoculated with Oidium neolycopersici. Agronomy 2022, 12, 3171. [Google Scholar] [CrossRef]
- Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [PubMed]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [PubMed]
- Hu, A.; Yang, X.; Zhu, J.; Wang, X.; Liu, J.; Wang, J.; Wu, H.; Zhang, H.; Zhang, H. Selection and validation of appropriate reference genes for RT-qPCR analysis of Nitraria sibirica under various abiotic stresses. BMC Plant Biol. 2022, 22, 592. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, L.; Xue, J.; Yang, J.; Hu, H.; Cui, J.; Xu, J. Selection and verification of appropriate reference genes for expression normalization in Cryptomeria fortunei under abiotic stress and hormone treatments. Genes 2021, 12, 791. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, F.; Xu, Y.; Lin, C.; Li, X.; Xu, W.; Wang, H.; Zhu, Y. Molecular Mechanism Underlying the Sorghum sudanense (Piper) Stapf. Response to Osmotic Stress Determined via Single-Molecule Real-Time Sequencing and Next-Generation Sequencing. Plants 2023, 12, 2624. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Zhu, Y.; Liu, Z. Effects of COR gene on plant cold resistance engineering. Guizhou Agric. Sci. 2014, 42, 37–42. [Google Scholar]
- Chen, L.; Zhang, B.; Xia, L.; Yue, D.; Han, B.; Sun, W.; Wang, F.; Lindsey, K.; Zhang, X.; Yang, X. The GhMAP3K62-GhMKK16-GhMPK32 kinase cascade regulates drought tolerance by activating GhEDT1-mediated ABA accumulation in cotton. J. Adv. Res. 2023, 51, 13–25. [Google Scholar] [CrossRef]
- Razavi, S.A.; Afsharpad, M.; Modarressi, M.H.; Zarkesh, M.; Yaghmaei, P.; Nasiri, S.; Tavangar, S.M.; Gholami, H.; Daneshafrooz, A.; Hedayati, M. Validation of reference genes for normalization of relative qRT-PCR studies in papillary thyroid carcinoma. Sci. Rep. 2019, 9, 15241. [Google Scholar] [CrossRef]
- Liu, Y.P.; Zhang, Y.; Liu, F.; Liu, T.; Chen, J.Y.; Fu, G.; Zheng, C.Y.; Su, D.D.; Wang, Y.N.; Zhou, H.K.; et al. Establishment of reference (housekeeping) genes via quantitative real-time PCR for investigation of the genomic basis of abiotic stress resistance in Psammochloa villosa (Poaceae). J. Plant Physiol. 2022, 268, 153575. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, F.; Xie, P.; Sun, S.; Qiao, X.; Tang, S.; Chen, C.; Yang, S.; Mei, C.; Yang, D.; et al. A Gγ protein regulates alkaline sensitivity in crops. Science 2023, 379, eade8416. [Google Scholar] [CrossRef]
- Rogers, G.W.; Komar, A.A.; Merrick, W.C. eIF4A: The godfather of the DEAD box helicases. In Progress in Nucleic Acid Research and Molecular Biology; Academic Press: Cambridge, MA, USA, 2002; Volume 72, pp. 307–331. [Google Scholar]
- Máthé, C.; M-Hamvas, M.; Freytag, C.; Garda, T. The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions. Int. J. Mol. Sci. 2021, 22, 975. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Wang, Y.; Duan, Y. Screening of reference genes for qRT-PCR analysis in sorghum (Sorghum bicolor) under low nitrogen stress. J. Agric. Biotechnol. 2017, 25, 805–812. [Google Scholar]
- Sudhakar Reddy, P.; Srinivas Reddy, D.; Sivasakthi, K.; Bhatnagar-Mathur, P.; Vadez, V.; Sharma, K.K. Evaluation of sorghum [Sorghum bicolor (L.)] reference genes in various tissues and under abiotic stress conditions for quantitative real-time PCR data normalization. Front. Plant Sci. 2016, 7, 529. [Google Scholar] [CrossRef]
- Ulrich, M.N.; Muñiz-Padilla, E.; Corach, A.; Hopp, E.; Tosto, D. Validation of reference genes for quantitative PCR in Johnsongrass (Sorghum halepense L.) under glyphosate stress. Plants 2021, 10, 1555. [Google Scholar] [CrossRef]
- Li, D.; Yu, S.; Zeng, M.; Liu, X.; Yang, J.; Li, C. Selection and Validation of Appropriate Reference Genes for Real-Time Quantitative PCR Analysis in Needles of Larix olgensis under Abiotic Stresses. Forests 2020, 11, 193. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Sun, H. Selection of reference genes for RT-qPCR normalization in blueberry (Vaccinium corymbosum × angustifolium) under various abiotic stresses. FEBS Open Bio 2020, 10, 1418–1435. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Wang, B.; Wang, X.; Wei, X. Screening of stable internal reference gene of Quinoa under hormone treatment and abiotic stress. Physiol. Mol. Biol. Plants 2021, 27, 2459–2470. [Google Scholar] [CrossRef] [PubMed]
- Duan, Z.L.; Han, W.H.; Yan, L.; Wu, B. Reference gene selections for real time quantitative PCR analysis of gene expression in different oat tissues and under salt stress. Biol. Plant. 2020, 64, 838–844. [Google Scholar] [CrossRef]
- Wang, M.; Ren, T.; Marowa, P.; Du, H.; Xu, Z. Identification and selection of reference genes for gene expression analysis by quantitative real-time PCR in Suaeda glauca’s response to salinity. Sci. Rep. 2021, 11, 8569. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Cao, K.; Chen, C.; Li, Y.; Wu, J.; Zhu, G.; Fang, W.; Wang, X.; Wang, L. Selection and validation reference genes for qRT-PCR normalization in different cultivars during fruit ripening and softening of peach (Prunus persica). Sci. Rep. 2021, 11, 7302. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, C.; Zhang, J.; Chen, F.; Gong, Y.; Li, Y.; Su, Y.; Wei, Y.; Zhao, Y. Selection of the reference gene for expression normalization in Papaver somniferum L. under abiotic stress and hormone treatment. Genes 2020, 11, 124. [Google Scholar] [CrossRef] [PubMed]
- Yakupjan, H.; Guan, B.; Zhang, F. Research Progress in Plant Reference Genes. Biotechnol. Bull. 2011, 7, 7–11. [Google Scholar]
Gene Symbol | Gene Description | Forward/Reverse Primer (5′-3′) | Primers Tm (°C) | Amplicon Length (bp) | RT-qPCR Efficiency (%) | R2 |
---|---|---|---|---|---|---|
eIF4α | Eukaryotic initiation factor 4 α | CAACTTTGTCACCCGCGATGA TCCAGAAACCTTAGCAGCCCA | 57.57 57.57 | 178 | 99.5 | 0.993 |
PP2A | Protein phosphatase 2A | AACCCGCAAAACCCCAGACTA TACAGGTCGGGCTCATGGAAC | 57.57 59.52 | 176 | 111.3 | 0.980 |
HIS3 | Histone H3 | ACTTCAAGACTGATCTGCGTTTCC CATGGATGGCACAAAGGTTGG | 57.86 57.57 | 146 | 102.2 | 0.988 |
UBQ9 | Polyubiquitin 9 | TACAGTTCTACAAGGTGGACGAC GCAGTAGTGGCGGTCGAAGT | 57.77 59.50 | 158 | 92.7 | 0.992 |
UBQ10 | Polyubiquitin 10 | CCGTGGTGGCCAGTAAGTTC GGACTCAACATGGGCTCTGC | 59.50 59.50 | 204 | 88.2 | 0.987 |
Isoform0012931 | ATGGCCAACCGCTGGGTC CTTGGGGTCAGTGAAGAACTTGT | 59.46 57.77 | 286 | 116.7 | 0.972 | |
ACP2 | Acyl carrier protein 2 | ACGAACTTGTTGCGGCAGAAG GAACAAGAAGGGATGCGCTGG | 57.57 59.52 | 128 | 116.3 | 0.988 |
Actin | Actin gene | AAGTGCGACGTGGATATTAGGA TCTTGGGCGGAAAGAATTAGA | 55.81 53.66 | 344 | 101.5 | 0.996 |
Isoform0007606 | Cold response gene | TTCGGCACTTCCTTCCTCA GAATAGACGCAGAATAACAGCAATA | 58.70 58.40 | 204 | ||
Isoform0002387 | Mitogen-activated protein kinase | CCGAGCAATTTGTTCCTAA GCATCATCTGGTGAGCCTAT | 53.80 54.70 | 284 |
Rank | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
(A) CK | ||||||||
Delta CT | eIF4α | PP2A | UBQ9 | HIS3 | UBQ10 | ACP2 | Isoform0012931 | Actin |
BestKeeper | eIF4α | UBQ10 | PP2A | HIS3 | UBQ9 | Isoform0012931 | ACP2 | Actin |
Normfinder | eIF4α | PP2A | UBQ9 | HIS3 | UBQ10 | ACP2 | Isoform0012931 | Actin |
GeNorm | PP2A|eIF4α | UBQ9 | UBQ10 | HIS3 | Isoform0012931 | ACP2 | Actin | |
RefFinder | eIF4α | PP2A | UBQ9 | UBQ10 | HIS3 | ACP2 | Isoform0012931 | Actin |
(B) Salt stress | ||||||||
Delta CT | eIF4α | PP2A | HIS3 | ACP2 | UBQ9 | Isoform0012931 | Actin | UBQ10 |
BestKeeper | ACP2 | UBQ9 | eIF4α | PP2A | HIS3 | Isoform0012931 | UBQ10 | Actin |
Normfinder | eIF4α | PP2A | HIS3 | ACP2 | UBQ9 | Isoform0012931 | Actin | UBQ10 |
GeNorm | PP2A|eIF4α | HIS3 | UBQ9 | ACP2 | Isoform0012931 | Actin | UBQ10 | |
RefFinder | eIF4α | PP2A | ACP2 | HIS3 | UBQ9 | Isoform0012931 | Actin | UBQ10 |
(C) Drought stress | ||||||||
Delta CT | eIF4α | PP2A | UBQ10 | ACP2 | HIS3 | UBQ9 | Isoform0012931 | Actin |
BestKeeper | PP2A | UBQ10 | HIS3 | eIF4α | Isoform0012931 | ACP2 | UBQ9 | Actin |
Normfinder | eIF4α | PP2A | ACP2 | UBQ10 | HIS3 | UBQ9 | Isoform0012931 | Actin |
GeNorm | PP2A|eIF4α | ACP2 | UBQ10 | HIS3 | UBQ9 | Isoform0012931 | Actin | |
RefFinder | eIF4α | PP2A | UBQ10 | ACP2 | HIS3 | UBQ9 | Isoform0012931 | Actin |
(D) Aluminum stress | ||||||||
Delta CT | PP2A | HIS3 | Isoform0012931 | UBQ10 | eIF4α | Actin | UBQ9 | ACP2 |
BestKeeper | ACP2 | UBQ9 | eIF4α | PP2A | HIS3 | Actin | Isoform0012931 | UBQ10 |
Normfinder | PP2A | HIS3 | Isoform0012931 | eIF4α | UBQ10 | Actin | ACP2 | UBQ9 |
GeNorm | Isoform0012931|UBQ10 | HIS3 | PP2A | Actin | eIF4α | UBQ9 | ACP2 | |
RefFinder | PP2A | HIS3 | Isoform0012931 | UBQ10 | eIF4α | ACP2 | UBQ9 | Actin |
(E) Methyl jasmonate treatment | ||||||||
Delta CT | HIS3 | eIF4α | UBQ10 | PP2A | UBQ9 | ACP2 | Isoform0012931 | Actin |
BestKeeper | PP2A | UBQ10 | ACP2 | UBQ9 | eIF4α | HIS3 | Isoform0012931 | Actin |
Normfinder | HIS3 | eIF4α | UBQ10 | PP2A | UBQ9 | ACP2 | Isoform0012931 | Actin |
GeNorm | PP2A|eIF4α | UBQ10 | HIS3 | UBQ9 | ACP2 | Isoform0012931 | Actin | |
RefFinder | PP2A | eIF4α | HIS3 | UBQ10 | UBQ9 | ACP2 | Isoform0012931 | Actin |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Li, P.; Liu, Q.; Nie, G.; Zhu, Y.; Zhang, X. Selection and Validation of Reference Genes in Sudan Grass (Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR. Genes 2024, 15, 210. https://doi.org/10.3390/genes15020210
Wang F, Li P, Liu Q, Nie G, Zhu Y, Zhang X. Selection and Validation of Reference Genes in Sudan Grass (Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR. Genes. 2024; 15(2):210. https://doi.org/10.3390/genes15020210
Chicago/Turabian StyleWang, Fangyan, Peng Li, Qiuxu Liu, Gang Nie, Yongqun Zhu, and Xinquan Zhang. 2024. "Selection and Validation of Reference Genes in Sudan Grass (Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR" Genes 15, no. 2: 210. https://doi.org/10.3390/genes15020210
APA StyleWang, F., Li, P., Liu, Q., Nie, G., Zhu, Y., & Zhang, X. (2024). Selection and Validation of Reference Genes in Sudan Grass (Sorghum sudanense (Piper) Stapf) under Various Abiotic Stresses by qRT-PCR. Genes, 15(2), 210. https://doi.org/10.3390/genes15020210