Allelic Variations in Vernalization (Vrn) Genes in Triticum spp.
Abstract
:1. Introduction
2. Characteristics and Functions of Vrn Genes
3. Allelic Variations within Vrn Genes at Different Ploidy Levels
3.1. Allelic Variation of Vrn-1 at the Promoter Level
3.2. Allelic Variation of Vrn-1 at Gene Body Level
3.3. Copy Number Variations of Vrn-1
3.4. Allelic Variation of Vrn-1 at Different Ploidy Levels
3.5. Allelic Variation of Vrn-2, Vrn3, and Vrn4 Genes
4. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Matsuoka, Y. Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in Their Diversification. Plant Cell Physiol. 2011, 52, 750–764. [Google Scholar] [CrossRef]
- Mourad, A.M.I.; Alomari, D.Z.; Alqudah, A.M.; Sallam, A.; Salem, K.F.M. Recent Advances in Wheat (Triticum spp.) Breeding. In Advances in Plant Breeding Strategies: Cereals; Springer: Cham, Switzerland, 2019; Volume 5, pp. 559–593. ISBN 978-3-030-23108-8. [Google Scholar]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The Polyploidy and Its Key Role in Plant Breeding. Planta 2016, 243, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Van De Peer, Y.; Mizrachi, E.; Marchal, K. The Evolutionary Significance of Polyploidy. Nat. Rev. Genet. 2017, 18, 411–424. [Google Scholar] [CrossRef]
- Van de Peer, Y.; Ashman, T.L.; Soltis, P.S.; Soltis, D.E. Polyploidy: An Evolutionary and Ecological Force in Stressful Times. Plant Cell 2021, 33, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Alix, K.; Gérard, P.R.; Schwarzacher, T.; Heslop-Harrison, J.S.P. Polyploidy and Interspecific Hybridization: Partners for Adaptation, Speciation and Evolution in Plants. Ann. Bot. 2017, 120, 183–194. [Google Scholar] [CrossRef] [PubMed]
- Dubcovsky, J.; Dvorak, J. Genome Plasticity a Key Factor in the Success of Polyploid Wheat under Domestication. Science 2007, 316, 1862–1866. [Google Scholar] [CrossRef] [PubMed]
- Fang, Z.; Morrell, P.L. Polyploidy Boosts Domestication. Nat. Plants 2016, 2, 16116. [Google Scholar] [CrossRef]
- Taranto, F.; Esposito, S.; Fania, F.; Sica, R.; Marzario, S.; Logozzo, G.; Gioia, T.; De Vita, P. Breeding Effects on Durum Wheat Traits Detected Using GWAS and Haplotype Block Analysis. Front. Plant Sci. 2023, 14, 1206517. [Google Scholar] [CrossRef]
- Kilian, B.; Özkan, H.; Pozzi, C.; Salamini, F. Domestication of the Triticeae in the Fertile Crescent BT—Genetics and Genomics of the Triticeae; Muehlbauer, G.J., Feuillet, C., Eds.; Springer: New York, NY, USA, 2009; pp. 81–119. ISBN 978-0-387-77489-3. [Google Scholar]
- Yang, C.; Zhao, L.; Zhang, H.; Yang, Z.; Wang, H.; Wen, S.; Zhang, C.; Rustgi, S.; Von Wettstein, D.; Liu, B. Evolution of Physiological Responses to Salt Stress in Hexaploid Wheat. Proc. Natl. Acad. Sci. USA 2014, 111, 11882–11887. [Google Scholar] [CrossRef]
- Fowler, D.B.; Dvorak, J.; Gusta, L. V Comparative Cold Hardiness of Several Triticum Species and Secale cereale L. Crop Sci. 1977, 17, 941–943. [Google Scholar] [CrossRef]
- Limin, A.E.; Fowler, D.B. Cold Hardiness of Some Relatives of Hexaploid Wheat. Can. J. Bot. 1981, 59, 572–573. [Google Scholar] [CrossRef]
- Peng, J.; Sun, D.; Nevo, E. Wild Emmer Wheat, “Triticum dicoccoides”, Occupies a Pivotal Position in Wheat Domestication Process. Aust. J. Crop Sci. 2011, 5, 1127–1143. [Google Scholar]
- Taranto, F.; Esposito, S.; De Vita, P. Genomics for Yield and Yield Components in Durum Wheat. Plants 2023, 12, 2571. [Google Scholar] [CrossRef]
- Distelfeld, A.; Li, C.; Dubcovsky, J. Regulation of Flowering in Temperate Cereals. Curr. Opin. Plant Biol. 2009, 12, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Scarth, R.; Law, C.N. The Location of the Photoperiod Gene, Ppd2 and an Additional Genetic Factor for Ear-Emergence Time on Chromosome 2B of Wheat. Heredity 1983, 51, 607–619. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J. Genetic Analysis of Some Flowering Time and Adaptive Traits in Wheat. New Phytol. 1997, 137, 19–28. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Tranquilli, G.; Helguera, M.; Fahima, T.; Dubcovsky, J. Positional Cloning of the Wheat Vernalization Gene VRN1. Proc. Natl. Acad. Sci. USA 2003, 100, 6263–6268. [Google Scholar] [CrossRef]
- Dubcovsky, J.; Loukoianov, A.; Fu, D.; Valarik, M.; Sanchez, A.; Yan, L. Effect of Photoperiod on the Regulation of Wheat Vernalization Genes VRN1 and VRN2. Plant Mol. Biol. 2006, 60, 469–480. [Google Scholar] [CrossRef]
- Stelmakh, A.F. Growth Habit in Common Wheat (Triticum aestivum L. Em. Thell.). Euphytica 1987, 36, 513–519. [Google Scholar] [CrossRef]
- Chu, C.G.; Tan, C.T.; Yu, G.T.; Zhong, S.; Xu, S.S.; Yan, L. A Novel Retrotransposon Inserted in the Dominant Vrn-B1 Allele Confers Spring Growth Habit in Tetraploid Wheat (Triticum turgidum L.). G3 Genes Genomes Genet. 2011, 1, 637–645. [Google Scholar] [CrossRef]
- Chhuneja, P.; Arora, J.K.; Kaur, P.; Kaur, S.; Singh, K. Characterization of Wild Emmer Wheat Triticum dicoccoides Germplasm for Vernalization Alleles. J. Plant Biochem. Biotechnol. 2015, 24, 249–253. [Google Scholar] [CrossRef]
- Boden, S.A.; McIntosh, R.A.; Uauy, C.; Krattinger, S.G.; Dubcovsky, J.; Rogers, W.J.; Xia, X.C.; Badaeva, E.D.; Bentley, A.R.; Brown-Guedira, G.; et al. Updated Guidelines for Gene Nomenclature in Wheat. Theor. Appl. Genet. 2023, 136, 72. [Google Scholar] [CrossRef]
- Yan, L.; Loukoianov, A.; Blechl, A.; Tranquilli, G.; Ramakrishna, W.; SanMiguel, P.; Bennetzen, J.L.; Echenique, V.; Dubcovsky, J. The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization. Science 2004, 303, 1640–1644. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The Wheat and Barley Vernalization Gene VRN3 Is an Orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef]
- Kippes, N.; Debernardi, J.M.; Vasquez-Gross, H.A.; Akpinar, B.A.; Budak, H.; Kato, K.; Chao, S.; Akhunov, E.; Dubcovsky, J. Identification of the VERNALIZATION 4 Gene Reveals the Origin of Spring Growth Habit in Ancient Wheats from South Asia. Proc. Natl. Acad. Sci. USA 2015, 112, E5401–E5410. [Google Scholar] [CrossRef] [PubMed]
- Mandel, M.A.; Gustafson-brown, C.; Savidge, B.; Yanofsky, M.F. Molecular Characterization of the Arabidopsis Floral Homeotic Gene APETALA1. Nature 1992, 360, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Danyluk, J.; Kane, N.A.; Breton, G.; Limin, A.E.; Fowler, D.B.; Sarhan, F. TaVRT-1, a Putative Transcription Factor Associated with Vegetative to Reproductive Transition in Cereals. Plant Physiol. 2003, 132, 1849–1860. [Google Scholar] [CrossRef]
- Murai, K.; Miyamae, M.; Kato, H.; Takumi, S.; Ogihara, Y. WAP1, a Wheat APETALA1 Homolog, Plays a Central Role in the Phase Transition from Vegetative to Reproductive Growth. Plant Cell Physiol. 2003, 44, 1255–1265. [Google Scholar] [CrossRef]
- Trevaskis, B.; Bagnall, D.J.; Ellis, M.H.; Peacock, W.J.; Dennis, E.S. MADS Box Genes Control Vernalization-Induced Flowering in Cereals. Proc. Natl. Acad. Sci. USA 2003, 100, 13099–13104. [Google Scholar] [CrossRef]
- Pugsley, A.T. A Genetic Analysis of the Spring-Winter Habit of Growth in Wheat. Aust. J. Agric. Res. 1971, 22, 21–31. [Google Scholar] [CrossRef]
- Law, C.N.; Worland, A.J.; Giorgi, B. The Genetic Control of Ear-Emergence Time by Chromosomes 5A and 5D of Wheat. Heredity 1976, 36, 49–58. [Google Scholar] [CrossRef]
- Worland, A.J. The Influence of Flowering Time Genes on Environmental Adaptability in European Wheats. Euphytica 1996, 89, 49–57. [Google Scholar] [CrossRef]
- Barrett, B.; Bayram, M.; Kidwell, K. Identifying AFLP and Microsatellite Markers for Vernalization Response Gene Vrn-B1 in Hexaploid Wheat Using Reciprocal Mapping Populations. Plant Breed. 2002, 121, 400–406. [Google Scholar] [CrossRef]
- Yan, L.; Helguera, M.; Kato, K.; Fukuyama, S.; Sherman, J.; Dubcovsky, J. Allelic Variation at the VRN-1 Promoter Region in Polyploid Wheat. Theor. Appl. Genet. 2004, 109, 1677–1686. [Google Scholar] [CrossRef]
- Fu, D.; Szűcs, P.; Yan, L.; Helguera, M.; Skinner, J.S.; Von Zitzewitz, J.; Hayes, P.M.; Dubcovsky, J. Large Deletions within the First Intron in VRN-1 Are Associated with Spring Growth Habit in Barley and Wheat. Mol. Genet. Genom. 2005, 273, 54–65. [Google Scholar] [CrossRef]
- Trevaskis, B.; Hemming, M.N.; Dennis, E.S.; Peacock, W.J. The Molecular Basis of Vernalization-Induced Flowering in Cereals. Trends Plant Sci. 2007, 12, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.T.; Yan, L. Duplicated, Deleted and Translocated VRN2 Genes in Hexaploid Wheat. Euphytica 2016, 208, 277–284. [Google Scholar] [CrossRef]
- Kippes, N.; Chen, A.; Zhang, X.; Lukaszewski, A.J.; Dubcovsky, J. Development and Characterization of a Spring Hexaploid Wheat Line with No Functional VRN2 Genes. Theor. Appl. Genet. 2016, 129, 1417–1428. [Google Scholar] [CrossRef]
- Faure, S.; Higgins, J.; Turner, A.; Laurie, D.A. The FLOWERING LOCUS T-like Gene Family in Barley (Hordeum vulgare). Genetics 2007, 176, 599–609. [Google Scholar] [CrossRef]
- Li, C.; Dubcovsky, J. Wheat FT Protein Regulates VRN1 Transcription through Interactions with FDL2. Plant J. 2008, 55, 543–554. [Google Scholar] [CrossRef]
- Bonnin, I.; Rousset, M.; Madur, D.; Sourdille, P.; Dupuits, C.; Brunel, D.; Goldringer, I. FT Genome A and D Polymorphisms Are Associated with the Variation of Earliness Components in Hexaploid Wheat. Theor. Appl. Genet. 2008, 116, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, T.; Nishida, H.; Zhu, J.; Nitcher, R.; Distelfeld, A.; Akashi, Y.; Kato, K.; Dubcovsky, J. Vrn-D4 Is a Vernalization Gene Located on the Centromeric Region of Chromosome 5D in Hexaploid Wheat. Theor. Appl. Genet. 2010, 120, 543–552. [Google Scholar] [CrossRef] [PubMed]
- Le Gouis, J.; Bordes, J.; Ravel, C.; Heumez, E.; Faure, S.; Praud, S.; Galic, N.; Remoué, C.; Balfourier, F.; Allard, V.; et al. Genome-Wide Association Analysis to Identify Chromosomal Regions Determining Components of Earliness in Wheat. Theor. Appl. Genet. 2012, 124, 597–611. [Google Scholar] [CrossRef]
- Wen, M.; Su, J.; Jiao, C.; Zhang, X.; Xu, T.; Wang, T.; Liu, X.; Wang, Z.; Sun, L.; Yuan, C.; et al. Pleiotropic Effect of the Compactum Gene and Its Combined Effects with Other Loci for Spike and Grain-Related Traits in Wheat. Plants 2022, 11, 1837. [Google Scholar] [CrossRef] [PubMed]
- Tamaki, S.; Matsuo, S.; Wong, H.L.; Yokoi, S.; Shimamoto, K. Hd3a Protein Is a Mobile Flowering Signal in Rice. Science 2007, 316, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Kardailsky, I.; Shukla, V.K.; Ahn, J.H.; Dagenais, N.; Christensen, S.K.; Nguyen, J.T.; Chory, J.; Harrison, M.J.; Weigel, D. Activation Tagging of the Floral Inducer FT. Science 1999, 286, 1962–1965. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kaya, H.; Goto, K.; Iwabuchi, M.; Araki, T. A Pair of Related Genes with Antagonistic Roles in Mediating Flowering Signals. Science 1999, 286, 1960–1962. [Google Scholar] [CrossRef]
- Yeung, K.; Seitz, T.; Li, S.; Janosch, P.; McFerran, B.; Kaiser, C.; Fee, F.; Katsanakis, K.D.; Rose, D.W.; Mischak, H.; et al. Suppression of Raf-1 Kinase Activity and MAP Kinase Signalling by RKIP. Nature 1999, 401, 173–177. [Google Scholar] [CrossRef]
- Kroslak, T.; Koch, T.; Kahl, E.; Höllt, V. Human Phosphatidylethanolamine-Binding Protein Facilitates Heterotrimeric G Protein-Dependent Signaling. J. Biol. Chem. 2001, 276, 39772–39778. [Google Scholar] [CrossRef]
- Corbesier, L.; Vincent, C.; Jang, S.; Fornara, F.; Fan, Q.; Searle, I.; Giakountis, A.; Farrona, S.; Gissot, L.; Turnbull, C.; et al. FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction of Arabidopsis. Science 2007, 316, 1030–1033. [Google Scholar] [CrossRef]
- Turner, A.; Beales, J.; Faure, S.; Dunford, R.P.; Laurie, D.A. Botany: The Pseudo-Response Regulator Ppd-H1 Provides Adaptation to Photoperiod in Barley. Science 2005, 310, 1031–1034. [Google Scholar] [CrossRef] [PubMed]
- Kamran, A.; Iqbal, M.; Spaner, D. Flowering Time in Wheat (Triticum aestivum L.): A Key Factor for Global Adaptability. Euphytica 2014, 197, 1–26. [Google Scholar] [CrossRef]
- Fu, D.; Dunbar, M.; Dubcovsky, J. Wheat VIN3-like PHD Finger Genes Are up-Regulated by Vernalization. Mol. Genet. Genom. 2007, 277, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; Zhao, L.; Zhang, X.; Lv, G.; Pan, Y.; Chen, F. Gene Regulatory Network and Abundant Genetic Variation Play Critical Roles in Heading Stage of Polyploidy Wheat. BMC Plant Biol. 2019, 19, 6. [Google Scholar] [CrossRef] [PubMed]
- Iwaki, K.; Nakagawa, K.; Kuno, H.; Kato, K. Ecogeographical Differentiation in East Asian Wheat, Revealed from the Geographical Variation of Growth Habit and Vrn Genotype. Euphytica 2000, 111, 137–143. [Google Scholar] [CrossRef]
- Iwaki; Haruna; Niwa; Kato Adaptation and Ecological Differentiation in Wheat with Special Reference to Geographical Variation of Growth Habit and Vrn Genotype. Plant Breed. 2001, 120, 107–114. [CrossRef]
- Knott, D.R. The Inheritance of Rust Resistance.: Iv. Monosomic Analysis of Rust Resistance and Some Other Characters in Six Varieties of Wheat Including Gabo and Kenya Farmer. Can. J. Plant Sci. 1959, 39, 215–228. [Google Scholar] [CrossRef]
- O’Brien, L.; Morell, M.; Wrigley, C.; Appels, R. Genetic Pool of Australian Wheats. In The World Wheat Book; Bonjean, A.P., Angus, W.J., Eds.; Lavoisier Publishing: Paris, France, 2001; pp. 611–648. [Google Scholar]
- Sung, S.; Schmitz, R.J.; Amasino, R.M. A PHD Finger Protein Involved in Both the Vernalization and Photoperiod Pathways in Arabidopsis. Genes Dev. 2006, 20, 3244–3248. [Google Scholar] [CrossRef]
- Muterko, A.; Kalendar, R.; Salina, E. Allelic Variation at the VERNALIZATION-A1, VRN-B1, VRN-B3, and PHOTOPERIOD-A1 Genes in Cultivars of Triticum durum Desf. Planta 2016, 244, 1253–1263. [Google Scholar] [CrossRef]
- Strejčková, B.; Milec, Z.; Holušová, K.; Cápal, P.; Vojtková, T.; Čegan, R.; Šafář, J. In-depth Sequence Analysis of Bread Wheat Vrn1 Genes. Int. J. Mol. Sci. 2021, 22, 12284. [Google Scholar] [CrossRef]
- Konopatskaia, I.; Vavilova, V.; Kondratenko, E.Y.; Blinov, A.; Goncharov, N.P. VRN1 Genes Variability in Tetraploid Wheat Species with a Spring Growth Habit. BMC Plant Biol. 2016, 16, 93–106. [Google Scholar] [CrossRef] [PubMed]
- Díaz, A.; Zikhali, M.; Turner, A.S.; Isaac, P.; Laurie, D.A. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum). PLoS ONE 2012, 7, e33234. [Google Scholar] [CrossRef] [PubMed]
- Kiseleva, A.A.; Salina, E.A. Genetic Regulation of Common Wheat Heading Time. Russ. J. Genet. 2018, 54, 375–388. [Google Scholar] [CrossRef]
- Pidal, B.; Yan, L.; Fu, D.; Zhang, F.; Tranquilli, G.; Dubcovsky, J. The CArG-Box Located Upstream from the Transcriptional Start of Wheat Vernalization Gene VRN1 Is Not Necessary for the Vernalization Response. J. Hered. 2009, 100, 355–364. [Google Scholar] [CrossRef]
- Royo, C.; Dreisigacker, S.; Ammar, K.; Villegas, D. Agronomic Performance of Durum Wheat Landraces and Modern Cultivars and Its Association with Genotypic Variation in Vernalization Response (Vrn-1) and Photoperiod Sensitivity (Ppd-1) Genes. Eur. J. Agron. 2020, 120, 126129. [Google Scholar] [CrossRef]
- Muterko, A.; Kalendar, R.; Salina, E. Novel Alleles of the VERNALIZATION1 Genes in Wheat Are Associated with Modulation of DNA Curvature and Flexibility in the Promoter Region. BMC Plant Biol. 2016, 16, 9. [Google Scholar] [CrossRef] [PubMed]
- Tranquilli, G.; Dubcovsky, J. Epistatic Interaction between Vernalization Genes Vrn-Am1 and Vrn-Am2 in Diploid Wheat. J. Hered. 2000, 91, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Golovnina, K.A.; Kondratenko, E.Y.; Blinov, A.G.; Goncharov, N.P. Molecular Characterization of Vernalization Loci VRN1 in Wild and Cultivated Wheats. BMC Plant Biol. 2010, 10, 168. [Google Scholar] [CrossRef]
- Ivaničová, Z.; Jakobson, I.; Reis, D.; Šafář, J.; Milec, Z.; Abrouk, M.; Doležel, J.; Järve, K.; Valárik, M. Characterization of New Allele Influencing Flowering Time in Bread Wheat Introgressed from Triticum militinae. New Biotechnol. 2016, 33, 718–727. [Google Scholar] [CrossRef]
- Muterko, A.F.; Salina, E.A. Analysis of the VERNALIZATION-A1 Exon-4 Polymorphism in Polyploid Wheat. Vavilovskii Zhurnal Genet. I Sel. 2017, 21, 323–333. [Google Scholar] [CrossRef]
- Muterko, A.; Salina, E. Origin and Distribution of the VRN-A1 Exon 4 and Exon 7 Haplotypes in Domesticated Wheat Species. Agronomy 2018, 8, 156. [Google Scholar] [CrossRef]
- Miroshnichenko, D.; Timerbaev, V.; Klementyeva, A.; Pushin, A.; Sidorova, T.; Litvinov, D.; Nazarova, L.; Shulga, O.; Divashuk, M.; Karlov, G.; et al. CRISPR/Cas9-Induced Modification of the Conservative Promoter Region of VRN-A1 Alters the Heading Time of Hexaploid Bread Wheat. Front. Plant Sci. 2022, 13, 1048695. [Google Scholar] [CrossRef]
- Zhang, B.; Guo, Y.; Fan, Q.; Li, R.; Chen, D.; Zhang, X. Characterization and Distribution of Novel Alleles of the Vernalization Gene Vrn-A1 in Chinese Wheat (Triticum aestivum L.) Cultivars. Crop J. 2022, 11, 852–862. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, M.; Wang, S.; Chen, F.; Cui, D. Allelic Variation at the Vernalization and Photoperiod Sensitivity Loci in Chinese Winter Wheat Cultivars (Triticum aestivum L.). Front. Plant Sci. 2015, 6, 470. [Google Scholar] [CrossRef]
- Chepurnov, G.Y.; Ovchinnikova, E.S.; Blinov, A.G.; Chikida, N.N.; Belousova, M.K.; Goncharov, N.P. Analysis of the Structural Organization and Expression of the Vrn-D1 Gene Controlling Growth Habit (Spring vs. Winter) in Aegilops taushii Coss. Plants 2023, 12, 3596. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Schichkina, A.A.; Salina, E.A. The Occurrence of Spring Forms in Tetraploid Timopheevi Wheat Is Associated with Variation in the First Intron of the VRN-A1 Gene. BMC Plant Biol. 2016, 16, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Strygina, K.V.; Salina, E.A. VRN-1 Gene- Associated Prerequisites of Spring Growth Habit in Wild Tetraploid Wheat T. dicoccoides and the Diploid A Genome Species. BMC Plant Biol. 2015, 15, 94. [Google Scholar] [CrossRef]
- Sehgal, D.; Vikram, P.; Sansaloni, C.P.; Ortiz, C.; Pierre, C.S.; Payne, T.; Ellis, M.; Amri, A.; Petroli, C.D.; Wenzl, P.; et al. Exploring and Mobilizing the Gene Bank Biodiversity for Wheat Improvement. PLoS ONE 2015, 10, e0132112. [Google Scholar] [CrossRef]
- Steinfort, U.; Trevaskis, B.; Fukai, S.; Bell, K.L.; Dreccer, M.F. Vernalisation and Photoperiod Sensitivity in Wheat: Impact on Canopy Development and Yield Components. Field Crops Res. 2017, 201, 108–121. [Google Scholar] [CrossRef]
- Sherman, J.D.; Yan, L.; Talbert, L.; Dubcovsky, J. A PCR Marker for Growth Habit in Common Wheat Based on Allelic Variation at the VRN-A1 Gene. Crop Sci. 2004, 44, 1832–1838. [Google Scholar] [CrossRef]
- Chen, F.; Gao, M.; Zhang, J.; Zuo, A.; Shang, X.; Cui, D. Molecular Characterization of Vernalization and Response Genes in Bread Wheat from the Yellow and Huai Valley of China. BMC Plant Biol. 2013, 13, 199. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Salina, E.A. Evolution of VRN-1 Homoeologous Loci in Allopolyploids of Triticum and Their Diploid Precursors. BMC Plant Biol. 2017, 17, 188. [Google Scholar] [CrossRef] [PubMed]
- Santra, D.K.; Santra, M.; Allan, R.E.; Campbell, K.G.; Kidwell, K.K. Genetic and Molecular Characterization of Vernalization Genes Vrn-A1, Vrn-B1, and Vrn-D1 in Spring Wheat Germplasm from the Pacific Northwest Region of the U.S.A. Plant Breed. 2009, 128, 576–584. [Google Scholar] [CrossRef]
- Milec, Z.; Tomková, L.; Sumíková, T.; Pánková, K. A New Multiplex PCR Test for the Determination of Vrn-B1 Alleles in Bread Wheat (Triticum aestivum L.). Mol. Breed. 2012, 30, 317–323. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Wang, X.; Ma, L.; Wang, Z.; Zhang, X. Molecular Characterization of a Novel Vernalization Allele Vrn-B1d and Its Effect on Heading Time in Chinese Wheat (Triticum aestivum L.) Landrace Hongchunmai. Mol. Breed. 2018, 38, 127. [Google Scholar] [CrossRef]
- Strejčková, B.; Mazzucotelli, E.; Čegan, R.; Milec, Z.; Brus, J.; Çakır, E.; Mastrangelo, A.M.; Özkan, H.; Šafář, J. Wild Emmer Wheat, the Progenitor of Modern Bread Wheat, Exhibits Great Diversity in the VERNALIZATION1 Gene. Front. Plant Sci. 2023, 13, 1106164. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, Y.; Wu, S.; Yang, J.; Liu, H.; Zhou, Y. A Single Nucleotide Polymorphism at the Vrn-D1 Promoter Region in Common Wheat Is Associated with Vernalization Response. Theor. Appl. Genet. 2012, 125, 1697–1704. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Pearce, S.; Burke, A.; See, D.R.; Skinner, D.Z.; Dubcovsky, J.; Garland-Campbell, K. Copy Number and Haplotype Variation at the VRN-A1 and Central FR-A2 Loci Are Associated with Frost Tolerance in Hexaploid Wheat. Theor. Appl. Genet. 2014, 127, 1183–1197. [Google Scholar] [CrossRef]
- Würschum, T.; Boeven, P.H.G.; Langer, S.M.; Longin, C.F.H.; Leiser, W.L. Multiply to Conquer: Copy Number Variations at Ppd-B1 and Vrn-A1 Facilitate Global Adaptation in Wheat. BMC Genet. 2015, 16, 96. [Google Scholar] [CrossRef]
- Muterko, A.; Salina, E. VRN1-Ratio Test for Polyploid Wheat. Planta 2019, 250, 1955–1965. [Google Scholar] [CrossRef]
- Grogan, S.M.; Brown-Guedira, G.; Haley, S.D.; McMaster, G.S.; Reid, S.D.; Smith, J.; Byrne, P.F. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains. PLoS ONE 2016, 11, e0152852. [Google Scholar] [CrossRef]
- Muterko, A. Copy Number Variation of the Vrn-A1b Allele in Emmer and Spelt Wheat. Curr. Chall. Plant Genet. Genom. Bioinform. Biotechnol. 2019, 24, 124–125. [Google Scholar] [CrossRef]
- Milec, Z.; Sumíková, T.; Tomková, L.; Pánková, K. Distribution of Different Vrn-B1 Alleles in Hexaploid Spring Wheat Germplasm. Euphytica 2013, 192, 371–378. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [PubMed]
- Shcherban, A.B.; Efremova, T.T.; Salina, E.A. Identification of a New Vrn-B1 Allele Using Two near-Isogenic Wheat Lines with Difference in Heading Time. Mol. Breed. 2012, 29, 675–685. [Google Scholar] [CrossRef]
- Zhang, X.K.; Xiao, Y.G.; Zhang, Y.; Xia, X.C.; Dubcovsky, J.; He, Z.H. Allelic Variation at the Vernalization Genes Vrn-A1, Vrn-B1, Vrn-D1, and Vrn-B3 in Chinese Wheat Cultivars and Their Association with Growth Habit. Crop Sci. 2008, 48, 458–470. [Google Scholar] [CrossRef]
- Eagles, H.A.; Cane, K.; Kuchel, H.; Hollamby, G.J.; Vallance, N.; Eastwood, R.F.; Gororo, N.N.; Martin, P.J. Photoperiod and Vernalization Gene Effects in Southern Australian Wheat. Crop Pasture Sci. 2010, 61, 721–730. [Google Scholar] [CrossRef]
- Muterko, A.; Balashova, I.; Cockram, J.; Kalendar, R.; Sivolap, Y. The New Wheat Vernalization Response Allele Vrn-D1s Is Caused by DNA Transposon Insertion in the First Intron. Plant Mol. Biol. Rep. 2015, 33, 294–303. [Google Scholar] [CrossRef]
- Shcherban, A.; Emtseva, M.; Efremova, T. Molecular Genetical Characterization of Vernalization Genes Vrn-A1, Vrn-B1 and Vrn-D1 in Spring Wheat Germplasm from Russia and Adjacent Regions. Cereal Res. Commun. 2012, 40, 351–361. [Google Scholar] [CrossRef]
- Shcherban, A.B.; Börner, A.; Salina, E.A. Effect of VRN-1 and PPD-D1 Genes on Heading Time in European Bread Wheat Cultivars. Plant Breed. 2015, 134, 49–55. [Google Scholar] [CrossRef]
- Milec, Z.; Strejčková, B.; Šafář, J. Contemplation on Wheat Vernalization. Front. Plant Sci. 2023, 13, 1093792. [Google Scholar] [CrossRef]
- Mcintosh, R.A.; Dubcovsky, J.; Rogers, W.J.; Morris, C.F.; Appels, R.; Xia, X.C.; Science, R.; Azul, C.; Aires, P.D.B.; Plant, M.; et al. Catalogue of Gene Symbols for Wheat: 2013–2014 Supplement. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–14 September 2013; Volume 60, pp. 1–31. [Google Scholar]
- Li, G.; Yu, M.; Fang, T.; Cao, S.; Carver, B.F.; Yan, L. Vernalization Requirement Duration in Winter Wheat Is Controlled by TaVRN-A1 at the Protein Level. Plant J. 2013, 76, 742–753. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, G.; Yu, M.; Fang, T.; Cao, S.; Carver, B.F. Genetic Mechanisms of Vernalization Requirement Duration in Winter Wheat Cultivars. In Advances in Wheat Genetics: From Genome to Field: Proceedings of the 12th International Wheat Genetics Symposium; Springer: Tokyo, Japan, 2015; pp. 117–125. [Google Scholar]
- Distelfeld, A.; Tranquilli, G.; Li, C.; Yan, L.; Dubcovsky, J. Genetic and Molecular Characterization of the VRN2 Loci in Tetraploid Wheat. Plant Physiol. 2009, 149, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Handa, H.; Mori, N.; Kawaura, K.; Kitajima, A.; Nakazaki, T. Geographical Distribution and Adaptive Variation of VRN-A3 Alleles in Worldwide Polyploid Wheat (Triticum spp.) Species Collection. Planta 2021, 253, 132. [Google Scholar] [CrossRef] [PubMed]
- Berezhnaya, A.; Kiseleva, A.; Leonova, I.; Salina, E. Allelic Variation Analysis at the Vernalization Response and Photoperiod Genes in Russian Wheat Varieties Identified Two Novel Alleles of Vrn-B3. Biomolecules 2021, 11, 1897. [Google Scholar] [CrossRef] [PubMed]
- Pugsley, A.T. Additional Genes Inhibiting Winter Habit in Wheat. Euphytica 1972, 21, 547–552. [Google Scholar] [CrossRef]
- Katou, K. Chromosomal Location of the Genes for Vernalization Response, Vrn2 and Vrn4, in Common Wheat, Triticum aestivum L. Wheat Inf. Serv. 1993, 76, 53. [Google Scholar]
- McIntosh, R.A.; Yamazaki, Y.; Dubcovsky, J.; Rogers, J.W.; Morris, C.; Appels, R.; Xia, X.; Azul, B. Catalogue of Gene Symbols for Wheat: 2013–2014. In Proceedings of the 12th International Wheat Genetics Symposium, Yokohama, Japan, 8–14 September 2013; pp. 8–13. [Google Scholar]
- Xue, Q.; Xiong, H.; Zhou, C.; Guo, H.; Zhao, L.; Xie, Y.; Gu, J.; Zhao, S.; Ding, Y.; Xu, L.; et al. Gene Mapping and Identification of a Missense Mutation in One Copy of VRN-A1 Affects Heading Date Variation in Wheat. Int. J. Mol. Sci. 2023, 24, 5008. [Google Scholar] [CrossRef]
- Royo, C.; Dreisigacker, S.; Alfaro, C.; Ammar, K.; Villegas, D. Effect of Ppd-1 Genes on Durum Wheat Flowering Time and Grain Filling Duration in a Wide Range of Latitudes. J. Agric. Sci. 2016, 154, 612–631. [Google Scholar] [CrossRef]
- Nazim Ud Dowla, M.A.N.; Edwards, I.; O’Hara, G.; Islam, S.; Ma, W. Developing Wheat for Improved Yield and Adaptation under a Changing Climate: Optimization of a Few Key Genes. Engineering 2018, 4, 514–522. [Google Scholar] [CrossRef]
- Whittal, A.; Kaviani, M.; Graf, R.; Humphreys, G.; Navabi, A. Allelic Variation of Vernalization and Photoperiod Response Genes in a Diverse Set of North American High Latitude Winter Wheat Genotypes. PLoS ONE 2018, 13, e0203068. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; D’Agostino, N.; Taranto, F.; Sonnante, G.; Sestili, F.; Lafiandra, D.; De Vita, P. Whole-Exome Sequencing of Selected Bread Wheat Recombinant Inbred Lines as a Useful Resource for Allele Mining and Bulked Segregant Analysis. Front. Genet. 2022, 13, 1058471. [Google Scholar] [CrossRef]
- Walkowiak, S.; Gao, L.; Monat, C.; Haberer, G.; Kassa, M.T.; Brinton, J.; Ramirez-Gonzalez, R.H.; Kolodziej, M.C.; Delorean, E.; Thambugala, D.; et al. Multiple Wheat Genomes Reveal Global Variation in Modern Breeding. Nature 2020, 588, 277–283. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Nazzicari, N.; Bouizgaren, A.; Hayek, T.; Laouar, M.; Cornacchione, M.; Basigalup, D.; Monterrubio Martin, C.; Brummer, E.C.; Pecetti, L. Alfalfa Genomic Selection for Different Stress-Prone Growing Regions. Plant Genome 2022, 15, e20264. [Google Scholar] [CrossRef]
- Esposito, S.; Vitale, P.; Taranto, F.; Saia, S.; Pecorella, I.; D’Agostino, N.; Rodriguez, M.; Natoli, V.; De Vita, P. Simultaneous Improvement of Grain Yield and Grain Protein Concentration in Durum Wheat by Using Association Tests and Weighted GBLUP. Theor. Appl. Genet. 2023, 136, 242. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afshari-Behbahanizadeh, S.; Puglisi, D.; Esposito, S.; De Vita, P. Allelic Variations in Vernalization (Vrn) Genes in Triticum spp. Genes 2024, 15, 251. https://doi.org/10.3390/genes15020251
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, De Vita P. Allelic Variations in Vernalization (Vrn) Genes in Triticum spp. Genes. 2024; 15(2):251. https://doi.org/10.3390/genes15020251
Chicago/Turabian StyleAfshari-Behbahanizadeh, Sanaz, Damiano Puglisi, Salvatore Esposito, and Pasquale De Vita. 2024. "Allelic Variations in Vernalization (Vrn) Genes in Triticum spp." Genes 15, no. 2: 251. https://doi.org/10.3390/genes15020251
APA StyleAfshari-Behbahanizadeh, S., Puglisi, D., Esposito, S., & De Vita, P. (2024). Allelic Variations in Vernalization (Vrn) Genes in Triticum spp. Genes, 15(2), 251. https://doi.org/10.3390/genes15020251